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Abstract

A new alternative to the standard Poisson regression model for count data is sug-
gested. This new family of models is based on discrete distributions derived from renewal
processes, i.e., distributions of the number of events by some time t. Unlike the Poisson
model, these models have, in general, time-dependent hazard functions. Any survival
distribution can be used to describe the inter-arrival times between events, which gives
a rich class of count processes with great flexibility for modelling both underdispersed
and overdispersed data. The R package Countr provides a function, renewalCount(), for
fitting renewal count regression models and methods for working with the fitted models.
The interface is designed to mimic the glm() interface and standard methods for model
exploration, diagnosis and prediction are implemented. Package Countr implements state-
of-the-art recently developed methods for fast computation of the count probabilities. The
package functionalities are illustrated using several datasets.

This vignette is part of package Countr, version 3.5.2. It will appear in the Journal of
Statistical Software.

Keywords: renewal process, duration dependence, count data, Weibull distribution, convolu-
tion, Richardson extrapolation.

1. Introduction

Modelling a count variable (the number of events occurring in a given time interval) is a
common task in many fields such as econometrics, social sciences, sports modelling, marketing,
physics or actuarial science just to name a few. The standard approach is to use the Poisson
model, where Y |x ∼ Poisson(λ(x)), where λ(x) = exp(x>β)). Here Y is predicted given
covariates with values x, using regression coefficients β. This model was built around a one-to-
one correspondence between the count model (Poisson) and the distribution of the inter-arrival
times (exponential). Perhaps this conceptual elegance contributed to its popularity. With this
elegance comes some limitation: the Poisson model restricts the (conditional) variance to be
equal to the (conditional) mean. This situation is rarely observed in real life data and among
the thousands of alternatives proposed in the literature (see for example Winkelmann (2013)
or Cameron and Trivedi (2013) for a review), only a few retain the correspondence between the
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count model and the timing process. This correspondence is not only a conceptual elegance
but also offers the researcher the flexibility to model the aspect (counting or timing) that is
perhaps known better (from the available data) and to draw conclusions (typically prediction)
using the other. A classic example is the exponential distribution used in radioactive decay
which leads to Poisson count model. Another very good example in the marketing context
can be found in McShane, Adrian, Bradlow, and Fader (2008).

Another limitation of the Poisson model results from the memorylessness property of the
exponential distribution. This property states that the probability of having an arrival during
the next [t, t + ∆t] time period (where t > 0 and ∆t > 0) is independent of when the last
arrival occured. In many situations, this assumption is not realistic and the history of the
process can be informative about future occurrences.

One way to incorporate the history of the process in the modelling process is to make the
current probability of an occurence depend on the number of previous event occurences.
These models are known as occurence dependence and they are said to display true contagion.
Bittner, Nussbaumer, Janke, and Weigel (2007) gave a discrete time example where the
probability of scoring a goal in soccer in the current unit of time depends on the number of
goals scored previously. The modelling process resulted in a negative binomial distribution.

Another way to take advantage of the process history is to assume that the time since the
last observed event is informative about the probability of a future occurence. Inter-arrival
times between events are still assumed to be independent and identically distributed but the
hazard function, defined by h(t) = f(t)/(1 − F (t)), where f(t) and F (t) are the density
and the cumulative probability function, is no longer a constant function of time (as in the
exponential case) but is replaced by a time-varying function. These type of models display
duration dependence where negative duration dependence is obtained by a decreasing hazard
function (of time) and positive duration dependence by an increasing hazard function. As
noted by Winkelmann (1995), ”Events are ‘dependent’ in the sense that the occurence of at
least one event (in contrast to none) up to time t influences the occurence in t+ ∆t”. This
class of models is known as renewal processes and will form the main focus of this paper.

The key quantity when studying renewal processes (and time to event in general) is the
hazard function. Not only does it fully characterize the inter-arrival timing distribution
but it also relates to the type of dispersion observed in the corresponding count data. In
particular, Winkelmann (1995) established that if the hazard function is monotonic, increasing
(decreasing) hazard corresponds to count data with under-dispersion (over-dispersion); the
constant hazard characterizing the exponential distribution corresponds to data with equi-
dispersion. Therefore, allowing for a more flexible hazard function results in more flexible
counting processes able to accomodate over-dispersed and under-dispersed, as well as equi-
dispersed data.

Winkelmann (1995) was the first to comment on the usefulness of renewal process models
and derived a count model based on gamma distributed inter-arrival times. The choice of
the gamma distribution was justified by computational necessity. In fact, the reproductive
property of the gamma distribution (sums of independent gamma random variables are gamma
distributed) leads to a simple form for the derived gamma count probability. McShane et al.
(2008) derived a closed formula for the count probability of a renewal process based on Weibull
inter-arrival times using series expansion. The same approach has been used by Jose and
Abraham (2011) and Jose and Abraham (2013) to derive a counting process with Mittag-
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Leffler and Gumbel inter-arrival times, respectively.

Despite the attractive properties of count models based on renewal processes, their use is
still limited in practice where Poisson, geometric and negative binomial are usually preferred.
Perhaps the main reason is the lack of available software to easily fit this new type of models.
The development of Countr (Kharrat and Boshnakov 2016), available from the Comprehensive
R Archive Network (CRAN), is meant to fill in this gap and complete the practioners’ toolbox
for modeling count data in R (R Core Team 2017).

The Countr package provides a function, renewalCount(), for fitting count regression models
based on renewal distributions. It offers several built-in inter-arrival times distributions and
supports custom distributions. The design of the fitting function (renewalCount()) and the
methods that act on the object returned by it, is meant to mimic the familiar user interface
associated with a number of R modelling functions, especially glm() (Chambers and Hastie
1992) from package stats (R Core Team 2017), hurdle() and zeroinfl() (Zeileis, Kleiber,
and Jackman 2008) and flexsurvreg() (Jackson 2016).

The remainder of this paper is laid out as follows. In Section 2, we briefly review the fun-
damental relationship between a timing process and the resulting count model, the different
computation methods as well as the renewal regression models considered in Countr. The
package design is discussed in Section 3 and a first working example is given in Section 4. A
second extended example is analysed in Section 5 and is used to discuss the package func-
tionality. A strategy to discriminate between models is suggested in Section 6 and illustrated
with a real dataset. We conclude and discuss future work in Section 7.

2. Models

2.1. Count models and inter-arrival times

The distribution of non-negative integer valued discrete random variables, count distributions
for short, can be used as the distribution of the number of events in a given time interval, and
vice versa. A powerful method to specify count distributions then can be based on models of
the times between the events.

Consider a stochastic process starting at time t = 0 which produces a sequence of events. Let
τ1 be the time of the first event and, in general, τk be the time between the (k − 1)th and
the kth event, k ∈ N. The τk’s are known as inter-arrival times or waiting times. The arrival
time of the mth event is

am =
m∑

k=1

τk, m = 1, 2, . . . ,

with cumulative probability function Fm(t) = P(am < t).

Let Nt = N(t) denote the total number of events in [0, t). For any fixed t (the observation
horizon), Nt is the count variable we wish to model. We have P(Nt ≥ m) = Fm(t) and
P(Nt < m) = 1 − Fm(t), since Nt ≥ m if and only if the mth event occurs before time t.
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Moreover, the probability, Pm(t), for exactly m events before time t is

Pm(t) ≡ P(Nt = m)

= P(Nt ≥ m)− P(Nt ≥ m+ 1)

= Fm(t)− Fm+1(t) (1)

For fixed t, Equation (1) shows how a count distribution, {Pm(t), m = 0, 1, . . .}, can be
obtained from {Fm(t), m = 0, 1, . . .}, which in turn can be specified flexibly by the inter-
arrival distributions.

More specifically, let {τk}k∈N be independent and identically distributed (iid) random vari-
ables with common density f(τ). In this case the process is called a renewal process (see Feller
1971, for a formal definition) and Equation (1) can be used to derive the following recursive
relationship:

Pm+1(t) =

∫ t

0
Fm(t− u) dF (u)−

∫ t

0
Fm+1(t− u) dF (u)

=

∫ t

0
Pm(t− u) dF (u), for m = 1, 2, . . ., (2)

where P0(u) = S(u) = 1 − F (u) (a survival function). Equation (2) can be understood
intuitively: the probability of exactly m+ 1 events occurring by time t is the probability that
the first event occurs at time 0 ≤ u < t, and that exactly m events occur in the remaining time
interval, integrated over all times u. P1(t), . . . , Pm(t) can be generated in turn by evaluating
this integral.

