
LaF
A package for processing large ASCII files

D.J. van der Laan

2011-11-06

1 Introduction

LaF is a R package for reading large ASCII files. It offers some functionality
that is missing from the regular R routines for processing ASCII files. First
of all, it is optimised for speed. Especially reading fixed width files is very
slow with the regular R routine read.fwf. However, since it is optimised
for speed some of the flexibility of the regular routines is lost. Seconly, it
offers random access: only those rows and columns are read that are needed.
With the regular routines one always has to read all columns.

The problem with big files is that they do not fit into memory. One
could consider this even to be the definition of ‘big’. To comfortably work
with data in R the data set needs to fit multiple (∼3) times into memory.
There are roughly two methods for working with data that doesn’t fit into
memory. The first is to read the data in blocks that do fit into memory
process each of these block and merge the results. More on this can be
found in section 3. The second is to read only that part of the data into
memory which is needed for the calculation at hand hoping that that subset
does fit into memory. For example to crosstabulate two variabeles one only
needs these two variables. As most datasets contain dozens of variables this
can easily reduce the memory needed for the operation by a factor of ten.
More on this in section 4.

Why ASCII? Why not use a binary format like ff and similar packages
do? True, binary storage allows for much faster access since the conversion
from ASCII to binary format is not needed and data can often be stored
much more compact. The main reason is portability. Almost every program
designed for data precessing can read ASCII files. And even if one wants to
use a package like ff, the source files are often ASCII files and first need to
be converted to ff format. LaF can also speed up this last process.

1

2 Opening a file

2.1 Column types

LaF currently supports the following column types

double Fields containing floating point numbers. Scientific notation (e.g.
1.9E-16) is not supported. The character used for the decimal mark
can be specified using the dec option of the functions used to open
files.

integer Fields containing positive or negative integer numbers (e.g. 42,
-100)

categorical Categorical fields are treated as character fields except that a
table is built mapping all observed values to integers. A factor vector
is returned in R when this type is used. The levels can be read and
set using the levels method.

string Character fields such as postcodes, identification numbers.

As of version 0.5 of LaF it is also possible to set levels of non categorical
columns using the levels method. For more information see paragraph 5.

2.2 Fixed width files

In fixed width files columns are defined by character positions in the files.
For example, the first seven characters of each line belong to the first column,
the next two characters belong to the second, etc. Each line therefore has
the same number of characters. This is also a disadvantage of the format.
If there is a column with variable string lenghts, the column has to be wide
enough to accomodate the widest field. The main advantage of the format is
that reading in large files (and especially random access) can be very efficient
as the positions of rows and columns can be calculated.

Fixed width files can be openen using the function laf_open_fwf. In
order to open a file the following options can be specified:

filename name of the file to be opened.

column types Character vector containing the types of data in each of the
columns. Valid types are: double, integer, categorical and string.

column widths Numeric vector containing the width in number of char-
acter of each of the columns.

column names (optional) Optional character vector containing the names
of the columns. The default names are ‘V1’, ‘V2’, etc.

2

dec (optional) Optional character specifying the decimal mark. The de-
fault value is ‘.’.

trim (optional) Optional logical value specifying whether of not character
strings should be trimmed left and right from white space. This applies
to both columns of type ‘string’ as ‘categorical’. For fixed width files
the default is true (trim white space).

Suppose the following data is stored in the file ‘file.fwf’ in the current
working directory (showing only the first five lines):

608491F9794TV 29 263.93

966101M7337BV 66 343.78

325922F6667UG 91 788.24

617313M8806EM 47 17.19

310068F8921BG 76 1237.94

Then this file can be openened using the following command:

> dat <- laf_open_fwf(filename="file.fwf",

+ column_types=c("integer", "categorical",

+ "string", "integer", "double"),

+ column_names=c("id", "gender", "postcode", "age", "income"),

+ column_widths=c(6, 1, 6, 3, 8))

dat is now a laf object. Data can be extracted from this object using the
commands described in sections 3 and 4. For example, to read all data in
the file one can use the following command:

> alldata <- dat[,]

2.3 Comma separated files

In comma seperated files each line contains a row of data, the columns are
seperated using a seperator character which is usually a comma although
other seperator characters are also used (e.g. the ‘;’ is often used in Europe
where the comma is often used as the decimal seperator). It is a often used
format. The disadvantage compared to the fixed width format is that the
positions of columns and rows in the file can not be calculated. Therefore,
a program reading a comma seperated file has to scan through the entire
file to find a certain row or column making random access much slower than
with fixed width files.

A comma seperated file for the LaF package has to observe the follow-
ing rules someof which slightly deviate from the ‘official’ rules of comma
seperated files:

3

� The first row can not contain the column names. These should be spec-
ified using the option column_names of the function laf_open_csv.
The first line in the file is treated as the first data row and the columns
in this line should be of the correct type.

