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1 Tree distance metrics

A number of metrics area available to quantify the similarity between two undirected topologies (i.e. unrooted
trees with no edge lengths), many of which are implemented in the phangorn function treedist.

1.1 SPR metric

The subtree pruning and regrafting (SPR) distance [Penny & Hendy (1985); SPR.dist] counts the number of
SPR rearrangements necessary to transform Tree A into Tree B.

1.2 Path difference metric

The length of a path from one tip to another in a tree is the number of edges within the tree that must be
crossed to navigate from one tip to the other.

Given two trees, is possible to calculate the difference in path length between each pair of tips.

The path difference metric [Steel & Penny (1993); path.dist] is the square root of the sum of squares of
each of these differences.

The related nodal distance (Bluis & Shin, 2003) is not considered further here.
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1.3 Partition metric

The Robinson-Foulds (RF or ‘partition’) metric [Robinson & Foulds (1981); Steel & Penny (1993); phangorn’s
RF.dist or this package’s RobinsonFoulds] measures the symmetric difference between two trees by adding
the number of bipartitions that are present in tree A (but not tree B) to the number of bipartitions present
in tree B (but not tree A).

It is most useful when the trees to be compared are very similar; it has a low range of integer values, limiting
its ability to distinguish between trees (Steel & Penny, 1993).

1.4 Quartet metric

Instead of partitions, symmetric differences can be measured by counting the number of four-taxon statements
(quartets) that differ between two trees (Day, 1986; Estabrook, McMorris, & Meacham, 1985).

For any four tips A, B, C and D, a bipartition on a bifurcating tree will separate tip A and either B, C or D
from the other two tips. That is to say, removing all other tips from the tree will leave one of these three
trees:
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Thus two of the random trees below share the quartet (A, B), (C, D), whereas the third does not; these
four tips are divided into (A, D), (B, C).
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groups of four taxa in a tree with n tips; for each of these groups, one of the three trees above

will be consistent with a given tree. As such, two identical trees will have a quartet distance of 0, and a
random pair of trees will have an expected

(
n
4
)
/3 quartets in common. Because quartets are not independent

of one another, no pair of trees with six or more tips can have all
(

n
4
)
quartets in common (Steel & Penny,

1993).
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2 Desired behaviour of tree distance metrics

The advantages of the quartet symmetric difference over other tree distance metrics (Penny & Hendy, 1985)
are best illustrated by examining a set of example trees.

2.1 Moving a single taxon

If trees differ only in the location of a single taxon (see taxon 1 in the trees below), then the distance between
two trees should correspond to the distance that this taxon has been moved.

Reference tree

1

2

3

4

5

6

7

8

9

10

11
Short move

2

3

1

4

5

6

7

8

9

10

11

Quartet:

RF:

Path:

SPR:

8/330

2/16

4.24

1

Medium move

2

3

4

5

1

6

7

8

9

10

11

Quartet:

RF:

Path:

SPR:

52/330

6/16

7.48

1

Long move

2

3

4

5

6

7

8

9

10

11

1

Quartet:

RF:

Path:

SPR:

76/330

8/16

8.49

1

The subtree pruning and regrafting (SPR) distance does not distinguish between these trees, as they differ
only in the placement of a single tip. The Robinson-Foulds, path difference and quartet metrics, in contrast,
recognize trees in which this tip has been moved further as more distant from the starting tree.

2.2 Moving two taxa

Intuitively, moving a pair of tips on a tree should lead to higher tree distances than moving a single tip. In
the case of a short move, the RF distance does not differ whether one or two tips are moved. For larger
moves, however, the RF distance is less when two tips are moved than when a single tip is moved. The path
and quartet metrics perform as expected.

The trees below differ from a reference tree in the position of a single tip (tip 1), or a pair of tips (tips 10 and
11), which have been moved a short, medium or long distance from their original positions.

3



Reference tree

1
2

3
4
5

6
7

8
9

10
11

Short move 1

2
3

1
4
5

6
7

8
9

10
11

Quartet:
RF:

Path:
SPR:

8/330
2/16
4.24
1

Short move 2

1
2

3
4
5

6
7

10
11

8
9

Quartet:
RF:

Path:
SPR:

24/330
2/16
5.29
1

Reference tree

1
2

3
4
5

6
7

8
9

10
11

Medium move 1

2
3

4
5

1
6

7
8
9

10
11

Quartet:
RF:

Path:
SPR:

52/330
6/16
7.48
1

Medium move 2

1
2

3
4
5
10
11

6
7

8
9

Quartet:
RF:

Path:
SPR:

78/330
4/16
8.25
1

Reference tree

1
2

3
4
5

6
7

8
9

10
11

Long move 1

2
3

4
5

6
7

8
9

10
11
1

Quartet:
RF:

Path:
SPR:

76/330
8/16
8.49
1

Long move 2

1
10
11

2
3

4
5

6
7

8
9

Quartet:
RF:

Path:
SPR:

92/330
6/16
11.1
1

2.3 Maximum distance

A distance metric should distinguish slightly-perturbed trees from random trees and those that are more
different from the starting tree than expected by chance.