2.2. Count probability computation methods

Convolution methods

To compute the integral defined in Equation (2), one can adapt composite midpoint rule (e.g.,
Press, Teukolsky, Vetterling, and Flannery (2007, section 4.1.4)):

∫ Nh

0
f(x) dx = h

N∑

j=1

f{(j − 1/2)h}+O(h2), (3)

where there are N steps with stepsize h, and Nh = t. Note that the integrand i.e., f is not
evaluated at the limits of the integral (open rule). Furthermore, if we define g(u) = Pm(t−u)
for some values of the count m and the time t (fixed) and F (t) the CDF of the inter-arrival
times distribution, the previous integral can be seen as the sum of N integrals of the form:

∫ jh

(j−1)h
g(u) dF (u) ' g{(j − 1/2)h}(F{jh} − F{(j − 1)h}),

In order to reach Pm(t), the previous computation requires all the previous m probabilities
to be available. The algorithm starts by initialising a (local) q array to contain the P0 at the
midpoints h/2 · · · (N − 1/2)h, sets up another local array to contain F{jh} − F{(j − 1)h},
and carries out the convolutions. At the end of this step, the array q[ ], initially containing
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P0, will be overwritten to contain P1. These steps are repeated until the desired probability
is obtained. This method was named the direct method in Countr and it has been shown in
Baker and Kharrat (2017, Section 3) to have a O(mN2) complexity.

The direct method computes all probabilities up to the mth, which is slow if we need only
the mth probability. It can be improved so that computing time is O(ln(m)N2) instead of
O(mN2), using the addition chain method (an adaptation of the method used by compilers for
fast computation of integer powers of a variable with the minimum number of multiplications).
We label this method naive method in Countr and refer readers to Baker and Kharrat (2017,
Appendix A) for computation details.

A more efficient method to directly compute the mth probability is based on De Pril (1985)
algorithm (and hence is called the dePril method in Countr). It has been shown to have a
O(N2) complexity (Baker and Kharrat 2017, Section 4) and hence is the recommended (and
the default) method in Countr. Readers interested in the computation details are referred
to Depril’s paper and Baker and Kharrat (2017, Section 4). Here we simply describe the
main idea of the algorithm. Let qi be the value of probability density function of the survival
distribution evaluated at points ti ≥ 0 where q0 > 0. Then the probability of m events is

f
(m)
N , the m-fold convolution of q, given by

f
(m)
0 = qm0 ,

and for N > 0 by the recursion

f
(m)
N = q−1

0

N∑

j=1

(
(m+ 1)j

N
− 1)f

(m)
N−jqj . (4)

This algorithm when applied to our case requires three arrays: one to hold the survival
function, one for the probability mass q, and one work array to hold f . To apply this method
to continuous distributions like the Weibull, we first discretised the distribution, so that
qj = F ((j + 1)h)− F (jh).

Improvement by Richardson extrapolation

The integration rule described in Equation (3) generates approximations of order O(h2).
Richardson extrapolation can be used to progressively remove errors of order h2, h4 etc.
Clearly, if an estimate S1 = S + γhδ and S2 = S + γ(h/2)δ, where S1 and S2 are the
approximations with N and 2N steps respectively and S is the true value, we can remove the
error and estimate S as

S3 = (2δS2 − S1)/(2δ − 1). (5)

Subsequently, higher-order errors can be removed in the same way until the required accuracy
is attained. Romberg integration can also be done with the extended-midpoint rule (e.g., Press
et al. (2007)). The situation for convolutions is less straightforward, but a satisfactory solution
was derived in Baker and Kharrat (2017, Appendix B). Clearly, the Richardson extrapolation
has the appealing property of improving the accuracy, without necessitating a large value of
N and consequent slow computation. Therefore, for all the built-in distributions, the default
behaviour in Countr is to apply the Richardson extrapolation. Whenever it is possible, users
are advised to activate the extrapolation option.
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The special case of the Weibull distribution

In Countr, methods inspired from McShane et al. (2008) have been implemented when the
inter-arrival times are Weibull distributed. In this case, the exponential in the Weibull density
can be expanded out and series transformation techniques can be used to speed up conver-
gence. Two algorithms are available: a matrix approach using a specified number of terms and
a series accelerated method based on the Euler and van-Wijngaarden transformations (Press
et al. 2007, Chapter 5) controlled by a number of iterations and a convergence tolerance
parameters.

Naming conventions

We use the term count distribution or renewal count distribution for the distribution of Nt

and qualify it with the name of the inter-arrival distribution for a particular distribution of
the inter-arrival times. For example, Weibull count distribution refers to the count model
arising from a renewal process with inter-arrival times having a Weibull distribution.

2.3. Renewal regression models

The regression models fitted by Countr are in the spirit of the generalised linear models
(McCullagh and Nelder 1989) and consist of two main components: a conditional distribution
of the response variable (given the covariates, if any) and one or more linear equations relating
parameters to covariates, possibly via link functions.

More formally, let Y be the response variable of interest, x a vector of covariates and D a
renewal count distribution. We assume that

Y |x ∼ D(θ), (6)

where θ = (θ1, . . . , θp)
> is the vector of the parameters of D.

One or more parameters of the distribution may depend linearly on covariates via link func-
tions. The equation for the kth parameter then is:

gk(θk) = x>βk, (7)

where gk is the link function for the kth parameter, x the covariates and βk the corresponding
vector of regression parameters. Typically, covariates are related to a location parameter but
it is helpful in some applications to be able to let other parameters depend on covariates.

We call these models renewal regression models. Note that, in general, the renewal distri-
butions are not from the exponential family. For comparison, in standard generalised linear
models (GLM) the distribution is taken from the exponential family of distributions and the
mean, transformed by a link function, is a linear combination of the covariates.

The inter-arrival distribution

Table 1 gives count distributions available in Countr and the corresponding inter-arrival time
distributions from which they are obtained.

The Poisson distribution is the only one with a simple closed form expression. The other
distributions provide alternatives, which extend the range of data that can be modelled with
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Count P (Y = k) Inter-arrival pdf f(t) Parameters
distribution distribution

Poisson λk

k! exp−λ Exponential λe−λt λ

Weibull-count NSCF Weibull λβtβ−1e−λt
β

λ (scale), β (eshape)
Gamma-count NSCF Gamma λktk−1e−λt/Γ(k) λ (rate), k (shape)
Gengamma-count NSCF Gen. gamma see Equation (8) µ, σ, q

Burr-count NSCF Burr
kc(t/α)c−1

α (1 + (t/α)c)k+1

α (scale), c (shape1),
k (shape2)

Table 1: Built-in count distributions in package Countr and the interarrival time distributions
generating them. NSCF stands for no simple closed form. Γ(k) is the gamma function and
the Burr-count uses the Burr type XII parameterization (Tadikamalla 1980).

count regression models. For example, they can accommodate over- and under-dispersion.
Also, the systematic way in which these count distributions are derived may give advantageous
insight in some cases.

It is also noteworthy that both the Weibull and gamma count models nest the basic Poisson
model. In fact, setting β = 1 in the Weibull case or k = 1 in the Gamma case leads to the
exponential distribution. Another interesting distribution that could be used with the con-
volution method is the generalised gamma first introduced by Stacy (1962). Prentice (1974)
proposed an alternative parametrization which is preferred for computation. In the Pren-
tice (1974) parametrization, the distribution has three parameters (µ, σ, q), and its survival
function is given by:

S(t) =

{
1− I(γ, u) if q > 0

1− Φ(z) if q = 0
(8)

where I(γ, u) =
∫ u

0 x
γ−1 exp(−x)/Γ(γ) is the regularised incomplete gamma function (the

gamma distribution function with shape γ and scale 1), Φ is the standard normal distribution
function, u = γ exp(|q|z), z = (log(t) − µ)/σ, and γ = 1/q2. This distribution includes the
Weibull (when q = 1), gamma (when q = σ) and log-normal (when q = 0) as special cases.

The default links (the functions gk() in equation (7)) associated with the built-in distributions
are given in Table 2.

Count dist Par. 1 Link Par. 2 Link Par. 3 Link
distribution

Weibull-count Weibull scale log shape log
Gamma-count gamma rate log shape log
Gengamma-count gengamma mu log sigma log Q I()
Burr-count Burr scale log shape1 log shape2 log

Table 2: Parameters and default link functions for the built-in count distributions in package
Countr. I() stands for the identity function.

As discussed before, count models arising from renewal processes provide very flexible families
of distributions. Perhaps the simplest way to use them is to simply ignore their connections
to renewal theory. Several models can be tried and users can discriminate between models
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using the following strategy:

• when models are nested, a likelihood ratio test (LR) statistic can be used. This is
possible because renewal-count models are fully parametric and in this case the LR
statistic has the usual χ2(p) distribution, where p is the difference in the number of
parameters in the model.