� Quotes are treated slightly different from the way they are normally
treated in csv files. Only double quotes are accepted. Everything in-
side double quotes is considered part of the field except newline char-
acters and double quotes. Double quotes in text fields are therefore
not possible. Below are a few examples of how quotes are interpreted:

– 12345 = 12345

– "12345" = 12345

– "123"45 = 12345

– "123""45" = 123"45"

– "123\n45" = ERROR

– 12"345" = 12"345"

� Each line in the file should contain exactly one row of data. Normally
line breaks should be possible inside quoted columns. In order to keep
the code as fast as possible, this is not the case in the LaF package.

Comma seperated files can be opened using the function laf_open_csv.
This function accepts the following arguments:

filename name of the file to be opened.

column types Character vector containing the types of data in each of the
columns. Valid types are: double, integer, categorical and string.

column names (optional) Optional character vector containing the names
of the columns. The default names are ‘V1’, ‘V2’, etc.

sep (optional) Optional character specifying seperator mark used between
the columns. The default value is ‘,’.

dec (optional) Optional character specifying the decimal mark. The de-
fault value is ‘.’.

trim (optional) Optional logical value specifying whether of not character
strings should be trimmed left and right from white space. This applies
to both columns of type ‘string’ as ‘categorical’. For comma separated
files files the default is false (do not trim white space).

4

skip (optional) Optional numeric value specifying the number of lines at
the beginning of the file that should be skipped before starting to read
data. This can be used, for example, to skip the header as headers are
not supported: the user is required to specify the types and names of
the columns.

As of version 0.5 of the LaF package, there is also the detect_dm_csv routine,
which can automatically detect column types. See paragraph 2.4 for more
information on how to use data models to open files.

Suppose the following data is stored in the file ‘file.csv’ in the current
working directory (showing only the first five lines):

608491,F,9794TV,29,263.930000

966101,M,7337BV,66,343.780000

325922,F,6667UG,91,788.240000

617313,M,8806EM,47,17.190000

310068,F,8921BG,76,1237.940000

Then this file can be openened using the following command:

> dat <- laf_open_csv(filename="file.csv",

+ column_types=c("integer", "categorical",

+ "string", "integer", "double"),

+ column_names=c("id", "gender", "postcode", "age", "income"))

dat is now a laf object. Data can be extracted from this object using the
commands described in sections 3 and 4. For example, to read all data in
the file one can use the following command:

> alldata <- dat[,]

2.4 Opening using data models

As of version 0.5 LaF has the ability to store all of the arguments needed
by laf_open_fwf and laf_open_csv in so called data models. These data
models can be written to and read from files using the functions write_dm

and read_dm respectively. write_dm accepts either a data model or a laf

object as its input. To write the data model of the data set from the previous
section to file:

> write_dm(dat, "model.yaml")

The data model is written in the well documented and readable YAML
format:

type: csv

filename: file.csv

5

sep: ','

dec: .

skip: 0

trim: no

columns:

- name: id

type: integer

- name: gender

type: categorical

- name: postcode

type: string

- name: age

type: integer

- name: income

type: double

The format probably speaks for itself. It is also probable to manually write
these files and read them using read_dm. To open a file using a data model
the function laf_open can be used:

> dat <- laf_open(read_dm("model.yaml"))

Data models can also be generated from CSV-files and Blaise data models
using the routines detect_dm_csv and read_dm_blaise. See the documen-
tation of these routines for more information.

3 Blockwise processing

Blockwise processing of a file usually has the following structure:

1. Go to the beginning of the file

2. Read a block of data

3. Perform calculations on this block perhaps using results from the pre-
vious block.

4. Store results

5. Repeat 2–4 until all data has been processed.

6. If necessary combine the results of all the blocks.

In order to go to a specific position in the file LaF offers two methods:
begin and goto. The first method simply goes to the beginning of the file
while the second goes to the specified line. Assume, a laf object named
dat has been created (see section 2 for this). The only argument needed by
begin is the laf object:

6

> begin(dat)

For goto also the line number needs to be specified. The following com-
mand sets the filepointer at the beginning of line 1000. The next call to
next_block (see below) will therefore return as first row the data belonging
in line 1000 of the file.

> goto(dat, 1000)

Blocks of data can be read using next_block. The first argument needs
to be the reference to the file (the laf object); other arguments are optional.
By default all columns and 5000 lines are read:

> d <- next_block(dat)

> nrow(d)

[1] 5000

The number of lines can be specified using the nrows argument and the
columns that should be read can be specified using the columns argument.
The following command reads 100 lines and the first and third column.

> d <- next_block(dat, columns=c(1,3), nrows=100)

> dim(d)

[1] 100 2

If possible the use of the columns argument is advised. This can significantly
speed up the processing of the file. First of all, the amount of data that
needs to be transfered to R is much smaller. Second, the strings in the
unread columns do not need to be converted to numerical values.

When the end of the file is reached next_block returns a data.frame

with zero rows. This can be used to detect the end of file. The following
example shows how begin and can be used to calculate the number of
elements equal to 2 in the second column.

