
Theory supporting the net benefit and Peron’s scoring rules

Brice Ozenne

January 9, 2019

This document describe the relationship between the net benefit and traditional parameter of
interest (e.g. hazard ratio). It also present how Peron’s scoring rules for the survival and competing
setting were derived.

In the examples we will use a sample size of:
n <- 1e4

and use the following R packages
library(BuyseTest)
library(riskRegression)
library(survival)
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1 Parameter of interest
Let consider two independent real valued (univariate) random variables X and Y . Informally X refer
to the outcome in the experimental group while Y refer to the outcome in the control group. For a
given threshold τ ∈ R+∗, the net benefit can be expressed as:

∆τ = P [X ≥ Y + τ ]− P [Y ≥ Y + τ ]

To relate the net benefit to known quantities we will also consider the case of an infinitesimal threshold
τ :

∆+ = P [X > Y ]− P [Y > X]

In any case, X and Y play a symetric role in the sense that given a formula for P [X ≥ Y + τ ] (or
P [X > Y ]), we can substitute X to Y and Y to X to obtain the formula for P [Y ≥ X + τ ] (or
P [Y > X]).
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2 Binary variable

2.1 Relationship between ∆+ and the prevalence

P [X > Y ] = P [X = 1, Y = 0]

Using the independence between X and Y :

P [X > Y ] = P [X = 1]P [Y = 0] = P [X = 1] (1− P [Y = 1]) = P [X = 1]− P [X = 1]P [Y = 1]

By symmetry:

P [Y > X] = P [Y = 1]− P [Y = 1]P [X = 1]

So

∆+ = P [X = 1]− P [Y = 1]

2.2 In R
Settings:

prob1 <- 0.4
prob2 <- 0.2

Simulate data:
set.seed(10)
df <- rbind(data.frame(tox = rbinom(n, prob = prob1, size = 1), group = "C"),

data.frame(tox = rbinom(n, prob = prob2, size = 1), group = "T"))

Buyse test:
BuyseTest(group ∼ bin(tox), data = df, method.inference = "none", trace = 0)

endpoint threshold delta Delta
tox 0.5 -0.1981 -0.1981

Expected:
prob2 - prob1

[1] -0.2
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3 Continuous variable

3.1 Relationship between ∆ and Cohen’s d
Let’s consider two independent normally distributed variables with common variance:

• X ∼ N (µX , σ2)

• Y ∼ N (µY , σ2)

Considering Z ∼ N (d, 2) with d = µX−µY
σ

, we express:

P [X > Y ] = P [σ(Y −X) > 0] = P [Z > 0] = Φ( d√
2

)

By symmetry

P [Y > X] = P [Z < 0] = 1− Φ( d√
2

)

So

∆ = 2 ∗ Φ( d√
2

)− 1

3.2 In R
Settings:

meanX <- 0
meanY <- 2
sdXY <- 1

Simulate data:
set.seed(10)
df <- rbind(data.frame(tox = rnorm(n, mean = meanX, sd = sdXY), group = "C"),

data.frame(tox = rnorm(n, mean = meanY, sd = sdXY), group = "T"))

Buyse test:
BuyseTest(group ∼ cont(tox), data = df, method.inference = "none", trace = 0)

endpoint threshold delta Delta
tox 1e-12 0.8359 0.8359

Expected:
d <- (meanY-meanX)/sdXY
2*pnorm(d/sqrt(2))-1

[1] 0.8427008
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4 Survival

4.1 Relationship between ∆ and the hazard ratio
For a given cumulative density function F (x) and a corresponding probability density function f(x)
we define the hazard by:

λ(t) =
P
[
t ≤ T ≤ t+ h

∣∣∣T ≥ t
]

h

∣∣∣∣∣∣
h→0+

= P [t ≤ T ≤ t+ h]
P [T ≥ t]h

∣∣∣∣∣
h→0+

= f(t)
1− F (t)

Let now consider two times to events following an exponential distribution:

• X ∼ Exp(αX). The corresponding hazard function is λ(t) = αX .

• Y ∼ Exp(αY ). The corresponding hazard function is λ(t) = αY .

So the hazad ratio is HR = αX
αY

. Note that if we use a Cox model we will have:

λ(t) = λ0(t) exp(β1group)

where exp(β) is the hazard ratio.

P [X > Y ] =
∫ ∞

0
P [x > Y ] dP [x > X]

=
∫ ∞

0

(∫ x

0
αY exp(−αY y)dy

)
(αX exp(−αXx)dx)

=
∫ ∞

0
[− exp(−αY y)]x0 (αX exp(−αXx)dx)

=
∫ ∞

0
(1− exp(−αY x)) (αX exp(−αXx)dx)

=
∫ ∞

0
αX (exp(−αXx)− exp(−(αX + αY )x)) dx

=
[
exp(−αXx)− αX

αX + αY
exp(−(αX + αY )x)

]∞
0

= 1− αX
αX + αY

= αY
αX + αY

= 1
1 +HR

So P [Y > X] = αX
αY +αX = 1− 1

1+HR and:

∆+ = 2 1
1 +HR

− 1 = 1−HR
1 +HR
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4.2 Scoring rule in presence of censoring
Let’s consider the following random variables:

• X the time to the occurrence of the event in the experimental group.

• X̃ the censored event time in the experimental group, i.e. X̃ = X ∧CX where CX denotes the
censoring time in the experimental group.

• εX = 1X≤CX the event time indicator in the experimental group.

• Y the time to the occurrence of the event in the control group.

• Ỹ the censored event time in the control group, i.e. Ỹ = X ∧ CY where CY denotes the
censoring time in the control group.

• εY = 1Y≤CY the event time indicator in the control group.

We observe one realization (x̃, ỹ, eX , eY ) of the random variables
(
X̃, Ỹ , eX , eY

)
. We use the short

notation x∧ y = min(x, y) and x∨ y = max(x, y). We assume to know the expected survival in each
group (respectively SC and ST ) at each timepoint.

4.2.1 Case: ST = 0, SC = 1

Probability in favor of the treatment:

P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC] = P
[
X ≥ ỹ + τ

∣∣∣X > x̃
]

= P [X ≥ ỹ + τ,X > x̃]
P [X > x̃]

=
 1 if x̃ ≥ ỹ + τ

ST ((ỹ+τ)−)
ST (x̃) if x̃ < ỹ + τ

Probability in favor of the control:

P
[
Y ≥ X + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC] = P
[
ỹ ≥ X + τ

∣∣∣X > x̃
]

= 1− P
[
ỹ < X + τ

∣∣∣X > x̃
]

= 1− P [X > max (x̃, ỹ − τ)]
P [X > x̃]

=
 0 if x̃ ≥ ỹ − τ

1− ST (ỹ−τ)
ST (x̃) if x̃ < ỹ − τ

4.2.2 Case: ST = 1, SC = 0

By symmetry we have:
Probability in favor of the treatment:

P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC] =
 0 if ỹ ≥ x̃− τ

1− SC(x̃−τ)
SC(ỹ) if ỹ < x̃− τ
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Probability in favor of the control:

P
[
Y ≥ X + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC] = P
[
ỹ ≥ X + τ

∣∣∣X > x̃
]

=
 1 if ỹ ≥ x̃+ τ

SC((x̃+τ)−)
SC(ỹ) if ỹ < x̃− τ

4.2.3 Case: ST = 0, SC = 0

Probability in favor of the treatment:

P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]
= P

[
X ≥ Y + τ

∣∣∣X > x̃, Y > ỹ
]

= P
[
(X ≥ Y + τ) ∩ (x̃ ≥ Y + τ)

∣∣∣X > x̃, Y > ỹ
]

+ P
[
(X ≥ Y + τ) ∩ (x̃ < Y + τ)

∣∣∣X > x̃, Y > ỹ
]

= P
[
x̃ ≥ Y + τ

∣∣∣Y > ỹ
]

+ P [(X ≥ Y + τ) ∩ (x̃ < Y + τ) ∩����
�(X > x̃) ∩ (Y > ỹ)]

P [(X > x̃) ∩ (Y > ỹ)]

= P
[
x̃ ≥ Y + τ

∣∣∣Y > ỹ
]