• when models are not nested, one can compare information criteria such as the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) to choose the
model that provides the best fit to the data.

This strategy is illustrated in Section 6.

In some applications however, the researcher may have some information about the inter-
arrival time process which can lead to a particular choice of model. For example, assume
that a researcher is interested in modelling the number of occurences by some time horizon
t. He has data on the observed count for a number, n, of individuals, together with a set
of individual covariates xi, i = 1, . . . , n. If data on time to first event are also available, the
researcher can fit a parametric hazard model using package flexsurv (Jackson 2016), choose
the parametric model that presents the best fit and use the associated renewal count family
to model his data. This approach has been used in Kharrat (2016, Chapter 4).

Parameters estimation

Parameter estimation is performed by maximum likelihood (ML). Define the log-likelihood
L =

∑n
i=1 lnPyi(t|xi,βi), where β is the vector of parameters. The ML estimator β̂ is the

solution of the first-order conditions,

∂L
∂β

=
n∑

i=1

∂lnPi
∂β

= 0, (9)

where Pi = Pyi(t|xi,βi) and ∂L/∂β is a q × 1 vector.

Let β0 be the true value of β. Using ML theory, we obtain β̂
p−→ β0 and

√
n(β̂ML − β0)

d−→ N [0,V−1], (10)

where the q × q matrix V matrix is defined as

V = − lim
n→∞

1

n
E

[ n∑

i=1

∂2 lnPi
∂β∂β′

|β0

]
. (11)

To use this result, we need a consistent estimator of the variance matrix V. Many options
are available: the one implemented in Countr is known as the Hessian estimator and simply
evaluates Equation (11) at β̂ without taking expectation and limit.

Goodness-of-fit

For fully parametric models such as Poisson or renewal-count, a crude diagnosis is to com-
pare the fitted probabilities with observed frequencies. Things are better understood with a
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formula. Define the count variable yi, i = 1, . . . , n, where n is the total number of individuals
and let m = max(yi). We denote by p̄j the observed frequencies (the fraction of the sample
where y = j) and let p̂j , j = 1, . . . ,m, be the fitted frequencies. For example, in the Poisson

model, p̂j = 1
n

∑n
i=1 λ̂

j
i exp (−λ̂i)/j!, where λ̂i =

∑p
k=1 exp (xki β̂k) is the expected count value

for individual i.

To start with, one can compare p̄j to p̂j for specific values of the count variable j to gain some
insight about the range of counts where the model has a tendency to over or under predict
or to allow a visual inspection of the predictive performance of competing models. This
computation can be done in Countr by a call to the function compareToGLM() which can take
a fitted Poisson and (optionally) a negative binomial model and compare them to a number
of fitted renewal models passed as additional arguments. The function returns a table with
p̄j (Actual) and the estimates p̂j induced by the different models. The contribution to the

Pearson statistic of each cell, defined as
∑J

j=1 n
(p̄j−p̂j)2

p̄j
, is computed, as well. The result can

be visualised by a call to frequency_plot(), see Section 4.

Formal tests are often used for model validation. Cameron and Trivedi (2013, Section 5.3.4)
suggest a formal chi-square goodness-of-fit test which is a generalisation of the Pearson’s chi-
square test and controls for estimation error in p̂j . The test is a conditional moment test.
Its gradient version, implemented in Countr, is justified for renewal models as they are fully
parametric and parameter estimation is based on maximum-likelihood. The test is carried
out by function chiSq_gof().

Applications of the above tests are given in the following sections.

3. Package design

The Countr package is available from CRAN https://cran.r-project.org/package=Countr

and can be installed using the standard R tools.

The main function in Countr is renewalCount(). It fits renewal regression models for count
data using maximum likelihood. Several built-in count distributions are provided. The dis-
tributions are parameterised in terms of the corresponding inter-arrival times, see Table 1.
The Poisson distribution is given in the table for reference and can be fitted using base R’s
glm()). User-defined distributions are also supported.

The renewalCount() function returns the fitted model as an object from S3 class "renewal".
The standard interface to the modelling functions is maintained, as much as possible. In
particular, methods for summary(), predict(), confint(), coef() and similar functions are
available, see also Table 7.

The Countr package also exports functions for the computation of the probabilities associated
with several renewal count models. The probability computations are rather intensive and
are mostly implemented in C++ with the help of the RcppArmadillo (Eddelbuettel and
Sanderson 2014) package. Several methods are provided offering various degrees of trade-off
between speed and accuracy, see Section 2.2.

Renewal regression models are fitted with the function renewalCount(). It has been designed
to mimic the GLM functionality in R. In fact, users familiar with glm() should recognize
several common arguments in renewalCount()’s interface:

R> renewalCount(formula, data, subset, na.action, weights, offset,
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+ dist = c("weibull", "weibullgam", "custom", "gamma", "gengamma", "burr"),

+ anc = NULL, convPars = NULL, link = NULL, time = 1.0,

+ control = renewal.control(...), customPars = NULL,

+ seriesPars = NULL, weiMethod = NULL,

+ computeHessian = TRUE, model = TRUE, y = TRUE, x = FALSE, ...)

The first line contains the standard model-frame specifications, while arguments computeHessian,
model, x and y are boolean flags indicating whether the returned object should contain the
variance-covariance matrix, the model frame, the model matrix and the response, respec-
tively. All default to TRUE. If computeHessian is FALSE, the variance-covariance matrix is not
computed. The remaining arguments are specific to the renewal regression model.

The minimum required inputs are formula (an R formula), data (a data frame) and dist (a
character string). Argument formula describes the model, data contains the values of the
response and the covariates, while dist specifies the desired count model distribution.

The fitting process is based on maximum likelihood using optimization routines implemented
in package optimx (Nash and Varadhan 2011). Users can customize different aspects of the
fitting process and control what is returned but if the minimum inputs are provided the routine
will work just fine. We give more details in the following sections. Additional guidance can
be found in the package documentation and the vignettes.

4. Quick start - an example without covariates

The examples in this and later sections assume that the package is made available in the
current session via

R> library("Countr")

We also need dplyr (Wickham and Francois 2016) and xtable (Dahl 2016), which provide
usefull facilities for data manipulation and presentation:

R> library("dplyr")

R> library("xtable")

The purpose of this section is to give users a general sense of the package, including the
components, what they do and some basic usage. For this purpose, we use the football dataset
shipped with Countr which contains the final scores of the 1104 matches played in the English
Premier League from season 2009/2010 to season 2016/2017 (380 matches per season). The
game data and home and away team names are also provided. The data were collected from
http://www.football-data.co.uk/englandm.php and slightly formatted and simplified.

As discussed in length in Kharrat (2016, Chapter 4) and more briefly in Boshnakov, Kharrat,
and McHale (2017), the main issue with the Poisson model when modelling the goals scored
by a team in football is that the hazard function (the instant probability of scoring) remains
constant for every time unit (minutes say in football). However, empirical studies showed
that this is rather questionable. In particular, goals are more likely to be scored at the end of
each half because of players’ tiredness, see for example Dixon and Robinson (1998, Figure 1).

Renewal-count distributions give the flexibility to drop the constant intensity assumption by
selecting non-exponential interval-arrival distributions. One strategy to select this distribution
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is discussed in Kharrat (2016, Chapter 4). Here we simply say that the Weibull density seemed
to provide the best fit and will be used in this example.

We focus on the goals scored by the away team:

R> data("football")

R> table(football$awayTeamGoals)

0 1 2 3 4 5 6 7

1028 1012 604 279 82 24 10 1

Our aim here is not to conduct an extensive analysis of the data but to highlight the improve-
ment introduced by the Weibull-count model compared to Poisson.

We fit the Poisson model using glm() with the family argument set to poisson. For the
Weibull-count model we use renewalCount() with dist = "weibull". Both models are
intercept only (no covariates specified).

R> away_poiss <- glm(formula = awayTeamGoals ~ 1, family = poisson,

+ data = football)

R> away_wei <- renewalCount(formula = awayTeamGoals ~ 1, data = football,

+ dist = "weibull", computeHessian = FALSE,

+ control = renewal.control(trace = 0))

We start by investigating the distribution of goals and the associated fitted probabilities
induced by the two models. The away team rarely scores more than 4 goals and hence we
decided to aggregate counts of 5 and larger.

R> breaks_ <- 0:5

R> pears <- compareToGLM(poisson_model = away_poiss, breaks = breaks_,

+ weibull = away_wei)

Figure 1 shows the observed relative frequencies together with the predictions from the two
models.

As expected, the most likely outcome for away goals is 0, 1 and to some extent 2. Eyeballing
Figure 1, the Weibull-count model is a clear improvement over the Poisson model.

