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Abstract

The MBHdesign package is useful for creating spatially balanced designs, especially
when legacy sites are present. The package implements the methods described in Foster
et al. (2017), which is an extension of Balanced Adaptive Sampling (Robertson et al. 2013,
BAS)∗. In this tutorial, we will go through the three steps of:

1. Altering inclusion probabilities for spatial balance, taking into account the location
of legacy sites. This is done using the function alterInclProbs;

2. Generating spatially balanced designs for a given set of inclusion probabilities,
through the function quasiSamp; and

3. Analysing some (made up) data using model-based methods (using modEsti).

Keywords: Spatially-Balanced Survey Design, Balanced Adaptive Sampling, Spatially Corre-
lated Poisson Sampling, GRTS, R.

First Things First

Before starting with this introduction to MBHdesign, we need to make sure that everything
is set up properly. Much of this will vary from computer to computer, but you must have a
working version of R installed (preferably the latest one). At the time of writing, the latest
version was R-3.3.2. It does not matter whether you prefer to use R through a development
environment (such as RStudio) or through the command line – the results will be the same.
So, start R and then:

install.packages( "MBHdesign")

You will be asked which repository you want to use. Just use one that is geographically close
to where you are (or where your computer is). Next load the package.

library( MBHdesign)

For illustration is is also good to fix the random number seed, so that this document is
reproducible exactly.

*although the function quasiSamp() is the only function that directly contains the idea in BAS
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set.seed( 747) #a 747 is a big plane

Now, we are good to go with the rest of the introduction.

The Illustrative Design Scenario

Let’s pretend that we want to generate n = 10 samples on a grid of points (representing the
centres of a tessellation). The grid of points consists of N = 100 × 100 = 10000 points in
2-dimensional space (spanning the interval [0, 1] in both dimensions). Let’s also pretend that
there are 3 legacy sites, that have been sampled in previous survey efforts, and we wish to
revisit them in the current survey. The legacy sites are located at random throughout the
study area. Here, I have generated it all in R (painstakingly), but in a real application, most
of this information could be read in from file.

#number of samples

n <- 10

#number of points to sample from

N <- 100^2

#the sampling grid (offset so that the edge locations have same area)

offsetX <- 1/(2*sqrt( N))

my.seq <- seq( from=offsetX, to=1-offsetX, length=sqrt(N))

X <- expand.grid( my.seq, my.seq)

#the legacy sites (three of them)

legacySites <- matrix( runif( 6), ncol=2, byrow=TRUE)

#names can be useful

colnames( X) <- colnames( legacySites) <- c("X1","X2")

Inclusion Probabilities

Key to this whole design process is the concept of inclusion probabilities. Inclusion proba-
bilities define the chance that any particular site will be part of the sample. So, if a site’s
inclusion probability is small, then the site is unlikely to be included into the sample. Speci-
fying inclusion probabilities can improve efficiency of the sampling design. That is, standard
errors can be reduced for a given number of samples. The ‘trick’ is to specify inclusion prob-
abilities so that the sites that should have highly variable observations are sampled more
often (e.g. Grafström and Tillé 2013). In ecology, variance often increases with abundance
(due to Taylor’s Power Law; Taylor 1961), so inclusion probabilities could be increased with
abundance. If there is no knowledge about the area being sampled, then all sites should be
given equal inclusion probabilities (equal to n

N ). The only formal requirement, in terms of
MBHdesign, is that the inclusion probabilities must sum to n.

Here, we are going to pretend that there is some gradient in the variance of the population
under study. We stress that this is illustrative only.
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#non-uniform inclusion probabilities

inclProbs <- 1-exp(-X[,1])

#scaling to enforce summation to n

inclProbs <- n * inclProbs / sum( inclProbs)

#uniform inclusion probabilities would be inclProbs <- rep( n/N, times=N)

#visualise

image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( inclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),

main="(Undadjusted) Inclusion Probabilities",

ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations

points( legacySites, pch=21, bg=grey(0.75), cex=1.5)
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Accommodating Legacy Sites

To generate a design that is spatially balanced in both the n new sample sites and the legacy
sites, we adjust the inclusion probabilities. The adjustment (see Foster et al. 2017) reduces
the inclusion probabilities so that sites near legacy sites are less likely to be chosen in the new
sample.