+ P [(X ≥ Y + τ) ∩ (Y > max(ỹ, x̃− τ))]
P [(X > x̃) ∩ (Y > ỹ)]

where we have used that:

(X ≥ Y + τ) ∩ (x̃ < Y + τ) =⇒ X > x̃

Since:

P [A > B] =
∫ +∞

−∞
P [A > t] dP [B ≤ t]

P [(A > B + τ) ∩ (B > b)] =
∫ +∞

b+
P [A > t+ τ ] dP [B ≤ t]

= −
∫ +∞

b+
P [A > t+ τ ] dP [B > t]

we obtain for A = X, B = Y ,b = max(ỹ, x̃− τ):

P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]
= P

[
x̃ ≥ Y + τ

∣∣∣Y > ỹ
]
−
∫∞

max(ỹ,x̃−τ)+ P [(X ≥ t+ τ)] dP [Y > t]
ST (x̃)SC (ỹ)

= P
[
x̃ ≥ Y + τ

∣∣∣Y > ỹ
]
−
∫∞

max(ỹ,x̃−τ)+ ST ((t+ τ)−)dSC(t)
ST (x̃)SC (ỹ)
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So using the results of the case ST = 1, SC = 0 we obtain:

P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]

=


−
∫∞
ỹ+ ST ((t+τ)−)dSC(t)

ST (x̃)SC(ỹ) if ỹ ≥ x̃− τ

1− SC(x̃−τ)
SC(ỹ) −

∫∞
(x̃−τ)+ ST ((t+τ)−)dSC(t)

ST (x̃)SC(ỹ) if ỹ < x̃− τ

Probability in favor of the control: By symmetry we have:

P
[
Y ≥ X + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]

=


−
∫∞
x̃+ SC((t+τ)−)dST (t)

ST (x̃)SC(ỹ) if x̃ ≥ ỹ − τ

1− ST (ỹ−τ)
ST (x̃) −

∫∞
(ỹ−τ)+ SC((t+τ)−)dST (t)

ST (x̃)SC(ỹ) if x̃ < ỹ − τ
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4.2.4 Synthesis

Probability in favor of the treatment: P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]

(eX ,eY ) x̃ ≤ ỹ − τ |x̃− ỹ| < τ x̃ ≥ ỹ + τ

(1, 1) 0 0 1

(1, 0) 0 0 1− SC(x̃−τ)
SC(ỹ)

(0, 1) ST ((ỹ+τ)−)
ST (x̃)

ST ((ỹ+τ)−)
ST (x̃) 1

(0, 0) −
∫∞
t>ỹ

ST ((t+τ)−)dSC(t)
ST (x̃)SC(ỹ) −

∫∞
t>ỹ

ST ((t+τ)−)dSC(t)
ST (x̃)SC(ỹ) 1− SC(x̃−τ)

SC(ỹ) −
∫∞
t>x̃−τ ST ((t+τ)−)dSC(t)

ST (x̃)SC(ỹ)

Probability in favor of the control: P
[
Y ≥ X + τ

∣∣∣x̃, ỹ, eX , eY , ST , SC]

(eX ,eY ) x̃ ≤ ỹ − τ |x̃− ỹ| < τ x̃ ≥ ỹ + τ

(1, 1) 1 0 0

(1, 0) 1 SC((x̃+τ)−)
SC(ỹ)

SC((x̃+τ)−)
SC(ỹ)

(0, 1) 1− ST (ỹ−τ)
ST (x̃) 0 0

(0, 0) 1− ST (ỹ−τ)
ST (x̃) −

∫∞
t>ỹ−τ SC((t+τ)−)dST (t)

ST (x̃)SC(ỹ) −
∫∞
t>x̃

SC((t+τ)−)dST (t)
ST (x̃)SC(ỹ) −

∫∞
t>x̃

SC((t+τ)−)dST (t)
ST (x̃)SC(ỹ)

Probability neutral to the treatment: P
[
|X − Y | < τ

∣∣∣x̃, ỹ, θ, η, ST , SC]

= 1− P
[
X ≥ Y + τ

∣∣∣x̃, ỹ, θ, η, ST , SC]− P
[
Y ≥ X + τ

∣∣∣x̃, ỹ, θ, η, ST , SC]
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4.3 Partially known survival curve
In the case where x∗ < y∗ − τ , we need an estimate of SX(y∗ − τ) to compute the probability in
favor of the control. If we can only have an estimate of SX up to xmax < y∗ − τ then we can use the
following inequality:

SX(xmax) ≥ SX(y∗ − τ)

P [x ≥ y − τ |x ≥ x∗, y = y∗] ≥ 1− SX(xmax)
SX(x∗)

Probability of being neutral:

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] = 1− P [x ≥ y + τ |x ≥ x∗, y = y∗]− P [y ≥ x+ τ |x ≥ x∗, y = y∗]

= SX(y∗ − τ ∨ x∗)− SX(y∗ + τ ∨ x∗)
SX(x∗)

Consider the case x∗ If xmax > y∗ − τ then

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] ≥ SX(y∗ − τ)− SX(xmax)
SX(x∗)

otherwise

P [|x− y| ≤ τ |x ≥ x∗, y = y∗] ≥ 0

Probability of being uninformative: It is computed as the complement to 1 of the sum of
the probability of being in favor of the treatment, in favor of the control, and neutral.

Example:

• when x∗ > y∗+τ , the probability of being favorable is 1 so the probability of being uninformative
is 0.

• when |x∗ − y∗| < τ , the probability of being in favor of the control is 0. If we know the
survival in the experimental group up to time y∗, then we can only say that the probability
of being favorable is bounded below by 0. The probability of being neutral bounded below
by 1− ST (y∗)/ST (x∗). The probability of being uninformative is then ST (y∗)/ST (x∗). Clearly
this probability becomes small when ST (y∗) is small. The approximation by the lower bound
becomes exact when ST (y∗) tends to 0.

4.4 In R
Settings:

alphaX <- 2
alphaY <- 1
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Simulate data:
set.seed(10)
df <- rbind(data.frame(time = rexp(n, rate = alphaX), group = "C", event = 1),

data.frame(time = rexp(n, rate = alphaY), group = "T", event = 1))

Buyse test:
BuyseTest(group ∼ tte(time, censoring = event), data = df,

method.inference = "none", trace = 0, method.tte = "Gehan")

endpoint threshold delta Delta
time 1e-12 0.3403 0.3403

Expected:
e.coxph <- coxph(Surv(time,event)∼group,data = df)
HR <- as.double(exp(coef(e.coxph)))
c("HR" = alphaY/alphaX, "Delta" = 2*alphaX/(alphaY+alphaX)-1)
c("HR.cox" = HR, "Delta" = (1-HR)/(1+HR))

HR Delta
0.5000000 0.3333333

HR.cox Delta
0.4918256 0.3406392
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5 Competing risks

5.1 Theory
5.1.1 General case (no censoring)

Let consider:

• X∗E the time to the occurrence of the event of interest in the experimental group.

• Y ∗E the time to the occurrence of the event of interest in the control group.

• X∗CR the time to the occurrence of the competing event of interest in the experimental group.

• Y ∗CR the time to the occurrence of the competing event of interest in the control group.

Let denote εX = 1+1X∗E>X∗CR the event type indicator in the experimental group and εY = 1+1Y ∗E>Y ∗CR
the event type indicator in control group (= 1 when the cause of interest is realised first and 2 when
the competing risk is realised first).

For each subject either the event of interest or the competing event is realized. We now define:

X =
{
X∗E if εX = 1
+∞ if εX = 2 and Y =

{
Y ∗E if εY = 1
+∞ if εY = 2

i.e. when the event of interest is not realized we say that the time to event is infinite.