We can now verify these findings with formal statistical tests. As discussed before, the two
models are nested and the likelihood ratio test can be used to discriminate between them:

R> lr <- lmtest::lrtest(away_poiss, away_wei)

R> lr

Likelihood ratio test

Model 1: awayTeamGoals ~ 1

Model 2: awayTeamGoals ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 1 -4364

2 2 -4350 1 28.5 9.5e-08
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R> library("dplyr")

R> frequency_plot(pears$Counts, pears$Actual,

+ dplyr::select(pears, contains("_predicted")),

+ colours = c("grey", "blue", "green", "black"))
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Figure 1: Comparison of Weibull and Poisson models for football data. The predicted fre-
quencies from the Weibull model (green) match the observed frequencies (grey) better than
those from the Poisson model (blue).
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The likelihood ratio test’s null hypothesis (both models present equal fits) is rejected at any
reasonable confidence level, thus confirming that the Weibull addition induced by the shape
parameter does improve the fitting.

Finally, formal chi-square goodness-of-fit tests implemented in Countr::chiSq_gof() can be
used to judge how well the models describe the data. Here are the results for the Weibull-count
and Poisson models:

R> gof_wei <- chiSq_gof(away_wei, breaks = breaks_)

R> gof_pois <- chiSq_gof(away_poiss, breaks = breaks_)

R> rbind(Poisson = gof_pois, "Weibull-count" = gof_wei)

chi-square goodness-of-fit test

Cells considered 0 1 2 3 4 >= 5

DF Chisq Pr(>Chisq)

Poisson 5 27.60 4.4e-05

Weibull-count 5 7.26 0.2

The results from the two tests are printed together for convenience. The null hypothesis that
the Weibull model is adequate cannot be rejected (p-value 0.2), supporting the claim that
the Weibull-count model describes the data well. On the other hand, the hypothesis that the
Poisson model is adequate is confidently rejected (p-value 4.35e-05).

5. An extended example with under-dispersion

We illustrate the usage of Countr with the fertility data, first described in Winkelmann (1995,
Section 5) and re-analyzed by McShane et al. (2008) and Baker and Kharrat (2017). The
fertility dataset contains information about a sample of 1,243 women who were over 44
years old in 1985 and answered the questions of the German Socio-Economic Panel. The
responses are arranged in a data frame with one row for each mother and 9 columns1, coded
as follows:

• children — number of children.

• german — German nationality, a factor variable with levels yes and no.

• years_school — general education, measured as years of schooling.

• voc_train, university — post-secondary education: vocational training (voc_train)
and university (university), factor variables with levels yes and no.

• religion — factor variable with levels Catholic, Muslim, Protestant, and Other.

• rural — rural, a factor variable with levels yes and no.

• year_birth — year of birth,

1The dataset is equivalent to the earlier references but, for convenience, we have renamed the variables and
replaced the dummy variables with factors.
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• age_marriage — age at marriage.

The dataset is available when Countr is attached. It can also be loaded independently using
data(), e.g.,

R> data("fertility", package = "Countr")

The motivation to use the fertility data is twofold. First, we wanted to analyse a dataset
with under-dispersion, where by construction the Poisson model and the natural extensions,
such as negative binomial, fail to capture this aspect in the data. Second, we wanted to give
the users the software to reproduce the results discussed in the reference papers Winkelmann
(1995) and McShane et al. (2008).

The first few rows of the data are shown in Table 3. The response variable considered
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1 2 no 8 no no Catholic 42 yes 20
2 3 no 8 no no Catholic 55 yes 21
3 2 no 8 no no Catholic 51 yes 24
4 4 no 8 no no Catholic 54 no 26
5 2 no 8 no no Catholic 46 yes 22
6 2 no 8 no no Catholic 41 no 18

Table 3: First few rows of fertility data.

here is the number of children per woman (children). The average number of children
observed in this sample is 2.384 and variance is 2.33, so there is no apparent under- or over-
dispersion. However, when the additional variables are taken into account under-dispersion
becomes evident as discussed by McShane et al. (2008) and confirmed by our analysis below.
A frequency table of this variable is shown in Table 4. There are 8 possible explanatory

0 1 2 3 4 5 6 7 8 >= 9

Frequency 76 239 483 228 118 44 30 10 8 7
Relative frequency 0.061 0.19 0.39 0.18 0.095 0.035 0.024 0.008 0.0064 0.0056

Table 4: Fertility data: Frequency distribution of column children.

variables: 3 numeric and 5 categorical (factors). Tables 5 and 6 show summaries of these
variables.

5.1. Model specification

Specifying the count distribution

The count distribution is selected by specifying the distribution of the inter-arrival times.
Countr currently provides the four built-in distributions discussed in Table 1. Besides, another



Tarak Kharrat, Georgi N. Boshnakov, Ian McHale, Rose Baker 15

german voc train university religion rural

1 no :245 no :704 no :1207 Catholic :130 no :613
2 yes:998 yes:539 yes: 36 Muslim :502 yes:630
3 Other : 75
4 Protestant:536

Table 5: Summary of the factor variables

Min. 1st Qu. Median Mean 3rd Qu. Max.

children 0.00 1.00 2.00 2.38 3.00 11.00
years school 8.00 9.00 9.00 9.10 9.00 13.00

year birth 40.00 45.00 50.00 51.99 58.00 83.00
age marriage 17.00 21.00 23.00 23.11 25.00 30.00

Table 6: Summary of the numeric explanatory variables

distribution (dist = "weibullgam") has been implemented. It is known as the Weibull-
gamma (or compound Weibull) and is obtained from Weibull by letting the parameter λ have
a gamma distribution. The Weibull-gamma count distribution has Weibull-gamma for its
interarrival times. This model has been derived in details in McShane et al. (2008). This
model can be seen as a means to model heterogeneity of individuals’ inter-arrival times, the
same way the negative binomial extends the Poisson model. We found this model to be
numerically unstable and it should be used with care (see also the discussion in Baker and
Kharrat 2017, Section 7.4).

For the renewalCount() function and other functions in the package that provide a choice,
the desired inter-arrival distribution is specified by the argument dist as a character string,
which should have one of the values reported in Table 2. Inter-arrival distributions defined
by the user are also supported and specified by dist = "custom", see Section 5.3.

Specifying covariates

Covariates can be introduced using familiar R formula syntax. In the examples with the
fertility dataset we will use the following formula:

R> regModel <- children ~ german + years_school + voc_train + university +

+ religion + rural + year_birth + age_marriage

When supplied as argument formula in a call to renewalCount() the left-hand side of the
formula specifies the response variable. The right-hand side gives the covariates for the linear
relationship to the (possibly transformed by a link function) corresponding parameter of the
count distribution.

Different links can be specified using the link argument of renewalCount(). It should be
a named list, where the link for each parameter of the distribution is given as a character
string. For example, the log link can be specified for the shape and scale parameters of the
Weibull distribution as follows:

R> link_weibull <- list(scale = "log", shape = "log")
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Possible options for the link function are "log", "cauchit", "cloglog", "probit", "logit"
and "identity" (default for user defined distributions).

5.2. Fitting built-in models

The fitting function renewalCount() has many arguments but when fitting models with the
built-in count distributions it is usually sufficient to specify the model, the data, and possibly
initial values, leaving the remaining settings to their default values. For example, the gamma
model of Winkelmann (1995) can be fitted as follows:

R> gamModel <- renewalCount(formula = regModel, data = fertility,

+ dist = "gamma", control = renewal.control(trace = 0) )

The setting trace = 0 in this and other examples prevents the optimising function from
printing during the optimisation step.

Almost any aspect of the computation can be customized in renewalCount() and options
are provided to give the user control over the computation of the initial values, the numerical
optimization algorithm, the method for computing the count probability and the returned
values, among others.

User defined initial values

As usual in non-linear optimisation, for best results informed initial values should be provided
whenever possible.

One strategy is to fit a Poisson GLM model and use its parameter estimates as starting values
for the linear predictor of the location parameter. Since the models fitted by Countr contain
additional parameters, these need to be set suitably. For example, the Weibull count model
reduces to the Poisson if the shape parameter is equal to one, so this is a natural initial value
for this parameter. More generally, for a count distribution which generalizes the Poisson
model, values of the parameters that reduce the distribution to Poisson are often suitable
starting points. Some theoretical results support this procedure, see for example Cameron
and Trivedi (2013, Section 3.2).

The above strategy is adopted by renewalCount() when no initial values are provided. How-
ever, when fitting a model with more than one linear predictor, initial values are required
from the user.