#alter inclusion probabilities

# so that new samples should be well-spaced from legacy

altInclProbs <- alterInclProbs( legacy.sites=legacySites,

potential.sites=X, inclusion.probs = inclProbs)

#visualise
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image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( altInclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),

main="Adjusted Inclusion Probabilities",

ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations

points( legacySites, pch=21, bg=grey(0.75), cex=1.5)
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So, the inclusion probabilities have been reduced around the legacy sites. It is perhaps worth
noting that the reduction in inclusion probabilities, due to the legacy sites, can be viewed as
sequential. This means that the reduction for any legacy site is in addition to the reduction of
all of the other legacy sites – there is no extra joint effect. Also, the adjustment is proportional
to the original inclusion probability, so that a small inclusion probability and a large inclusion
probability are both adjusted proportionally to the same amount.

There are some other arguments to the altInclProbs() function (omitted for clarity here).
These can be seen to refine the call and/or to make the computer to do its work quicker.
Type ?altInclProbs for more details.

Generating the Design

Irrespective of how the inclusion probabilities were obtained, we can now use them to generate
a spatially balanced design.

#generate the design according to the altered inclusion probabilities.

samp <- quasiSamp( n=n, dimension=2,

study.area=matrix( c(0,0, 0,1, 1,0, 1,1),ncol=2, byrow=TRUE),

potential.sites=X, inclusion.probs=altInclProbs)
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#visualise

image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( altInclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),

main="Adjusted Inclusion Probabilities",

ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations

points( legacySites, pch=21, bg=grey(0.75), cex=1.5)

points( samp[,1:2], pch=21)
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Voilà! A spatially balanced design that incorporates legacy sites. It is contained in the object
samp, which looks like:

print( samp, row.names=FALSE)

X1 X2 inclusion.probabilities ID

0.775 0.485 0.001669778 4878

0.395 0.595 0.001009812 5940

0.835 0.185 0.001744644 1884

0.205 0.525 0.000573891 5221

0.955 0.635 0.001903563 6396

0.805 0.685 0.001630315 6881

0.675 0.455 0.001519740 4568

0.925 0.235 0.001868423 2393

0.865 0.385 0.001792553 3887

0.985 0.835 0.001895164 8399

The columns of samp are:
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� The sample locations in the X1 and X2 dimensions;

� The inclusion probability for that sampling location; and

� The row number (ID), of the original list of potential sites (X).

Analysis

After finalising the design, time comes to go and undertake the survey. For illustration, we do
this in silico and generate observations according to a pre-defined function (following Foster
et al. 2017, amongst others).

#generate some `observations' for the new sites

Z <- 3*( X[samp$ID,1]+X[samp$ID,2]) +

sin( 6*( X[samp$ID,1]+X[samp$ID,2]))

#and some for the legacy sites

Zlegacy <- 3*( legacySites[,1]+legacySites[,2]) +

sin( 6*( legacySites[,1]+legacySites[,2]))

These data can be analysed in two ways: 1) design-based, which uses minimal assumptions
about the data; and 2) model-based, which attempts to describe more aspects of the data.
See Foster et al. (2017) for a more complete description. For design-based analysis we take a
weighted average of the estimator for the legacy sites and the estimator for the new sites. In
both cases the estimates follow Horvitz and Thompson (1952). Please do read the section in
Foster et al. (2017) for comments on estimation, it could save you some grief.