> n <- 0

> begin(dat)

> while (TRUE) {

+ d <- next_block(dat, 2)

+ n <- n + sum(d$gender == 'M')

+ if (nrow(d) == 0) break;

+ }

> print(n)

[1] 4951

7

Since processing a file in this way is such a common task, the method
process_blocks has been defined that automates this and is faster. This
method accepts as its first argument a laf object. The second argument
should be the function that should be applied to each of the blocks. This
function should accept as its first argument the data blocks. The last time
the function is called it receives a data.frame with zero rows. This can
be used to do some end calculations. The second argument of the function
is the result of the previous function call. The first time the function is
called the second argument had the value NULL. This can be used to perform
initialisation. Additional arguments to process_blocks are passed on to the
function. The previous example can be translated into:

> count <- function(d, prev) {

+ if (is.null(prev)) prev <- 0

+ return(prev + sum(d$gender == 'M'))

+ }

> (n <- process_blocks(dat, count))

[1] 4951

Using process_blocks is faster than using next_block repeatedly since the
data.frame containing the data that is read in, is destroyed and created
every iteration, while in process_blocks this data.frame is created only
once.

Below is an example that calculates the average of the third column of
the file and illustrates initialisation and finilisation (note this is not how you
will want to calculate the average over a column in a large file). Since only
the third column of the file is needed for this calculation, the columns option
is used which makes the calculation much faster.

> ave <- function(d, prev) {

+ # initialisation

+ if (is.null(prev)) {

+ prev <- c(sum=0, n=0)

+ }

+ # finilisation

+ if (nrow(d) == 0) {

+ return(as.numeric(prev[1]/prev[2]))

+ }

+ result <- prev + c(sum(d$income), nrow(d))

+ return(result)

+ }

> (n <- process_blocks(dat, ave, columns=5))

[1] 995.5738

8

4 Selecting subsets

An other common way of handling large files is to only read in the data that
is needed for the operation at hand. This is feasible when such a subset of
the data does fit into memory. For this, selections can be performed on a
laf object using the same methods one would use for a regular data.frame.
The code below shows several different examples:

> # select the first 10 rows

> result <- dat[1:10,]

> # select the second column

> result <- dat[, 2]

> # select the first 10 rows and the second column

> result <- dat[1:10, 2]

Indexing a laf object always results in a data.frame. For example, the
second and last example would have resulted in a vector when applied to a
data.frame, while in the examples above a data.frame with one column is
returned.

Using the $ and [[operators columns can be selected from the laf object.
The result is an object of type laf_column which is a subclass of laf. It is a
laf object with a field containing the column number. To get the data inside
these columns indexing can be used as is shown in the following examples.
In the first example the records are selected from the file for which the age
is higher than 65:

> result <- dat[dat$age[] > 65,]

The same can be done using the column number

> result <- dat[dat[[4]][] > 65,]

or

> result <- dat[dat[, 4] > 65,]

or

> result <- dat[dat[, "age"] > 65,]

5 Setting levels of columns

It is possible to set the levels of categorical and non-categorical columns.
Since the file is read only, it is not possible to renumber the columns as
would happen if we would change a column in a data.frame to factor.
Therefore, we need to specify both the levels and the corresponding labels
as a data.frame. For example, to change the ‘age’ column to a factor:

9

> levels(dat)[["age"]] <- data.frame(levels=0:100, labels=paste(0:100, "years"))

> dat$age[1:10]

[1] 29 years 66 years 91 years 47 years 76 years

[6] 5 years 9 years 85 years 42 years 0 years

101 Levels: 0 years 1 years 2 years ... 100 years

These levels are also written to file when writing a data model to file using
write_dm and read in by read_dm. You can therefore also specify the levels
of a column in the data model.

type: csv

filename: file.csv

sep: ','

dec: .

skip: 0

trim: no

columns:

- name: id

type: integer

- name: gender

type: categorical

- name: postcode

type: string

- name: age

type: integer

labels:

- level: 0

label: 0 years

- level: 1

label: 1 years

- level: 2

label: 2 years

- level: 3

label: 3 years

- level: 4

label: 4 years

- level: 5

label: 5 years

- level: 6

...

10

6 Calculating column statistics

Using process_blocks one can calculate all kinds of summary statistics for
columns. However, as some summary statistics are very common, these have
been implemented in the package. The available methods are:

colsum Calculate column sums
colmean Calculate column means
colfreq Calculate frequency tables of columns
colrange Calculate the maximum and minimum value of

columns
colnmissing Calculate the number of missing values in

columns

All methods accept as first argument either a laf or laf_column object.
In case of a laf object the second argument should be a vector of column
numbers for which the statistics should be calculated. For a laf_column

this is not necessary. For example, to calculate the average age the following
options are available:

> (m1 <- colmean(dat, columns=4))

age

54.3166

> (m1 <- colmean(dat$age))

age

54.3166

Most methods also accept an na.rm argument, which ignores, as one would
expect, missing values when calculating the statistics. The method coln-

missing does not have this argument which would be meaningless. colfreq
has the argument useNA which can take one the values ‘ifany’, ‘always’ or
‘no’.

11