The Robinson-Foulds metric can reach its maximum value when a single taxon is relocated from the most
basal to the most derived point of a pectinate tree, representing a maximal value despite retaining relationship
information about all other taxa.
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Pectinate tree
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A notable proportion of random trees receive a lower RF distance from the original tree, even though they do
not show any structural similarity. This is not the case with the quartet symmetric difference.
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An advantage of the quartet symmetric distance is that the normalized metric of a random tree is 2
3 (Day,

1986; Steel & Penny, 1993). As such, trees that are more different than expected by chance can be readily
recognized, as their distance metric will be greater than 220

330 . The ‘maximum distance’ tree depicted below
was identified using the R package TreeSearch (Smith, 2018), using the quartet difference from the reference
tree as an optimality criterion.
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2.4 Unit equivalence

A further shortcoming of the RF metric is that not all partitions represent an equivalent amount of information.
A partition distance of 1 could mean that two trees differ in an uninformative partition, or a more informative
partition. All quartets, in contrast, are equally informative.

Consider a balanced and an unbalanced eight-taxon tree:
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Each tree divides the eight taxa into five bipartition splits.
The information content (Shannon entropy) of a split can be calculated based on what proportion of eight-tip
trees contain the split in question. This is a function of the evenness of the split:

Matching trees p(Match in random tree) Information content / bits
Partition size: 2:6 945 0.0909 3.459432
Partition size: 3:5 315 0.0303 5.044394
Partition size: 4:4 225 0.0216 5.529821

In the first tree, split 1 is even, dividing four taxa from four others (4:4); splits 2–5 are maximally uneven
(2:6). The total information content of these five splits is 19.37, whereas that of the five splits in the second
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tree, of sizes 2:6, 3:5, 4:4, 3:5 and 2:6, is 22.54. Put another way, a random tree will on average share more
partitions with the balanced tree (whose partitions are predominantly uneven and thus likely to be matched)
than the asymmetric tree (which contains more even partitions that are less likely to occur in a random tree).

Of the 10 395 eight-tip trees, many more bear at least one partition in common with a balanced tree than
with an asymmetric tree, whereas the distribution of quartets is identical:
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2.5 Unresolved trees

Whereas the path distance and SPR metrics are only defined on bifurcating trees, symmetric difference
approaches can be applied to trees that contain polytomies – i.e. not every node is resolved as bifurcating.

2.6 Conclusion

Quartet dissimilarity is the only available metric of tree distance that fulfils all of the following desiderata:

• Allocates trees higher distances if a clade moves greater distances
• Allocates trees higher distances if a the clade that is moved is larger
• Distinguishes contradicted from unresolved information in trees that are not fully bifurcating (resolved)
• Identifies pairs of trees that are more random than expected by chance
• Does not reach its maximum value after relatively trivial rearrangements
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3 Improvements to partition metrics

The primary issue with the Robinson-Foulds distance is its conservative pairing of clades: a grouping is either
identical in both trees, or is treated as different.
This makes no account for the possibility that one tree contains a grouping that is similar (though not quite
identical) to a grouping in another.

In order to incorporate some measure of similar-but-not-quite-identical clades, it is necessary to construct an
optimal matching that pairs each clade in each tree with either a suitable clade in the other, or with no clade
at all.

Various approaches to this problem have been proposed; these typically search for a matching that minimises
the total dissimilarity summed for all pairings. Approaches differ in how they penalize differences between
paired groups. Bogdanowicz and Giaro (2012, 2013, 2017) calculate the size of the largest bipartition that is
consistent with both input groups; Nye et al. (2006) normalize this number using the Jaccard index; Böcker
et al. (2013) raise this value to an arbitrary exponent, and add a constraint that prohibits pairings that
comprise contradictory groups.

These approaches represent a refinement of the Robinson-Foulds metric, circumventing many of the issues
raised above. They are, however, more computationally expensive, and lack an objective measure of clade
similarity. I am not presently aware of an R implementation of any of these measures, though a related
metric is planned for a future version of this package.
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