#the proportion of legacy sites in the whole sample

fracLegacy <- nrow( legacySites) / (n+nrow( legacySites))

#inclusion probabilities for legacy sites

# (these are just made up, from uniform)

LegInclProbs <- rep( nrow( legacySites) / N, nrow( legacySites))

#estimator based on legacy sites only

legacyHT <- (1/N) * sum( Zlegacy / LegInclProbs)

#estimator based on new sites only

newHT <- (1/N) * sum( Z / inclProbs[samp$ID])

mean.estimator <- fracLegacy * legacyHT + (1-fracLegacy) * newHT

#print the mean

print( mean.estimator)

[1] 2.910937

This is pretty close to the true value of 2.9994. To get a standard error for this estimate, we use
the total.est() function from the spsurvey (Kincaid and Olsen 2015), which implements
the neighbourhood estimator of Stevens and Olsen (2003).
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#load the spsurvey package

library( spsurvey)

#rescale the inclusion probs

# (the sample frames are the same in legacy and new sites)

tmpInclProbs <- ( c( inclProbs[samp$ID], LegInclProbs) / n) *

(n+nrow(legacySites))

#calculate the standard error

se.estimator <- total.est( z=c(Z, Zlegacy),

wgt=1/tmpInclProbs,

x=c(X[samp$ID,1], legacySites[,1]),

y=c(X[samp$ID,2], legacySites[,2]))$StdError[2]

#print it

print( se.estimator)

[1] 0.4512676

For model-based mean and standard errors we follow the ‘GAMdist’ approach in Foster et al.
(2017).

tmp <- modEsti( y=c( Z, Zlegacy), locations=rbind( X[samp$ID,], legacySites),

includeLegacyLocation=TRUE, legacyIDs=n + 1:nrow( legacySites),

predPts=X, control=list(B=1000))

print( tmp)

$mean

[1] 2.523293

$se

[1] 0.266268

$CI

2.5% 97.5%

1.991089 3.038549

In this case, the standard error estimates are quite different. On average, they tend to be
(when there are only a few legacy sites). Even so, this level of difference is unusual.

Last Things Last

The only remaining thing to do is to tidy up our workspace. First, to export our sample
locations. Second, to remove all objects for this analysis from your workspace.

#write csv

write.csv( samp, file="sample1.csv", row.names=FALSE)

#tidy

rm( list=ls())
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1. Appendix

1.1. Computational details

This vignette was created using the following R and add-on package versions

� R version 3.4.0 (2017-04-21), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_AU.UTF-8, LC_NUMERIC=C, LC_TIME=en_AU.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_AU.UTF-8, LC_MESSAGES=en_AU.UTF-8,
LC_PAPER=en_AU.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_AU.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 16.04.1 LTS

� Matrix products: default

� BLAS: /usr/local/lib/R/lib/libRblas.so

� LAPACK: /usr/local/lib/R/lib/libRlapack.so
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� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: MBHdesign 1.0.79, knitr 1.14, sp 1.2-3, spsurvey 3.3

� Loaded via a namespace (and not attached): Formula 1.2-1, Hmisc 3.17-4,
MASS 7.3-45, Matrix 1.2-9, RColorBrewer 1.1-2, Rcpp 0.12.7, acepack 1.3-3.3,
chron 2.3-47, class 7.3-14, cluster 2.0.6, codetools 0.2-15, colorspace 1.3-2,
compiler 3.4.0, data.table 1.9.6, deldir 0.1-9, digest 0.6.8, evaluate 0.9, foreign 0.8-67,
formatR 1.4, geometry 0.3-6, ggplot2 2.1.0, grid 3.4.0, gridExtra 2.2.1, gtable 0.1.2,
highr 0.6, lattice 0.20-33, latticeExtra 0.6-26, magic 1.5-6, magrittr 1.5, mgcv 1.8-17,
munsell 0.4.2, mvtnorm 1.0-3, nlme 3.1-131, nnet 7.3-12, parallel 3.4.0, plyr 1.8.2,
randtoolbox 1.17, rgeos 0.3-11, rngWELL 0.10-3, rpart 4.1-11, scales 0.4.0,
splines 3.4.0, stringi 1.1.1, stringr 1.0.0, survival 2.41-3, tools 3.4.0
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