The initial values are passed to renewalCount() as a named numeric vector. For this, the
names of the coefficients are needed. They have the form par_covname, where covname is the
name of a covariate and par is the name of the distribution parameter, such as shape to which
the covariate is linked. Intercepts are named par_. The names of the distribution parameters
can be found by a call to getParNames(). For example, this shows that the parameters of
the Weibul distribution are named "scale" and "shape":

R> getParNames("weibull")

[1] "scale" "shape"

A suitably named vector can be obtained by extracting the coefficients of an existing model
and, if necessary, changing their values. The convenience function renewalCoef(object,
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target) eliminates most of the tedious work by going even further — it takes object, usu-
ally a fitted model, extracts coefficients, and renames them for use with the parameter or
distribution specified by target, see the examples below. If a suitable model is not available,
the function renewalNames() can be used to get a character vector of names of parameters. It
can be used in two ways. The first, renewalNames(object, target), has similar semantics
to renewalCoef(). The second is renewalNames(object,...), where "..." are the same
arguments that would be used in a call to renewalCount(). In this case renewalNames()

returns the names of the coefficients of the model that would be produced if renewalCount()
was called with the same parameters. For example, changing renewalCount to renewalNames

in the code used to obtain gamModel, we get:

R> renewalNames(regModel, data = fertility, dist = "gamma")

[1] "rate_" "rate_germanyes"

[3] "rate_years_school" "rate_voc_trainyes"

[5] "rate_universityyes" "rate_religionMuslim"

[7] "rate_religionOther" "rate_religionProtestant"

[9] "rate_ruralyes" "rate_year_birth"

[11] "rate_age_marriage" "shape_"

We illustrate below the preparation of initial values for the Weibull count model of McShane
et al. (2008). This is a model with one linear predictor, as in the Poisson model. An example
for the case with more linear predictors is given later along with the discussion of regression
on ancilliary parameters.

As discussed above, we fit a Poisson model:

R> IV <- glm(regModel, family = poisson(), data = fertility)

R> coef(IV)

(Intercept) germanyes years_school voc_trainyes

1.14744 -0.20036 0.03351 -0.15278

universityyes religionMuslim religionOther religionProtestant

-0.15483 0.21804 0.54757 0.11341

ruralyes year_birth age_marriage

0.05907 0.00242 -0.03045

We then rename the coefficients of model IV to link them to the first parameter, scale, of
the Weibull distribution:

R> startW <- renewalCoef(IV, target = "scale")

The Poisson model is a particular case of the Weibull model with shape parameter equal to
one, which we use as a natural initial value for this parameter and append it to startW to
complete it. Note that the regression is done on log() scale for both the shape and scale
parameters as explained above.
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R> startW <- c(startW, "shape_" = log(1))

R> startW

scale_ scale_germanyes scale_years_school

1.14744 -0.20036 0.03351

scale_voc_trainyes scale_universityyes scale_religionMuslim

-0.15278 -0.15483 0.21804

scale_religionOther scale_religionProtestant scale_ruralyes

0.54757 0.11341 0.05907

scale_year_birth scale_age_marriage shape_

0.00242 -0.03045 0.00000

Finally, we fit the model, The initial values are passed to renewalCount() through the
renewal.control() routine that will run a sanity check before passing them to the opti-
mizer:

R> weiModel <- renewalCount(formula = regModel, data = fertility,

+ dist = "weibull", control = renewal.control(trace = 0, start = startW))

This model is further discussed in Section 5.4.

Customizing the optimization routine

As mentioned above, renewalCount() maximizes the log-likelihood of the desired model by
a call to optimx() from package optimx (Nash and Varadhan 2011). The default is to use
method = "nlminb" with a maximum of 1000 iterations. Users can change this again through
the renewal.control() routine. Any other option accepted by optimx() can also be passed
in renewal.control(), e.g.,

R> weiModelA <- renewalCount(formula = regModel, data = fertility,

+ dist = "weibull",

+ control = renewal.control(trace = 0, method = "L-BFGS-B"))

It is also possible to experiment with more than one optimisation algorithm in a single call
to renewalCount(). The result with the highest value of the objective function (largest
log-likelihood) will be preferred. This is illustrated below:

R> weiModel_many <- renewalCount(formula = regModel, data = fertility,

+ dist = "weibull", control = renewal.control(trace = 0,

+ method = c("nlminb", "Nelder-Mead", "BFGS")))

Field optim of the result contains a data frame giving, for each method, the estimates of the
parameters, the run time (xtimes), the value of the log-likelihood evaluated at the estimates
(value) and other quantities from the optimisation routine. In our example:

R> t(weiModel_many$optim)
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nlminb BFGS Nelder-Mead

scale_ 1.40e+00 1.41e+00 1.22e+00

scale_germanyes -2.23e-01 -2.20e-01 -2.13e-01

scale_years_school 3.85e-02 3.90e-02 4.72e-02

scale_voc_trainyes -1.73e-01 -1.75e-01 -1.83e-01

scale_universityyes -1.81e-01 -1.85e-01 -2.25e-01

scale_religionMuslim 2.42e-01 2.42e-01 2.26e-01

scale_religionOther 6.39e-01 6.39e-01 6.38e-01

scale_religionProtestant 1.23e-01 1.24e-01 9.78e-02

scale_ruralyes 6.81e-02 6.77e-02 6.15e-02

scale_year_birth 2.30e-03 1.95e-03 2.13e-03

scale_age_marriage -3.40e-02 -3.40e-02 -2.86e-02

shape_ 2.12e-01 2.11e-01 2.09e-01

value -2.08e+03 -2.08e+03 -2.08e+03

fevals 1.05e+02 9.50e+01 1.00e+03

gevals 7.92e+02 1.50e+01 NA

niter 5.60e+01 NA NA

convcode 0.00e+00 0.00e+00 1.00e+00

kkt1 NA NA NA

kkt2 NA NA NA

xtimes 2.31e+01 1.15e+01 2.58e+01

The algorithms are arranged in decreasing order of the likelihood. Here the three algorithms
found a similar value of the log-likelihood but the "Nelder-Mead" did not converge. Although
substantially slower, the "nlminb" was preferred because it gave a sligltly higher likelihood
(-2077.022, for "nlminb" compared to -2077.034, for the "BFGS" algorithm).

Regression models on the ancillary parameters

So far we have given examples of regression models in which the parameter regressed on
is the location parameter, or more precisely, the first parameter of the count distribution.
Countr offers the possiblity to specify covariates on the “ancillary” parameters (the ones that
determine the shape, the variance or other higher moments). This can be done using either
argument anc of renewalCount() or an extended formula syntax.

If anc is supplied, it should be a named list in which each component is a model formula
describing a regression equation for an ancillary parameter. Only the right-hand sides of
these formulas are used. This setup is modelled on (and is compatible with) package flexsurv
(Jackson 2016, function flexsurvreg()). For example, to specify a Weibull count model with
response variable y and covariates x1, x2 and x3, we could use something like formula = y

~ x1 + x2 + x3 and anc = list(shape = ~x1) in the call to renewalCount() to request
different covariates for the scale and shape parameters.

Alternatively, the regression terms for all parameters can be put on the right-hand side (rhs)
of argument formula, separated by |. In this case the left-hand side (lhs) may also contain
terms separated by | to designate the response variable and the distribution parameters. The
latter can be omitted if there is no ambiguity. For example, the same model as above can
be specified with formula = y ~ x1 + x2 + x3 | x1, or more verbosely by formula = y |

shape ~ x1 + x2 + x3 | x1. In the latter case the i-th term on the lhs is paired with the
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i-th term on the rhs. If the same model formula is desired for all parameters, there is no need
to repeat the rhs. Thus, formula = y | shape ~ x1 requests ~ x1 for both, the response
variable and the shape parameter. Note that x1 applies only to terms listed in the lhs—if
shape is omitted, formula = y ~ x1, x1 will not be used for it.