We thus have:

P [X > Y ] =P [X > Y |εX = 1, εY = 1]P [εX = 1, εY = 1]
+ P [X > Y |εX = 1, εY = 2]P [εX = 1, εY = 2]
+ P [X > Y |εX = 2, εY = 1]P [εX = 2, εY = 1]
+ P [X > Y |εX = 2, εY = 2]P [εX = 2, εY = 2]

=P [X > Y |εX = 1, εY = 1]P [εX = 1, εY = 1]
+ 0 ∗ P [εX = 1, εY = 2]
+ 1 ∗ P [εX = 2, εY = 1]
+ 0 ∗ P [εX = 2, εY = 2]

So P [X > Y ] = P [X > Y |εX = 1, εY = 1]P [εX = 1, εY = 1] + P [εX = 2, εY = 1] and:

∆ =
(
P [X > Y |εX = 1, εY = 1]− P [X < Y |εX = 1, εY = 1]

)
P [εX = 1, εY = 1]

+ P [εX = 2, εY = 1]− P [εX = 1, εY = 2]
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5.1.2 Exponential distribution (no censoring)

Now let’s assume that:

• XE ∼ Exp(αE,X).

• YE ∼ Exp(αE,Y ).

• XCR ∼ Exp(αCR,X).

• YCR ∼ Exp(αCR,Y ).

Then:

P [XE > YE] = P [XE > YE|εX = 1, εY = 1]P [εX = 1, εY = 1] + P [εX = 2, εY = 1]

= 1
(αE,X + αCR,X)(αE,Y + αCR,Y )

(
αE,XαE,Y

αE,X
αE,X + αE,Y

+ αCR,XαE,Y

)

Just for comparison let’s compare to the cumulative incidence. First we only consider one group
and two competing events whose times to event follow an exponential distribution:

• TE ∼ Exp(αE). The corresponding hazard function is λ(t) = αE.

• TCR ∼ Exp(αCR). The corresponding hazard function is λ(t) = αCR.

The cumulative incidence function can be written:

CIF1(t) =
∫ t

0
λ1(s)S(s−)ds

=
∫ t

0
αE exp(−(αE + αCR) ∗ s−)ds

= αE
αE + αCR

[exp(−(αE + αCR) ∗ s−)]0t

= αE
αE + αCR

(1− exp(−(αE + αCR) ∗ t−))

where S(t) denote the event free survival and s− denotes the right sided limit.

Then applying this formula in the case of two groups gives:

CIF1(t|group = X) = αE,X
αE,X + αCR,X

(1− exp(−(αE,X + αCR,X) ∗ t−))

CIF1(t|group = Y ) = αE,Y
αE,Y + αCR,Y

(1− exp(−(αE,Y + αCR,Y ) ∗ t−))
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5.2 In R
5.2.1 BuyseTest (no censoring)

Setting:
alphaE.X <- 2
alphaCR.X <- 1
alphaE.Y <- 3
alphaCR.Y <- 2

Simulate data:
set.seed(10)
df <- rbind(data.frame(time1 = rexp(n, rate = alphaE.X), time2 = rexp(n, rate =

alphaCR.X), group = "1"),
data.frame(time1 = rexp(n, rate = alphaE.Y), time2 = rexp(n, rate =

alphaCR.Y), group = "2"))
df$time <- pmin(df$time1,df$time2) ## first event
df$event <- (df$time2<df$time1)+1 ## type of event

BuyseTest:
e.BT <- BuyseTest(group ∼ tte(time, censoring = event), data = df,

method.inference = "none", method.tte = "Gehan",
trace = 0)

summary(e.BT, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 41.6 45.12 13.28 0 -0.0352 -0.0352

Note that without censoring one can get the same results by treating time as a continuous variable
that take value ∞ when the competing risk is observed:

df$timeXX <- df$time
df$timeXX[df$event==2] <- max(df$time)+1
e.BT.bis <- BuyseTest(group ∼ cont(timeXX), data = df,

method.inference = "none", trace = 0)
summary(e.BT.bis, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
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> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

timeXX 1e-12 100 41.6 45.12 13.28 0 -0.0352 -0.0352

Expected:
weight <- (alphaE.X+alphaCR.X)*(alphaE.Y+alphaCR.Y)
exp <- list()
exp$favorable <- 1/weight*(alphaE.X*alphaE.Y*alphaE.X/(alphaE.X+alphaE.Y)+(alphaE.X*

alphaCR.Y))
exp$unfavorable <- 1/weight*(alphaE.X*alphaE.Y*alphaE.Y/(alphaE.X+alphaE.Y)+(alphaE.Y*

alphaCR.X))
exp$neutral <- alphaCR.X*alphaCR.Y/weight

100*unlist(exp)

favorable unfavorable neutral
42.66667 44.00000 13.33333

5.2.2 BuyseTest (with censoring)

Simulate data:
df$eventC <- df$event
df$eventC[rbinom(n, size = 1, prob = 0.2)==1] <- 0

BuyseTest (biased):
e.BTC <- BuyseTest(group ∼ tte(time, censoring = eventC), data = df,

method.inference = "none", method.tte = "Gehan",
trace = 0)

summary(e.BTC, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 31.1 35.15 8.65 25.1 -0.0406 -0.0406

BuyseTest (unbiased):
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e.BTCC <- BuyseTest(group ∼ tte(time, censoring = eventC), data = df,
method.inference = "none", method.tte = "Gehan corrected",
trace = 0)

summary(e.BTCC, percentage = TRUE)

Generalized pairwise comparison with 1 prioritized endpoint

> statistic : net chance of a better outcome (delta: endpoint specific, Delta: global)
> null hypothesis : Delta == 0
> treatment groups: 1 (control) vs. 2 (treatment)
> censored pairs : uninformative pairs

IPW for uninformative pairs

> results
endpoint threshold total favorable unfavorable neutral uninf delta Delta

time 1e-12 100 41.52 46.94 11.54 0 -0.0542 -0.0542

5.2.3 Cumulative incidence

Settings:
alphaE <- 2
alphaCR <- 1

Simulate data:
set.seed(10)
df <- data.frame(time1 = rexp(n, rate = alphaE), time2 = rexp(n, rate = alphaCR),

group = "1", event = 1)
df$time <- pmin(df$time1,df$time2)
df$event <- (df$time2<df$time1)+1

Cumulative incidence (via risk regression):
e.CSC <- CSC(Hist(time, event) ∼ 1, data = df)
vec.times <- unique(round(exp(seq(log(min(df$time)),log(max(df$time)),length.out = 12)

),2))
e.CSCpred <- predict(e.CSC, newdata = data.frame(X = 1), time = vec.times , cause = 1)

Expected vs. calculated:
cbind(time = vec.times,

CSC = e.CSCpred$absRisk[1,],
manual = alphaE/(alphaE+alphaCR)*(1-exp(-(alphaE+alphaCR)*(vec.times)))
)

time CSC manual
[1,] 0.00 0.0000 0.00000000
[2,] 0.01 0.0186 0.01970298
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[3,] 0.02 0.0377 0.03882364
[4,] 0.05 0.0924 0.09286135
[5,] 0.14 0.2248 0.22863545
[6,] 0.42 0.4690 0.47756398
[7,] 1.24 0.6534 0.65051069
[8,] 3.70 0.6703 0.66665659

Could also be obtained treating the outcome as binary:
mean((df$time<=1)*(df$event==1))

[1] 0.6375
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6 Inverse probability weighting
In case of censoring we can use an inverse probability weighting approach. Let denote δc,X (resp.
δc,Y ) the indicator of no censoring relative to X̃ (resp Ỹ ), X̃E and ỸE the censored event time. We
can use inverse probability weighting to compute the net benefit:

∆IPW =
δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

](1Ỹ >X̃ − 1Ỹ <X̃)

=


1
P[δc,X̃]P[δc,Ỹ ] (1Y >X − 1Y <X), if no censoring
0, if censoring

This is equivalent to weight the informative pairs (i.e. favorable, unfavorable and neutral) by
the inverse of the complement of the probability of being uninformative. This is what is done by
the argument correction.tte of BuyseTest. This works whenever the censoring mechanism is
independent of the event times and we have a consistent estimate of P [δc] since:

E
[
∆IPW

]
= E

E
 δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

](1Ỹ >X̃ − 1Ỹ <X̃)
∣∣∣∣∣∣X̃, Ỹ


= E

E
 δc,X̃δc,Ỹ

P
[
δc,X̃

]
P
[
δc,Ỹ

]
∣∣∣∣∣∣X̃, Ỹ

E [1Y >X − 1Y <X ]

=
E
[
δc,X̃δc,Ỹ

]
P
[
δc,X̃

]
P
[
δc,Ỹ

]∆ =
E
[
δc,X̃

]
E
[
δc,Ỹ

]
P
[
δc,X̃

]
P
[
δc,Ỹ

]∆

= ∆

where we used the law of total expectation (first line) and the independence between the censoring
mecanisms.
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7 Asymptotic distribution
In this section we restrict ourself to the GPC as defined in (Buyse, 2010), i.e. we do not consider
Peron scoring rule nor any correction (like inverse probability weighting).