Formulas can be created and manipulated with standard R tools and Formula::as.Formula.
Sometimes it may be troublesome to manipulate long formulas, so package Countr provides
the helper function CountrFormula as an aid in creating formulas suitable for renewalCount.
Here is an illustrative example of its use:

R> CountrFormula(y ~ x1 + x2 + x3, shape = ~x1)

y | shape ~ x1 + x2 + x3 | x1

We show below an example of fitting a model for the generalized gamma inter-arrival times
with covariates applied to all the distribution parameters. The names of the distribution
parameters in this case are "mu" (location), "sigma" and "Q" (see Table 2). To fit a model
using the same model formula, regModel, for all parameters we can call renewalCount with
formula = regModel and anc set up as follows:

R> anc <- list(sigma = regModel, Q = regModel)

In the ancillary regression case, starting values have to be provided. As discussed earlier, we
obtain informative initial values for the location parameter from a Poisson model. Here we
can use the previously model IV. We also set the intercepts for (log) "sigma" and "Q" to one
and the remaining regression coefficients to zero. With the help of renewalCoef() all this
can be done with a couple of lines:

R> startA <- renewalCoef(IV, target = "gengamma")

R> startA[c("Q_", "sigma_")] <- c(1, log(1))

R> startA

mu_ mu_germanyes mu_years_school

1.14744 -0.20036 0.03351

mu_voc_trainyes mu_universityyes mu_religionMuslim

-0.15278 -0.15483 0.21804

mu_religionOther mu_religionProtestant mu_ruralyes

0.54757 0.11341 0.05907

mu_year_birth mu_age_marriage sigma_

0.00242 -0.03045 0.00000

sigma_germanyes sigma_years_school sigma_voc_trainyes

0.00000 0.00000 0.00000

sigma_universityyes sigma_religionMuslim sigma_religionOther

0.00000 0.00000 0.00000

sigma_religionProtestant sigma_ruralyes sigma_year_birth

0.00000 0.00000 0.00000

sigma_age_marriage Q_ Q_germanyes

0.00000 1.00000 0.00000
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Q_years_school Q_voc_trainyes Q_universityyes

0.00000 0.00000 0.00000

Q_religionMuslim Q_religionOther Q_religionProtestant

0.00000 0.00000 0.00000

Q_ruralyes Q_year_birth Q_age_marriage

0.00000 0.00000 0.00000

The above illustrates the use of the name of a count distribution for argument target. In
that case renewalCoef() assumes that the same formula is used for all parameters. The
model now can be fit with:

R> gengamModel_ext0 <- renewalCount(formula = regModel, data = fertility,

+ dist = "gengamma", anc = anc,

+ control = renewal.control(start = startA, trace = 0),

+ computeHessian = FALSE)

To illustrate the use of different formulas for the different parameters, let us use regModel

for the first parameter and the following specifications for the remaining parameters:

R> sigmaModel <- ~ german + university + religion + age_marriage

R> QModel <- ~ german + religion + age_marriage

For use with argument anc, we create the following list:

R> anc <- list(sigma = sigmaModel, Q = QModel)

For the alternative formula method we prepare an extended formula:

R> regModelSQ <- Formula::as.Formula(regModel, sigmaModel, QModel)

We could use also

R> CountrFormula(regModel, sigma = sigmaModel, Q = QModel)

children | sigma | Q ~ german + years_school + voc_train + university +

religion + rural + year_birth + age_marriage | german + university +

religion + age_marriage | german + religion + age_marriage

As discussed earlier, we can obtain informative initial values for the location parameter from
a Poisson model. Here we can use the previously fitted model IV for the location parameter.
Similarly, for the other parameters we fit Poisson models with the respective formulas. Some
justification for this comes from the properties of the Poisson distribution (most notably its
variance is equal to the mean). Also, we use update() to set the response variable, since
sigmaModel and QModel have empty left-hand sides:

R> IV2 <- glm(update(sigmaModel, children ~ .),

+ family = poisson(), data = fertility)

R> IV3 <- glm(update(QModel, children ~ .),

+ family = poisson(), data = fertility)
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We construct the initial values from the above fits with the help of renewalCoef() and
suitable settings for its argument target:

R> startGG <- c(renewalCoef(IV, target = "mu"),

+ renewalCoef(IV2, target = "sigma"),

+ renewalCoef(IV3, target = "Q"))

R> startGG

mu_ mu_germanyes mu_years_school

1.14744 -0.20036 0.03351

mu_voc_trainyes mu_universityyes mu_religionMuslim

-0.15278 -0.15483 0.21804

mu_religionOther mu_religionProtestant mu_ruralyes

0.54757 0.11341 0.05907

mu_year_birth mu_age_marriage sigma_

0.00242 -0.03045 1.49635

sigma_germanyes sigma_universityyes sigma_religionMuslim

-0.20508 -0.02061 0.22214

sigma_religionOther sigma_religionProtestant sigma_age_marriage

0.56081 0.11525 -0.02848

Q_ Q_germanyes Q_religionMuslim

1.49871 -0.20562 0.22266

Q_religionOther Q_religionProtestant Q_age_marriage

0.56086 0.11580 -0.02860

This fits the model using argument anc:

R> fm_gengamAnc <- renewalCount(formula = regModel, data = fertility,

+ dist = "gengamma", anc = anc,

+ control = renewal.control(start = startGG, trace = 0),

+ computeHessian = FALSE)

Equivalently, the same results are obtained with the extended formula argument:

R> fm_gengam <- renewalCount(formula = regModelSQ, data = fertility,

+ dist = "gengamma",

+ control = renewal.control(start = startGG, trace = 0),

+ computeHessian = FALSE)

If the optimisation didn’t converge or for other reasons, we may need to fit the model again.
Here we want to fit the same model using the coefficients of the previous fit as initial values,
so we can directly use fm_gengam. We also request the spg algorithm (Varadhan and Gilbert
2009) for this second iteration:

R> startBB <- coef(fm_gengam)

R> fm_gengam_ext <- renewalCount(formula = regModelSQ, data = fertility,

+ dist = "gengamma",

+ control = renewal.control(method = "spg", start = startBB, trace = 0),

+ computeHessian = FALSE )
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A check of the convergence status flag reveals that the optimization did converge:

R> fm_gengam_ext$converged

[1] TRUE

5.3. Custom inter-arrival distributions

Instead of using the built-in distributions in Countr, users can also specify their own inter-
arrival parametric distributions. For this to work, the following information is required:

• names of the distribution parameters, a character vector.

• survival distribution function, a function with signature function(tt, distP), where
tt is a vector of class "numeric" of non-negative values and distP gives the values of
the distribution parameters as a named list.

• the name(s) of the link function(s); different link functions may be used for the different
parameters. If not specified, identity will be used.

The Weibull inter-arrival distribution is one of the built-in distributions but as an illustrative
example here is how it could be specified as a custom distribution:

R> parNames <- c("scale", "shape")

R> sWei <- function(tt, distP) exp( -distP[["scale"]] * tt ^ distP[["shape"]])

R> link <- list(scale = "log", shape = "log")

Here parNames defines the names of the parameters, "sWei" computes the survival distribu-
tion function and link requests log link for both parameters (a common choice for positive
parameters).

Initial values are very desirable for user defined distributions and are computed as discussed
in Section 5.2.1. We are going to fit the same model, so we can use the initial values startW

defined in that section.

R> control_custom <- renewal.control(start = startW, trace = 0)

For custom inter-arrival distributions, convolution based methods are the only option. If
the user is willing to speed up the computation using a Richardson correction scheme, the
appropriate correction function that computes the correction coefficients must be passed. As
argued by Baker and Kharrat (2017, Section 3.5), the appropriate values for the Weibull case
are (2, α), where α is the shape parameter. This can be communicated to renewalCount()

by defining a function whose argument is a named list of the distribution parameters, as in:

R> .getExtrapol <- function(distP) {

+ c(2, distP[["shape"]])

+ }
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The names of the parameters, the survival function and the extrapolation parameters are
passed to renewalCount() through argument customPars. In our example these are parNames,
sWei and .getExtrapol, respectively. This illustrates the syntax for preparing the list:

R> customPars <- list(parNames = parNames, survivalFct = sWei,

+ extrapolFct = .getExtrapol)

There is also an argument for the links. A model with our custom specified distribution can
now be fitted with:

R> weiModelCust <- renewalCount(formula = regModel, data = fertility,

+ dist = "custom", link = link, control = control_custom,

+ customPars = customPars, computeHessian = FALSE)

Note that the computations in this example can be much slower than for the equivalent
built-in distribution (that is why the Hessian computation has been turned off), since the
crucial parts of the latter are implemented in C++. Therefore, we recommend using built-in
distributions as much as possible and simply consider custom inter-arrival distributions for
exploratory purpose where long computation time is not an issue.

5.4. Working with the fitted models

The function renewalCount() produces an S3 object from class "renewal". Methods for a
number of R functions are provided, so that objects from class "renewal" can be manipulated
and explored in a familiar way. Table 7 lists generic functions from base R with methods for
objects from class "renewal". Only functions with explicitly defined renewal methods are
listed. The default methods for generics without such methods may also work, when they
access properties of objects via calls to functions such as coef to collect the information they
need.

coef() fitted() df.residual() print()

confint() predict() extractAIC() summary()

vcov() residuals() df.residual()

model.matrix() logLik()

nobs()

Table 7: Generic functions from base R with methods for objects from class "renewal".