7.1 Theory
We consider two independent samples x1, x2, . . . , xm and y1, y2, . . . , yn where the first one contains iid
realisations of a random variable X and the second one contains iid realisations of a second variable
Y . For each realisation we observe p endpoints.

The estimator of the net benefit can be written as the difference between two estimators:

∆̂τ = P̂[X ≥ Y + τ ]− P̂[Y ≥ Y + τ ]

We denote by φk the scoring rule relative to P [X ≥ Y + τ ] for the endpoint k, e.g. φk(x1, y1) = 1x1>y1

for a binary endpoint. The scoring rule may depend of additional arguments, e.g. a threshold τ but
this will be ignored for the moment. Finally, we denote by kij the endpoint at which the pair (i, j)
is classified as favorable or unfavorable. If this does not happen then kij = p. With this notations,
the estimator P̂[X ≥ Y + τ ] can be written as a U-statistic:

P̂[X ≥ Y + τ ] = 1
mn

m∑
i=1

n∑
j=1

φkij(x1, y1)

This is a two sample U-statistic of order (1,1) with kernel φkij(x1, y1) (trivially symmetric in x and
y separately). From the U-statistic theory (e.g. see appendix A), it follows that P̂[X ≥ Y + τ ] is
unbiased, normally distributed, and its iid decomposition is the Hájek projection:

H(1)(P̂[X ≥ Y + τ ]) = 1
m

m∑
i=1

(
E
[
φkij(xi, yj)

∣∣∣∣∣xi
]
− P̂[X ≥ Y + τ ]

)

+ 1
n

n∑
j=1

(
E
[
φkij(xi, yj)

∣∣∣∣∣yj
]
− P̂[X ≥ Y + τ ]

)

=
m+n∑
l=1

H
(1)
l (P̂[X ≥ Y + τ ])

where H(1)
l (P̂[X ≥ Y + τ ]) are the individual terms of the iid decomposition. For instance in the

binary case, the term relative to the i− th observation of the experimental group is:

H
(1)
i (P̂[X ≥ Y + τ ]) =

E
[
φkij(xi, y)

∣∣∣∣∣xi
]
− P̂[X ≥ Y + τ ]

m
=


1−py−P̂[X≥Y+τ ]
m

if x = 1
−P̂[X≥Y+τ ]

m
if x = 0

where py is the proportion of 1 in the control group.
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7.2 Example
Let’s consider a case with 2 observations per group:

d <- data.table(id = 1:4, group = c("C","C","T","T"), toxicity = c(1,0,1,0))
d

id group toxicity
1: 1 C 1
2: 2 C 0
3: 3 T 1
4: 4 T 0

We can form 4 pairs:
d2 <- data.table(pair = c("3-1","4-1","3-2","4-2"),

type = c("1-1","0-1","1-0","0-0"),
favorable = c(0,0,1,0),
unfavorable = c(0,1,0,0))

d2

pair type favorable unfavorable
1: 3-1 1-1 0 0
2: 4-1 0-1 0 1
3: 3-2 1-0 1 0
4: 4-2 0-0 0 0

So U = P [X > Y ] equals:
U <- 1/4

and the iid terms are:

H
(1)
1 (P̂[X ≥ Y + τ ]) = 1

n

(
E
[
1x>y1

∣∣∣y1
]
− U

)
=

1x1>y1 +1x2>y1
2 − 1/4

2 = 0− 1/4
2 = −1/8

H
(1)
2 (P̂[X ≥ Y + τ ]) = 1

n

(
E
[
1x>y2

∣∣∣y2
]
− U

)
=

1x1>y2 +1x2>y2
2 − 1/4

2 = 1/2− 1/4
2 = 1/8

H
(1)
3 (P̂[X ≥ Y + τ ]) = 1

m

(
E
[
1x1>y

∣∣∣x1
]
− U

)
=

1x1>y1 +1x1>y2
2 − 1/4

2 = 1/2− 1/4
2 = 1/8

H
(1)
4 (P̂[X ≥ Y + τ ]) = 1

m

(
E
[
1x2>y

∣∣∣x2
]
− U

)
=

1x2>y1 +1x2>y2
2 − 1/4

2 = 0− 1/4
2 = −1/8

We can use the method iid to extract the iid decomposition in the BuyseTest package:
e.BT <- BuyseTest(group ∼ bin(toxicity), data = d,

keep.pairScore = TRUE,
method.inference = "asymptotic", trace = 0)

iid(e.BT)
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favorable unfavorable
[1,] -0.125 0.125
[2,] 0.125 -0.125
[3,] 0.125 -0.125
[4,] -0.125 0.125

This leads to the following estimates for the variance covariance:
crossprod(iid(e.BT))

favorable unfavorable
favorable 0.0625 -0.0625
unfavorable -0.0625 0.0625

Which is precisely what is stored in e.BT:
e.BT@covariance

favorable unfavorable covariance
toxicity 0.0625 0.0625 -0.0625

Note that we could also estimate the variance via the formula given in (Bebu and Lachin, 2015),
e.g.:

σ2
favorable = P [X ≥ Y1, X ≥ Y2]− P [X ≥ Y ]2

= 1/8− 1/16 = 0.0625

Indeed to compute P [X ≥ Y1, X ≥ Y2] we distinguish 2*2*2=8 cases (X ∈ {x1, x2}, Y1 ∈ {y1, y2},
and Y2 ∈ {y1, y2}) and only one satisfyies X ≥ Y1, X ≥ Y2 (when X = x1 and Y1 = Y2 = y2). This is
what is performed when calling:

e2.BT <- BuyseTest(group ∼ bin(toxicity), data = d,
keep.pairScore = TRUE,
method.inference = "asymptotic-bebu", trace = 0)

e2.BT@covariance

favorable unfavorable covariance
toxicity 0.0625 0.0625 -0.0625
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7.3 Type 1 error in finite sample
7.3.1 Binary endpoint

tpsBin <- system.time(
eBin.power <- powerBuyseTest(sim = simBuyseTest, n.rep = 1e3, cpus = 4,

formula = Treatment ∼ bin(toxicity),
sample.size = c(10,25,50,100,250),
method.inference = "asymptotic", trace = 0,
transform = c(TRUE,FALSE), order.Hprojection = 1:2)

)

tpsBin

user system elapsed
1.47 0.14 211.06

summary(eBin.power, statistic = c("netBenefit","winRatio"),
legend = FALSE, col.rep = FALSE)

Simulation study with Generalized pairwise comparison

> statistic : net benefit
n.T n.C mean.estimate sd.estimate order mean.se rejection (FALSE) rejection (TRUE)
10 10 0.0023 0.2235 1 0.2116 0.085 0.113

2 0.2116 0.085 0.113
25 25 -6e-04 0.1482 1 0.1385 0.084 0.089

2 0.1385 0.084 0.089
50 50 -0.0015 0.1003 1 0.0990 0.059 0.059

2 0.0990 0.059 0.059
100 100 -0.0018 0.0694 1 0.0704 0.044 0.044

2 0.0704 0.044 0.044
250 250 -0.0011 0.0423 1 0.0446 0.045 0.045

2 0.0446 0.045 0.045

> statistic : win ratio
n.T n.C mean.estimate sd.estimate order mean.se rejection (FALSE) rejection (TRUE)
10 10 1.6606 2.2207 1 1.6772 0.1301 0.0381