Model fit

The usual summary() method can be used to check the coefficients’ estimates together with
their standard errors (computed using numerical estimates of the gradient and Hessian) and
Wald test statistics. Here is a summary of Winkelmann’s model fitted above:

R> summary(gamModel)

Call:

renewalCount(formula = regModel, data = fertility, dist = "gamma",
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control = renewal.control(trace = 0))

Pearson residuals:

Min 1Q Median 3Q Max

-2.6410 -0.7262 -0.0901 0.4890 6.7411

Inter-arrival dist.: gamma

Links: rate: link log, shape: link log

Count model coefficients

Estimate Std. Error z value Pr(>|z|)

rate_ 1.55671 0.25234 6.17 6.9e-10

rate_germanyes -0.18976 0.05904 -3.21 0.00131

rate_years_school 0.03168 0.02650 1.20 0.23187

rate_voc_trainyes -0.14393 0.03584 -4.02 5.9e-05

rate_universityyes -0.14605 0.12961 -1.13 0.25982

rate_religionMuslim 0.20577 0.05780 3.56 0.00037

rate_religionOther 0.52263 0.06984 7.48 7.3e-14

rate_religionProtestant 0.10714 0.06230 1.72 0.08546

rate_ruralyes 0.05549 0.03119 1.78 0.07519

rate_year_birth 0.00234 0.00195 1.20 0.22862

rate_age_marriage -0.02880 0.00533 -5.41 6.5e-08

shape_ 0.36417 0.04937 7.38 1.6e-13

Number of iterations in nlminb optimization: 66

Execution time 94

Log-likelihood: -2078.226 on 12 Df

The results are exactly the same as the ones in Winkelmann (1995, Table 1)2. Similarly, the
results for weiModel below coincide with those given by McShane et al. (2008, Table 2)3:

R> summary(weiModel)

Call:

renewalCount(formula = regModel, data = fertility, dist = "weibull",

control = renewal.control(trace = 0, start = startW))

Pearson residuals:

Min 1Q Median 3Q Max

-2.6616 -0.7300 -0.0932 0.4978 6.7361

Inter-arrival dist.: weibull

2Note that the regression model defined in Winkelmann (1995, Equation (17)) is slightly different and hence
the constant value defined in Table 1 is related to our estimated rate_ parameter by exp(Constant) ∗ α =
exp(scale ).

3The value of λ in McShane et al. (2008, Table 2) is the exponential of the value of scale_. The same
applies for the value of shape_. Also note that the standard errors in their table are obtained by the bootstrap
procedure with 100 replicates.
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Links: scale: link log, shape: link log

Count model coefficients

Estimate Std. Error z value Pr(>|z|)

scale_ 1.39722 0.31425 4.45 8.7e-06

scale_germanyes -0.22255 0.07181 -3.10 0.00194

scale_years_school 0.03853 0.03269 1.18 0.23854

scale_voc_trainyes -0.17335 0.04395 -3.94 8.0e-05

scale_universityyes -0.18146 0.16032 -1.13 0.25771

scale_religionMuslim 0.24200 0.07018 3.45 0.00056

scale_religionOther 0.63875 0.08670 7.37 1.7e-13

scale_religionProtestant 0.12314 0.07554 1.63 0.10305

scale_ruralyes 0.06806 0.03812 1.79 0.07420

scale_year_birth 0.00230 0.00230 1.00 0.31624

scale_age_marriage -0.03403 0.00635 -5.36 8.5e-08

shape_ 0.21200 0.02720 7.79 6.5e-15

Number of iterations in nlminb optimization: 56

Execution time 23

Log-likelihood: -2077.022 on 12 Df

Not surprisingly, the summary shows that religion has a major impact on the number of
children, as are being a German and vocational training. On the other hand, university
education seems not significant (p-value 0.2577), even though the effect (the value, −0.1815,
of the coefficient) is almost the same as for vocational training. Similarly, years of schooling
seems not significant. These variables are highly confounded, so such conclusions should
not be taken at face value. Note also that the shape parameter is more than seven times
greater than its standard error, so we have strong evidence that log(β) > 0, i.e., β > 1, which
corresponds to under-dispersion.

Bootstrap standard errors

Standard errors and other quantities computed from the Hessian are based on assumptions,
which are often difficult to check. Non-parametric bootstrap is often a useful alternative.
Another alternative would be to consider sandwich-type standard errors. The current version
of Countr (3.5.0) only implements the boostrap option and the sandwich alternative will be
added in the next update. The bootstrap computations are based on function boot() from
the package with the same name (Canty and Ripley 2017). Bootstrap confidence intervals rely
on additional methods implemented in confint.boot() from package car (Fox and Weisberg
2011).

Bootstrap standard errors and confidence intervals can be computed by setting type = "boot"

and specifying the desired number of bootstrap samples with argument R. Cameron and
Trivedi (2013, Section 2.6.4) observe that 400 bootstrap samples are often enough. This can
be slow, so here we give an example with R = 5 replicates for illustration:

R> se_boot <- se.coef(object = weiModel, type = "boot", R = 5)

R> confint_boot <- confint(object = weiModel, type = "boot", R = 5)
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For confint(), the type of bootstrap confidence interval can be specified with argument
bootType, which can be one of "norm" (normal approximation, the default), basic (basic
bootstrap), percent (percentile method) and "bca" (bias-corrected and accelerated method),
see Davison and Hinkley (1997, Chapter 5) for details on the methods.

In the above example, the computation of se_boot and confint_boot involves separately
generated bootstrap samples. This can be slow with realistic number of bootstrap samples.
Also, it may be desirable to do such related calculations on the same bootstrap sample. This
can be achieved by creating a bootstrap sample separately, using addBootSampleObject(),
which stores the bootstrap sample in component "boot" of the supplied model object. Re-
newal methods for functions like confint use the bootstrap sample if they find it there. For
example, we could4 do the following:

weiWithBoot <- addBootSampleObject(weiModel, R = 400, parallel = "multicore",

ncpus = 14)

We use arguments parallel and ncpus to speed up the computations by using parallel pro-
cessing facilities provided by boot::boot, see help(boot::boot). Now these computations
would use the stored bootstrap sample in weiWithBoot:

se_boot <- se.coef(object = weiWithBoot, type = "boot")

confint_boot <- confint(object = weiWithBoot, type = "boot")

To use another bootstrap sample, set component "boot" of weiWithBoot to NULL or remove
it. Vignette vignette("VarianceCovariance", package="Countr") gives further examples
and details.

Prediction

Predictions from the fitted model are obtained by calling predict(). Two types of prediction
are available: predicting a given count (response) value (type = "prob"), i.e., the probability
of observing a specific value of the count variable (the value of Y in our data.frame) given
the (individual) covariates or predicting the expected value (type = "response").

The procedure is illustrated for the first few individuals in the fertility data:

R> newData <- head(fertility)

R> predNew.response <- predict(weiModel, newdata = newData, type = "response",

+ se.fit = TRUE)

R> predNew.prob <- predict(weiModel, newdata = newData, type = "prob",

+ se.fit = TRUE)

R> predtable <- data.frame(newData$children, predNew.prob$values,

+ predNew.response$values)

R> names(predtable) <- c("Y", "P(Y=y|x)", "E(Y|x)")

R> predtable

4This and the following two R commands are not presented as R code since the parallel processing options
are system dependent.
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Y P(Y=y|x) E(Y|x)

1 2 0.284675 2.6356

2 3 0.253154 2.6250

3 2 0.303078 2.3843

4 4 0.095873 2.1319

5 2 0.295154 2.5040

6 2 0.285128 2.6303

The covariates are not printed here since they were shown previously in Table 3.

To conclude this section, we verify that the results produced by the built-in model and the
user defined Weibull model are identical (up to rounding errors):

R> cbind(builtIn = coef(weiModel), user = coef(weiModelCust))

builtIn user

scale_ 1.3972 1.3973

scale_germanyes -0.2225 -0.2226

scale_years_school 0.0385 0.0385

scale_voc_trainyes -0.1734 -0.1734

scale_universityyes -0.1815 -0.1815

scale_religionMuslim 0.2420 0.2420

scale_religionOther 0.6388 0.6388

scale_religionProtestant 0.1231 0.1231

scale_ruralyes 0.0681 0.0681

scale_year_birth 0.0023 0.0023

scale_age_marriage -0.0340 -0.0340

shape_ 0.2120 0.2121

6. Model selection and comparison

In the previous section several models were fitted to the fertility data. It is natural to ask
the question: Which model presents the best fit to the data and hence which one should be
preferred? A strategy has been described in Section 2.1 and is inspired from the demand for
medical care example detailed in Cameron and Trivedi (2013, Section 6.3). It is illustrated
here with a real data example.

The dataset used in this example is the quine data from package MASS (Venables and Ripley
2002), first analysed by Aitkin (1978).