2 1.6540 0.1301 0.0381
25 25 1.2083 0.8376 1 0.7044 0.1120 0.0620

2 0.7035 0.1120 0.0620
50 50 1.0795 0.4534 1 0.4366 0.0730 0.0590

2 0.4365 0.0730 0.0590
100 100 1.0327 0.2948 1 0.2937 0.0520 0.0440

2 0.2936 0.0520 0.0440
250 250 1.0099 0.1715 1 0.1810 0.0490 0.0450

2 0.1810 0.0490 0.0450
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7.3.2 Continuous endpoint

tpsCont <- system.time(
eCont.power <- powerBuyseTest(sim = simBuyseTest, n.rep = 1e3, cpus = 4,

formula = Treatment ∼ cont(score),
sample.size = c(10,25,50,100,250),
method.inference = "asymptotic", trace = 0,
transform = c(TRUE,FALSE), order.Hprojection = 1:2)

)

tpsCont

user system elapsed
1.86 0.16 195.00

summary(eCont.power, statistic = c("netBenefit","winRatio"),
legend = FALSE, col.rep = FALSE)

Simulation study with Generalized pairwise comparison

> statistic : net benefit
n.T n.C mean.estimate sd.estimate order mean.se rejection (FALSE) rejection (TRUE)
10 10 0.0056 0.2642 1 0.2562 0.076 0.130

2 0.2615 0.073 0.130
25 25 0.0048 0.1593 1 0.1632 0.061 0.088

2 0.1647 0.054 0.087
50 50 0.0063 0.1156 1 0.1154 0.064 0.080

2 0.1160 0.060 0.080
100 100 0.0015 0.0825 1 0.0816 0.054 0.062

2 0.0818 0.054 0.062
250 250 6e-04 0.052 1 0.0516 0.050 0.053

2 0.0517 0.050 0.053

> statistic : win ratio
n.T n.C mean.estimate sd.estimate order mean.se rejection (FALSE) rejection (TRUE)
10 10 1.1973 0.79 1 0.6710 0.090 0.041

2 0.6856 0.082 0.033
25 25 1.0652 0.3568 1 0.3574 0.063 0.036

2 0.3607 0.062 0.033
50 50 1.041 0.2466 1 0.2438 0.053 0.054

2 0.2449 0.052 0.053
100 100 1.0167 0.1676 1 0.1672 0.054 0.049

2 0.1676 0.053 0.048
250 250 1.0067 0.1047 1 0.1042 0.050 0.049

2 0.1044 0.050 0.049
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7.3.3 Time to event endpoint (Gehan method)

tpsGehan <- system.time(
eGehan.power <- powerBuyseTest(sim = simBuyseTest, n.rep = 1e3, cpus = 4,

formula = Treatment ∼ tte(eventtime,
censoring = status),

method.tte = "Gehan",
sample.size = c(10,25,50,100,250),
method.inference = "asymptotic", trace = 0
transform = c(TRUE,FALSE), order.Hprojection = 1:2)

)

tpsGehan

user system elapsed
1.38 0.25 177.58

summary(eGehan.power, statistic = c("netBenefit","winRatio"),
legend = FALSE, col.rep = FALSE)

Simulation study with Generalized pairwise comparison

> statistic : net benefit
n.T n.C rep.estimate rep.se mean.estimate sd.estimate mean.se rejection.rate

1: 10 10 1000 1000 -0.003120 0.14812 0.14413 0.087
2: 50 50 1000 1000 0.001308 0.06445 0.06620 0.052
3: 100 100 1000 1000 -0.000690 0.04785 0.04690 0.049
4: 250 250 1000 1000 -0.000647 0.02929 0.02978 0.050

> statistic : win ratio
n.T n.C rep.estimate rep.se mean.estimate sd.estimate mean.se rejection.rate

1: 10 10 974 974 1.873 3.2268 2.0924 0.04339
2: 50 50 1000 1000 1.092 0.4696 0.4510 0.04500
3: 100 100 1000 1000 1.038 0.3045 0.2983 0.04500
4: 250 250 1000 1000 1.012 0.1818 0.1819 0.04900
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7.3.4 Time to event endpoint (Peron method)

tpsPeron <- system.time(
ePeron.power <- powerBuyseTest(sim = simBuyseTest, n.rep = 1e3, cpus = 4,

formula = Treatment ∼ tte(eventtime,
censoring = status),

method.tte = "Peron",
sample.size = c(10,25,50,100,250),
method.inference = "asymptotic", trace = 0
transform = c(TRUE,FALSE), order.Hprojection = 1:2)

)

tpsPeron

user system elapsed
1.16 0.13 198.24

summary(ePeron.power, statistic = c("netBenefit","winRatio"),
legend = FALSE, col.rep = FALSE)

Simulation study with Generalized pairwise comparison

> statistic : net benefit
n.T n.C rep.estimate rep.se mean.estimate sd.estimate mean.se rejection.rate

1: 10 10 1000 1000 0.0048942 0.22201 0.19280 0.172
2: 50 50 1000 1000 0.0028917 0.11738 0.08918 0.167
3: 100 100 1000 1000 0.0004554 0.10206 0.06325 0.250
4: 250 250 1000 1000 0.0036080 0.08643 0.04016 0.358

> statistic : win ratio
n.T n.C rep.estimate rep.se mean.estimate sd.estimate mean.se rejection.rate

1: 10 10 1000 1000 1.137 0.6089 0.47252 0.086
2: 50 50 1000 1000 1.037 0.2597 0.19203 0.144
3: 100 100 1000 1000 1.023 0.2186 0.13397 0.231
4: 250 250 1000 1000 1.023 0.1838 0.08482 0.354
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A Recall on the U-statistic theory
This recall is based on chapter 1 of Lee (1990).

A.1 Motivating example
We will illustrate basic results on U-statistics with the following motivating question: "what is the
asymptotic distribution of the empirical variance estimator?". For a more concrete example, imagine
that we want to provide an estimate with its 95% confidence interval of the variability in cholesterol
measurements. We assume that we are able to collect a sample of n independent and identically
distributed (iid) realisations (x1, . . . , xn) of the random variable cholesterol, denoted X. We ignore
any measurement error.

A.2 Estimate, estimator, and functionnal
We can compute an estimate of the variance using the following estimators µ̂ and σ̂2:

µ̂ = 1
n

n∑
i=1

xi (1)

σ̂2 = 1
n− 1

n∑
i=1

(xi − µ̂)2 (2)

Given a dataset the estimator σ̂2 outputs a deterministic (i.e. not random) quantity, called the
estimate of the variance. For instance if we observe:

x <- c(1,3,5,2,1,3)

then s equals:
mu <- mean(x)
sigma2 <- var(x)
sigma2

[1] 2.3

In general the value of the estimate depends on the dataset. The estimator acts like a function
fn that takes as argument some data and output a quantity of interest. This is often refer to as
a functionnal, e.g. σ̂2 = fn(x1, . . . , xn). Here we use the hat notation to emphasise that σ̂2 is a
random quantity: for each new realisation (x1, . . . , xn) of X corresponds a realisation for σ̂2 i.e. a
possibly different value for the variance. If mechanism generating the data has cumulative distribution
function F then we can also define the true value as σ2 = fσ2(F ) (which is a deterministic value)
where:

µ(F ) = fµ(F ) =
∫ +∞

−∞
xdF (x) (3)

σ2(F ) = fσ2(F ) =
∫ +∞

−∞
(x− fµ(F ))2dF (x) (4)
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This can be understood as the limit f(F ) = limn→∞ fn(x1, . . . , xn). Because σ2 and fσ2 are very
close quantities we will not distinguish them in the notation, i.e. write σ2 = σ2(F ). This corresponds
to formula (1) in Lee (1990).

When we observe a sample, we use it to plug-in formula (3) and (4) an approximation F̂ of F .
Usually our best guess for F is F̂ (x) = 1

n

∑n
i=1 1x≤xi where 1. is the indicator function taking value 1

if . is true and 0 otherwise. One can check that when plug-in F̂ formula (3) and (4) becomes formula
(1) and (2).

To summarize:

• an estimator is a random variable whose realisation depends on the data. Its realization is
called estimate.

• an estimate is a deterministic value that we obtain using the observed data (e.g. observed
variability is 2.3)

• a functionnal (of an estimator) is the rule by which an estimator transforms the data into an
estimate.