R> data("quine", package = "MASS")

The dataset gives the number of days absent from school (Days) of 146 children in a particular
school year. A number of explanatory variables are available describing the children’s ethnic
background (Eth), sex (Sex), age (Age) and learner status (Lrn). The count variable Days is
characterised by large overdispersion — the variance is more than 16 times larger the mean,
264.2 versus 16.46. Table 8 gives an idea about its distribution. The entries in the table were
calculated as follows:
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R> breaks_ <- c(0, 1, 3, 5:7, 9, 12, 15, 17, 23, 27, 32)

R> freqtable <-

+ count_table(count = quine$Days, breaks = breaks_, formatChar = TRUE)

0 1-2 3-4 5 6 7-8 9-11

Frequency 9 10 7 19 8 10 13
Relative frequency 0.062 0.068 0.048 0.13 0.055 0.068 0.089

12-14 15-16 17-22 23-26 27-31 >= 32

Frequency 13 6 14 6 6 25
Relative frequency 0.089 0.041 0.096 0.041 0.041 0.17

Table 8: quine data: Frequency distribution of column Days.

Given the extreme over-dispersion observed in the quine data, we do not expect the Poisson
model to perform well. Nevertheless, we can still use it as a starting point and treat it as a
benchmark (any model worse than Poisson should be strongly rejected). We also consider the
negative binomial (as implemented in MASS::glm.nb()) and 3 renewal-count models based on
Weibull, gamma and generalised-gamma inter-arrival times. This gives a total of five models
to choose from. The following code fits the 5 models:

R> quine_form <- as.formula(Days ~ Eth + Sex + Age + Lrn)

R> pois <- glm(quine_form, family = poisson(), data = quine)

R> nb <- MASS::glm.nb(quine_form, data = quine)

R> ## various renewal models

R> wei <- renewalCount(formula = quine_form, data = quine, dist = "weibull",

+ computeHessian = FALSE, weiMethod = "conv_dePril",

+ control = renewal.control(trace = 0))

R> gam <- renewalCount(formula = quine_form, data = quine, dist = "gamma",

+ computeHessian = FALSE, control = renewal.control(trace = 0))

R> gengam <- renewalCount(formula = quine_form, data = quine, dist = "gengamma",

+ computeHessian = FALSE, control = renewal.control(trace = 0))

The models considered here are fully parametric. Therefore, a straightforward method to
discriminate between them is a likelihood ratio (LR) test. This is possible when models
are nested and in this case the LR statistic has the usual χ2(p) distribution, where p is the
difference in the number of parameters in the models. Here we compare all renewal-count
models against Poisson, negative-binomial against Poisson, Weibull-count against generalised-
gamma and gamma against the generalised-gamma.

For non-nested models, the standard approach is to use information criteria such as the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). This method can
be applied to discriminate between Weibull and gamma renewal count models, and between
these two models and the negative binomial.

Therefore, a possible strategy (similar to what has been suggested in Cameron and Trivedi
(2013, Section 6.3.4 p233)) can be summarised as follows:

• Use the LR test to compare Poisson with negative binomial.
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• Use the LR test to compare Poisson with Weibull-count.

• Use the LR test to compare Poisson with gamma-count.

• Use the LR test to compare Poisson with generalised-gamma-count.

• Use the LR test to compare Weibull-count with generalised-gamma-count.

• Use the LR test to compare gamma-count with generalised-gamma-count.

• Use information criteria to compare gamma-count with Weibull-count.

• Use information criteria to compare Weibull-count to negative binomial.

Here is the code for these tests 5:

R> library("lmtest")

R> pois_nb <- lrtest(pois, nb)

R> pois_wei <- suppressWarnings(lrtest(pois, wei))

R> pois_gam <- suppressWarnings(lrtest(pois, gam))

R> pois_gengam <- suppressWarnings(lrtest(pois, gengam))

R> pois_res <- data.frame("Alternative model" =

+ c("negative-binomial", "weibull", "gamma", "generalised-gamma"),

+ Chisq = c(pois_nb$Chisq[2], pois_wei$Chisq[2],

+ pois_gam$Chisq[2], pois_gengam$Chisq[2]),

+ Df = c(1, 1, 1, 2),

+ Critical_value = c(rep(qchisq(0.95, 1), 3), qchisq(0.95, 2)),

+ stringsAsFactors = FALSE)

The results are summarised in Table 9. As observed in Table 9, the LR test rejects the null
hypothesis and all the alternative models are preferred to Poisson. This is due to the large
over-dispersion.

Alternative.model Chisq Df Critical value

1 negative-binomial 1192.03 1.00 3.84
2 weibull 1193.21 1.00 3.84
3 gamma 1193.36 1.00 3.84
4 generalised-gamma 1194.46 2.00 5.99

Table 9: LR results against Poisson model. Each row compares an alternative model vs the
Poisson model. All alternatives are preferable to Poisson. The critical value corresponds to a
significance level of 5%

Next, we carry out LR test to discriminate between the renewal count models (see Table 10
for the results):

5The suppressWarnings() command is used to avoid printing a message to complain about the model
objects being from different class.
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R> gengam_wei <- lrtest(wei, gengam)

R> gengam_gam <- lrtest(gam, gengam)

R> gengam_res <- data.frame(Model = c("weibull", "gamma"),

+ Chisq = c(gengam_wei$Chisq[2], gengam_gam$Chisq[2]), Df = 1,

+ Critical_value = rep(qchisq(0.95, 1), 2), stringsAsFactors = FALSE)

Model Chisq Df Critical value

1 weibull 1.25 1.00 3.84
2 gamma 1.10 1.00 3.84

Table 10: LR results against generalised-gamma model

The results in Table 10 suggest that the Weibull and gamma models should be preferred to
the generalised gamma model.

Finally, we use information criteria to choose the best model among the Weibull and gamma
renewal models and the negative binomial:

R> ic <- data.frame(Model = c("gamma", "weibull", "negative-binomial",

+ "generalised-gamma", "Poisson"),

+ AIC = c(AIC(gam), AIC(wei), AIC(nb), AIC(gengam), AIC(pois)),

+ BIC = c(BIC(gam), BIC(wei), BIC(nb), BIC(gengam), BIC(pois)),

+ stringsAsFactors = FALSE)

Model AIC BIC

1 gamma 1107.83 1131.70
2 weibull 1107.98 1131.84
3 negative-binomial 1109.15 1133.02

4 generalised-gamma 1108.72 1135.58
5 Poisson 2299.18 2320.07

Table 11: Information criteria results

According to Table 11, the gamma renewal model is slightly preferred to the Weibull model
although since the maximum differences of AIC is less than 2 units, the three models can be
roughly seen equivalent. The table also confirms that the Poisson model is not able to deal
with the large over-dispersion.

We conclude this analysis by running a formal chi-square goodness of fit test (Cameron and
Trivedi 2013, Section 5.3.4) to the results of the previously selected model.

R> gof <- chiSq_gof(gam, breaks = breaks_)

R> gof

chi-square goodness-of-fit test

Cells considered 0 1-2 3-4 5 6 7-8 9-11 12-14 15-16 17-22 23-26 27-31 >= 32

DF Chisq Pr(>Chisq)

1 12 17.5 0.13
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The null hypothesis cannot be rejected at standard confidence levels and we conclude that
the selected model presents a good fit to the data. Users can check that the same test yields
similar results for the Weibull and negative binomial models but comfortably rejects the null
hypothesis for the Poisson and generalised gamma models. These results confirm what we
observed before.

7. Conclusion and Future Work

Count regression models derived from renewal processes are a flexible class of models that
extends the Poisson model and allows the use of inter-arrival times distributions that are
more flexible than the exponential. The Countr package implements this class of models
using standard R framework (very similar to glm()) and hence allows users familiar with
the generalized linear models to experience a more flexible class of models with minimum
additional effort. Usual methods for model fitting, goodness of fit diagnosis and prediction
are also provided.

Countr currently contains four built-in distributions for which the computations are optimised
by programming crucial parts in C++ and choosing taylored parameters for optimisation
functions. Although users can define their own inter-arrival times distribution, this may
result in long computation times as demonstrated in Section 5.3. In future versions of the
package, a larger choice of survival distributions will be available.

Renewal regression models can be extended in many directions. One of them is to allow the
time to the first event to have a different distribution from the inter-arrival times for later
events. This gives rise to a type of hurdle model that we call “modified renewal processes”.
This family of models is being studied by the authors and an experimental version is shipped
with Countr. Another direction in which the Countr package can be extended is by allowing
multivariate (and especially bivariate) models to be fitted. A Copula (Cameron and Trivedi
2013, Section 8.5) can be used to take into account dependence between the count marginals.
Such models will also be included in future versions of Countr.
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