A.3 Aim
Using formula (1) and (2) we can easily estimate the variance based on the observed realisations of
X (i.e. the data). However how can we get an confidence interval? What we want is to quantify the
incertainty associated with the estimator, i.e. how the value output by the functionnal is sensitive
to a change in the dataset. To do so, since the estimator σ̂2 is a random variable, we can try to
characterize its distribution. This is in general difficult. It is much easier to look at the distribution
of the estimator σ̂2 if we would have an infinite sample size. This is what we will do, and rely on
similations to see how things go in finite sample size. As we will see, the asymptotic distribution of
the variance is a Gaussian distribution with a variance that we can estimate:

n <- length(x)
k <- mean((x-mu)^4)
var_sigma2 <- (k-sigma2^2)/n
var_sigma2

[1] 0.4898611

So we obtain a 95% confidence intervals for the variance doing:
c(estimate = sigma2,

lower = sigma2 + qnorm(0.025) * sqrt(var_sigma2),
upper = sigma2 + qnorm(0.975) * sqrt(var_sigma2))

estimate lower upper
2.3000000 0.9282197 3.6717803

We can see that it is not a very good confidence interval since it symmetric - we know that the
variance is positive so it should extend more on the right side. But this only problematic in small
sample sizes. In large enough sample sizes the confidence interval will be correct and we focus on
this case.
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In summary, we would like:

• to show that our estimator σ̂2 is asymptotically normally distributed.

• to have a formula for computing the asymptotic variance.

To do so we will use results from the theory on U-statistics.

Note: we can already guess that the estimator σ̂2 (as most estimators) will be asymptotically
distributed because it can be expressed as a average (see formula (2)). If we would know the mean
of X, then the terms xi − µ are iid so the asymptotically normality of σ̂2 follows from the central
limit theorem. It does not give us a formula for the asymptotic variance though.

A.4 Definition of a U-statistic and examples
A U-statistic with kernel h of order k is an estimator of the form:

Û = 1(
n
k

) ∑
(β1,...,βk)∈β

h (xβ1 , . . . , xβk)

where β is the set of all possible permutations between k integers choosen from {1, . . . , n}. We will
also assume that the kernel is symmetric, i.e. the order of the arguments in h has no importance.
Note that because the observations are iid, Û is an unbiased estimator of U .

Example 1: the simplest example of a U-statistic is the estimator of mean for which k = 1 and
h is the identity function:

µ̂ = 1(
n
1

) ∑
(β1)∈{1,...,n}

xβ1 = 1
n

n∑
i=1

xi

Example 2: our estimator of the variance is also a U-statistic, but this requires a little bit more
work to see that:

σ̂2 = 1
n− 1

n∑
i=1

(xi − µ̂)2 = 1
n− 1

n∑
i=1

(
x2
i − 2xiµ̂+ µ̂2

)

= 1
n− 1

n∑
i=1

x2
i − 2xi

1
n

n∑
j=1

xj + µ̂2


= 1
n(n− 1)

n∑
i=1

n∑
j=1

(
x2
i − 2xixj + µ̂2

)

= 1
n(n− 1)

n∑
i=1

n∑
j=1

(
(xi − xj)2 − x2

j + µ̂2
)

= 1
n(n− 1)

n∑
i=1

n∑
j=1

(xi − xj)2 − 1
n− 1

n∑
j=1

(
x2
j − µ̂2

)
= 1
n(n− 1)

n∑
i=1

n∑
j=1

(xi − xj)2 − σ̂2

σ̂2 = 1
n(n− 1)

n∑
i=1

n∑
j=1

(xi − xj)2

2 = 2
n(n− 1)

n∑
i=1

n∑
i<j

(xi − xj)2

2 σ̂2 = 1(
n
2

) n∑
i=1

n∑
i<j

(xi − xj)2

2
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So the variance estimator is a U-statistic of order 2 with kernel h(x1, x2) = (x1−x2)2

2 .

Example 3: another classical example of U-statistic is the signed rank statistic which enable to
test non-parametrically whether the center of a distribution is 0. This corresponds to:

wilcox.test(x)

Wilcoxon signed rank test with continuity correction

data: x
V = 21, p-value = 0.03501
alternative hypothesis: true location is not equal to 0

Warning message:
In wilcox.test.default(x) : cannot compute exact p-value with ties

Let’s take two random realisation of X and denote thoses X1 and X2 (they are random variables).
The parameter of interest (or true value) is U = P [X1 +X2 > 0] and the corresponding estimator is:

Û = 1(
n
2

) n∑
i=1

∑
i<j

1xi+xj>0

A.5 A major result from the U-statistic theory
So far we have seen that our estimator for the variance was a U-statistic. We will now use the
U-statistic theory to obtain its asymptotic distribution.

Theorem (adapted from Lee (1990), theorem 1 page 76)
Let Û be a U-statistic of order k with non-zero first component in its H-decomposition. Then
n

1
2 (Û − U) is asymptotically normal with mean zero and asymptotic variance σ2

1 where σ2
1 is the

variance of the first component in the H-decomposition of Û .

So under the assumption that the first term of the H-decomposition of the variance is non 0 then
we know that the asymptotic distribution of our variance estimator is normal and if we are able to
compute the variance of the first term of the H-decomposition then we would also know the variance
parameter of the asymptotic distribution. So it remains to see what is this H-decomposition and
how can we characterize it.

A.6 The first term of the H-decomposition
The H-decomposition (short for Hoeffling decomposition) enables us to decompose the estimator of
a U-statistic of rank k into a sum of k uncorrelated U-statistics of increasing order (from 1 to k)
with variances of decreasing order in n. As a consequence the variance of the U-statistic will be
asymptotically equal to the variance of the first non-0 term in the decomposition.

Before going further we introduce:
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• X1, . . . , Xn the random variables associated with each sample.

• L2 the space of all random variables with zero mean and finite variance.
It is equiped with the inner product Cov [X, Y ].

• the subspaces
(
L(j)

2

)
j∈{1,...,k}

where for a given j ∈ {1, . . . , k}, L(j)
2 is the subspace of L2 con-

taining all random variables of the form ∑
(β1,...,βj)∈β ψ(Xβ1 , . . . , Xβj) where β is the set of all

possible permutations between j integers choosen from {1, . . . , n}. For instance L(1)
2 contains

the mean, L(2)
2 contains the variance, and L(j)

2 contains all U-statistics of order j with square
integrable kernels.

We can now define the H-decomposition as the projection of Û −U on the subspaces L(1)
2 , L(2)

2 ∩(
L(1)

2

)⊥
, . . . , L(k)

2 ∩
(
L(k−1)

2

)⊥
. Here A⊥ indicates the space orthogonal to A. So the first term of

the H-decomposition, denoted H(1), is the projection of Û − U on L(1)
2 ; this is also called the Hájek

projection. Clearly all terms of the projection are mutually orthogonal (or uncorrelated), they are
unique (it is a projection) and they correspond to U-statistics of increasing degree (from 1 to k). It
remains to get a more explicit expression for these term and show that their variance are of decreasing
order in n.

We now focus on the first term and show that H(1) = ∑n
i=1 E

[
Û − U |Xi

]
. Clearly this term

belongs to L(1)
2 . It remains to show that Û −U −H(1) is orthogonal to L(1)

2 . Let consider an element
V ∈ L(1)

2 :

Cov
[
Û − U −H(1), V

]
= E

[
(Û − U −H(1))V

]
=

n∑
i′=1

E
[
(Û − U −H(1))ψ(Xi′)

]
=

n∑
i′=1

E
[
E
[
Û − U −H(1)

∣∣∣Xi′

]
ψ(Xi′)

]

So it remains to show that E
[
Û − U

∣∣∣Xi′

]
= E

[
H(1)

∣∣∣Xi′

]
. This follows from:

E
[
H(1)

∣∣∣Xi′

]
= E

[
n∑
i=1

E
[
Û − U |Xi

] ∣∣∣Xi′

]
=

n∑
i=1

E
[
E
[
Û − U |Xi

] ∣∣∣Xi′

]
= E

[
Û − U |Xi

]
+

n∑
i 6=i′

E
[
E
[
Û − U |Xi

] ∣∣∣Xi′

]

= E
[
Û − U |Xi

]
+

n∑
i 6=i′�

���
���

���:0
E
[
E
[
Û − U |Xi

]]

where we have used that Xi and Xi′ are independent and E
[
E
[
Û − U |Xi

]]
= E

[
Û − U

]
= 0.
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We can now re-express the first term of the H-decomposition more explicitely:

H(1) =
n∑
i=1

E
[
Û − U

∣∣∣Xi

]

=
n∑
i=1

E

 1(
n
k

) ∑
(β1,...,βk)∈β

h (xβ1 , . . . , xβk)− U
∣∣∣Xi


= 1(

n
k

) ∑
(β1,...,βk)∈β

n∑
i=1

E
[
h (xβ1 , . . . , xβk)

∣∣∣Xi

]
− U

= 1(
n
k

) ∑
(β1,...,βk)∈β

n∑
i=1

1i∈βE
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]+ 1i/∈β ∗ 0− U

= 1(
n
k

) n∑
i=1

P [i ∈ β]E
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]− U
=

(
n−1
k−1

)
(
n
k

) n∑
i=1

E
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]− U
H(1) = k

n

n∑
i=1

E
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]− U
Let’s now compute the variance of Û :

Var
[
Û
]

=
(
n

k

)−2

Var

 ∑
(β1,...,βk)∈β

h (xβ1 , . . . , xβk)


=
(
n

k

)−2

Cov

 ∑
(β1,...,βk)∈β

h (xβ1 , . . . , xβk) ,
∑

(β′1,...,β′k)∈β′
h
(
xβ′1 , . . . , xβ′k

)
=
(
n

k

)−2 ∑
(β1,...,βk)∈β

∑
(β′1,...,β′k)∈β′

Cov
[
h (xβ1 , . . . , xβk) , h

(
xβ′1 , . . . , xβ′k

)]

Using the symmetry of the kernel we see that the terms in the double sum only depends on the
number of common observations. To determine a term with j common observations, a choose:

• k observations among the n for the first kernel:
(
n
k

)
possibilities

• c common index for the two kernels among the k:
(
k
c

)
possibilities

• k− c observations among the remaining n− k observations for the second kernel:
(
n−k
k−c

)
possi-

bilities
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So denoting σ2
c = Cov

[
h (x1, . . . , xk) , h

(
x1, . . . , xc, x

′
c+1, . . . , x

′
k

)]
this gives:

Var
[
Û
]

=
(
n

k

)−2 n∑
c=0

(
n

k

)(
k

c

)(
n− k
k − c

)
σ2
c

=
k∑
c=0

k!(n− k)!
n!

k!
c!(k − c)!

(n− k)!
(k − 2k + c)!(n− c)!σ

2
c

=
k∑
c=0

k!2
c!(k − c)!2

(n− k)!2
(n− 2k + c)!n!σ

2
c

=
k∑
c=0
O
(

(n− k)!2
(n− 2k + c)!n!

)
σ2
c

=
k∑
c=0
O
(

(n− k) . . . (n− 2k + c+ 1)
n . . . (n− k + 1)

)
σ2
c

=
k∑
c=0
O
(
n−k+2k−c

nk

)
=

k∑
c=0
O
(
n−c

)
σ2
c

So if σ2
1 6= 0 then the asymptotic variance only depends on the variance of the first term, i.e.:

Var
[
Û
]

= Var
[
H(1)

]
= k2

n2Var
[
n∑
i=1

E
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]
]

= k2

n2

n∑
i=1

Var
[
E
[
h (x1, . . . , xi−1, xi, xi+1, . . . , xk)

∣∣∣xi]]
= k2

n2nVar
[
E
[
h (x, x2, . . . , xk)

∣∣∣x]]
Var

[
Û
]

= k2

n
Var

[
E
[
h (x, x2, . . . , xk)

∣∣∣x]]

In summary we have obtained a formula for the asymptotic variance of the U-statistic.

Example 1: Sample mean
We first compute the Hájek projection of the mean:

H
(1)
µ̂ = 1

n

n∑
i=1

E [xi|xi]− µ = 1
n

n∑
i=1

xi − µ

And then compute the asymptotic variance as:

Var [µ̂] = Var
[
H

(1)
µ̂

]
= 1
n2

n∑
i=1

Var [xi − µ] = 1
n2

n∑
i=1

σ2 = σ2

n
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Example 2: Sample variance
We first compute the Hájek projection of the variance:

H
(1)
σ̂2 = 2

n

n∑
i=1

E
[

(xi −X2)2

2

∣∣∣∣∣xi
]
− σ2 = 1

n

n∑
i=1

E
[
x2
i − 2xiX2 +X2

2

∣∣∣xi]− σ2

= 1
n

n∑
i=1

(
x2
i − 2xiµ+ σ2 + µ2

)
− σ2

= 1
n

n∑
i=1

(
(xi − µ)2 − σ2

)

And then compute the asymptotic variance as:

Var
[
σ̂2
]

= Var
[
H

(1)
σ̂2

]
= 1
n2

n∑
i=1

Var
[
(xi − µ)2 − σ2

]
= 1
n2

n∑
i=1

E
[
(x− µ)4

]
− E

[
(x− µ)2

]2
= µ4 − (σ2)2

n

where µ4 = E [(x− µ)4] is the fourth moment of the distribution. For a better approximation in
small sample size we could account for the variance of the second term of the H-decomposition. We
would obtain (Lee (1990), page 13):

Var
[
σ̂2
]

= µ4

n
− (n− 3) (σ2)2

n(n− 1)

When n−3
n−1 is close to 1 then the first order approximation is sufficient.

Example 3: Signed rank statistic
We first compute the Hájek projection of the signed rank statistic:

H
(1)
Û

= 2
n

n∑
i=1

E
[
1xi+X2>0

∣∣∣xi]− U = 2
n

n∑
i=1

P
[
X2 > −xi

∣∣∣xi]− P [X2 > −X1]

= 2
n

n∑
i=1

(1− F (−xi))− Ex [(1− F (−x))]

Since under the null, the distribution is symmetric F (−x) = 1− F (x):

H
(1)
Û

= 2
n

n∑
i=1

F (xi)− Ex [F (x)]

We will use that for continuous distribution F (x) is uniformly distribution and therefore has variance
1
12 . So we can compute the asymptotic variance as:

Var
[
Û
]

= Var
[
H

(1)
U

]
= 4
n2

n∑
i=1

Var [F (xi)− Ex [F (x)]] = 4
n2n

1
12 = 1

3
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A.7 Two sample U-statistics
So far we have assumed that all our observations were iid. But in the case of GPC, we study two
populations (experimental arm and control arm) so we can only assume to have two independent
samples x1, x2, . . . , xm and y1, y2, . . . , yn where the first one contains iid realisations of a random
variable X and the second one contains iid realisations of a second variable Y . We can now define a
two-sample U-statistic of order kx and ky as:

Û = 1(
m
kx

)(
n
ky

) ∑
(α1,...,αkx )∈α

∑
(β1,...,βky )∈β

h(xαkx , . . . , xαj , yβ1 , . . . , yβky )

where α (resp. β) is the set of all possible permutations between kx (resp. ky) intergers chosen from
{1, . . . ,m} (resp. {1, . . . , n}) and the kernel h = h(x1, . . . , xkx , y1, . . . , yky) is permutation symmetric
in its first kx arguments and its last ky arguments separately. Once more it follows from the inde-
pendence and iid assumptions that Û is an unbiased estimator of U = E

[
h(X1, . . . , Xkx , Y1, . . . , Yky)

]
where X1, . . . , Xkx (resp. Y1, . . . , Yky) are the random variables associated to distinct random samples
from X (resp. Y ). The two-sample case is a specific case of the Generalized U-statistics introduced
in section 2.2 in Lee (1990).

Many results for U-statistics extends to two sample U-statistics. For instance the Hájek projection
of Û − U becomes:

H(1) = kx
m

m∑
i=1

(
E
[
h(x1, x2, . . . , xkx , y1, . . . , yky)

∣∣∣xi]− U)+ ky
n

n∑
j=1

(
E
[
h(x1, . . . , xkx , y1, y2, . . . , yky)

∣∣∣yj]− U)

Before stating any asymptotic results, we need to define what we now mean by asymptotic (since we
have two sample sizes m and n). We now mean by asymptotic that we create an increasing sequence
of m and n indexed by v such that:

• mv −−−→
v→∞

∞

• nv −−−→
v→∞

∞

• there exist a p ∈]0; 1[ satisfying m
n+m −−−→v→∞

p and n
n+m −−−→v→∞

1− p.

Informally speaking, this means that m and n goes to infinity at the same speed. Let’s denotes:

Var
[
E
[
h(x, x2, . . . , xkx , y1, . . . , yky)

∣∣∣x]] = σ2
1,0

Var
[
E
[
h(x1, . . . , xkx , y, y2, . . . , yky)

∣∣∣y]] = σ2
0,1

We then have the following result:

Theorem (adapted from Lee (1990), theorem 1 page 141)
Let Û be a U-statistic of order kx and ky with non-zero first component (i.e. σ2

1,0 > 0 and σ2
0,1 > 0) in

its H-decomposition. Then (m+n) 1
2 (Û−U) is asymptotically normal with mean zero and asymptotic

variance p−1k2
xσ

2
1,0+(1−p)−1k2

yσ
2
0,1 which is the variance of the first component in the H-decomposition

of Û .
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Example 4: Mann-Whitney statistic
If our parameter of interest is P [X ≤ Y ] then the estimator:

Û = 1
mn

m∑
i=1

n∑
j=1

1xi≤yj

is a U-statistic of order kx = 1 and ky = 1 with kernel h(x, y) = 1x≤y We first compute the Hájek
projection of the signed rank statistic:

H
(1)
Û

= 1
m

m∑
i=1

(
E
[
1xi≤y

∣∣∣xi]− U)+ 1
n

n∑
j=1

(
E
[
1x≤yj

∣∣∣yj]− U)

= 1
m

m∑
i=1

(P [Y ≥ xi]− U) + 1
n

n∑
j=1

(P [X ≤ yj]− U)

= 1
m

m∑
i=1

(1− F−,y(xi)− U) + 1
n

n∑
j=1

(Fx(yj)− U)

= − 1
m

m∑
i=1

(F−,y(xi)− Ex[F−,x(x)]) + 1
n

n∑
j=1

(Fx(yj)− Ey[Fy(y)])

where F− is the left limit of F , Fx(resp. Fy) denoting the cumulative distribution function of X
(resp. Y ). For continuous distributions F− = F and under the null hypothesis that Fx = Fy, we get
that:

Var
[
Û
]

= Var
[
H

(1)
Û

]
= 1
m

1
12 + 1

n

1
12 = nm

12(m+ n)

If we are not under the null we end up with the formula:

Var
[
Û
]

= 1
m2

m∑
i=1

Var
[
E
[
1xi≤y

∣∣∣xi]− U]+ 1
n2

n∑
j=1

Var
[
E
[
1x≤yj

∣∣∣yj]− U]

Noticing that:

E
[
E
[
1xi≤y

∣∣∣xi]− U] = E [1xi≤y]− U = 0

We can compute the variance as:

Var
[
E
[
1xi≤y

∣∣∣xi]− U] = E
[(
E
[
1xi≤y

∣∣∣xi]− U)2
]

=
∫
x

(∫
y

(1x≤y − U) dFY (y)
)(∫

y
(1x≤y − U) dFY (y)

)
dFX(x)

=
∫
x

(∫
y1

(1x≤y1 − U) dFY (y1)
)(∫

y2
(1x≤y2 − U) dFY (y2)

)
dFX(x)

=
∫
x

∫
y1

∫
y2

(1x≤y1 − U) (1x≤y2 − U) dFY (y1)dFY (y2)dFX(x)

= E [(1x≤y1 − U) (1x≤y2 − U)]
= E [1x≤x11x≤y2 ]− E [1x≤y1 ]U − E [1x≤y2 ]U + U2

= P [x ≤ y1, x ≤ y2]− P [x ≤ y]2

37



So the variance is:

Var
[
Û
]

= 1
m

(
P [x ≤ y1, x ≤ y2]− P [x ≤ y]2

)
+ 1
n

(
P [x1 ≤ y, x2 ≤ y]− P [x ≤ y]2

)
=
σ2

1,0

m
+
σ2

0,1

n

In fact we could have a more precise formula by accounting for the second term in the H-decomposition.
Lee (1990) (Theorem 2 page 38, formula 2) give the general formal for the variance that becomes in
the case of a two sample U statistic of degree 1:

Var
[
Û
]

=
σ2

1,0

m
+
σ2

0,1

n
+
σ2

1,1 − σ2
0,1 − σ2

1,0

nm

= 1
nm

(
(n− 1)σ2

1,0 + (m− 1)σ2
0,1 + σ2

1,1

)
where σ2

1,1 = P [x < y] (1 − P [x < y]). Indeed the second term of the H-decomposition would be
the projection of 1X≤Y on X, Y where we substract components of the Hájek projection to get the
orthogonality between H(1)

Û
and H(2)

Û
(see theorem 3 page 4 of Lee (1990) for a generic formula):

H
(2)
Û

= 1
mn

m∑
i=1

n∑
j=1

(
E
[
1xi≤yj

∣∣∣xi, yj]− U)− (E [1xi≤y∣∣∣xi]− U)− (E [1x≤yj ∣∣∣yj]− U)

= 1
mn

m∑
i=1

n∑
j=1

1xi≤yj − E
[
1xi≤y

∣∣∣xi]− E
[
1x≤yj

∣∣∣yj]+ U

and:

Var
[
H

(2)
Û

]
= 1
mn

m∑
i=1

n∑
j=1

Var
[
1xi≤yj

]
− Var

[
E
[
1xi≤y

∣∣∣xi]]− Var
[
E
[
1x≤yj

∣∣∣yj]]
− Cov

[
1xi≤yj ,E

[
1xi≤y

∣∣∣xi]]− Cov
[
1xi≤yj ,E

[
1x≤yj

∣∣∣yj]]
=
σ2

1,1 − σ2
0,1 − σ2

1,0

nm
− 1
m

m∑
i=1

n∑
j=1

Cov
[
1xi≤yj ,E

[
1xi≤y

∣∣∣xi]]+ Cov
[
1xi≤yj ,E

[
1x≤yj

∣∣∣yj]]

=
σ2

1,1 − σ2
0,1 − σ2

1,0

nm

Since:

Cov
[
1xi≤yj ,E

[
1xi≤y

∣∣∣xi]] = Cov
[
1xi≤yj ,E

[
1− 1xi>y

∣∣∣xi]]
= Cov

[
1xi≤yj ,E

[
−1y<xi

∣∣∣xi]]
which under the null hypothesis thatX and Y have the same distribution equals−Cov

[
1xi≤yj ,E

[
1x≤yj

] ∣∣∣yj].
It remains to show that this is also true under the alternative hypothesis.
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[1] lava_1.6.4 doParallel_1.0.14 iterators_1.0.10 foreach_1.4.4 BuyseTest_1.7 testthat_2.0.0 prodlim_2018.04.18
[8] spelling_1.2 roxygen2_6.1.0.9000 butils.base_1.2 Rcpp_1.0.0 data.table_1.11.8 usethis_1.4.0 devtools_2.0.1

loaded via a namespace (and not attached):
[1] compiler_3.5.1 prettyunits_1.0.2 base64enc_0.1-3 remotes_2.0.2 digest_0.6.17 pkgbuild_1.0.2
[7] pkgload_1.0.2 lattice_0.20-35 memoise_1.1.0 rlang_0.3.0.1 Matrix_1.2-14 cli_1.0.1

[13] commonmark_1.6 RcppArmadillo_0.9.200.4.0 withr_2.1.2 stringr_1.3.1 xml2_1.2.0 desc_1.2.0
[19] fs_1.2.6 grid_3.5.1 rprojroot_1.3-2 glue_1.3.0 R6_2.3.0 processx_3.2.0
[25] survival_2.42-6 sessioninfo_1.1.1 callr_3.0.0 purrr_0.2.5 magrittr_1.5 codetools_0.2-15
[31] backports_1.1.2 ps_1.1.0 splines_3.5.1 assertthat_0.2.0 stringi_1.2.4 crayon_1.3.4
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