
Comprehensive Tutorial for the
Spatio-Temporal R-package

Silas Bergen
University of Washington

Johan Lindström
University of Washington

Lund University

12th August 2013

Contents

Contents

1 Introduction 1

1.1 Common Problems — Troubleshooting 1

1.2 Data . 2

1.2.1 NOx Observations . 2

1.2.2 Geographic Covariates 2

1.3 Model and Theory . 3

1.3.1 Model parameters . 4

2 Preliminaries 4

2.1 The STdata object . 5

2.1.1 Creating an STdata object from raw data 5

2.1.2 The mesa.data$covars Data Frame 8

2.1.3 The mesa.data$trend Data Frame 9

2.1.4 The mesa.data$obs Data Frame 12

2.1.5 The mesa.data$SpatioTemporal Array 12

2.1.6 Summaries of mesa.data 14

3 createSTmodel(): Specifying the
Spatio-Temporal model 15

4 Estimating the Model 20

4.1 Parameter Estimation . 20

4.2 Evaluating the Results . 22

4.3 Predictions . 26

5 Cross-validation 30

5.1 Cross-Validated Estimation 36

5.2 Cross-Validated Prediction . 38

5.2.1 Residual Analysis . 41

I

Tutorial for SpatioTemporal

Acknowledgements 46

References 47

A Prediction at Unobserved Locations 49

A.1 Load Data . 49

A.2 Setup and Study the Data . 49

A.3 Predictions . 53

A.3.1 Temporal Averages . 55

B Simulation 58

B.1 Load Data . 58

B.2 Simulating some Data . 58

B.3 Studying the Results . 59

C MCMC 61

C.1 Load Data . 61

C.2 Running the MCMC . 61

C.3 Results . 62

C.3.1 Plotting the Results 62

II

1. Introduction

1 Introduction

The aim of this tutorial is to provide detailed descriptions of funtion out-
puts and features not covered (or covered only briefly) in the introductory
tutorial vignette("ST_intro", package="SpatioTemporal"). The reader
is encouraged to first study that tutorial.

As always this tutorial can be accesed from R with vignette("ST_tutorial",

package="SpatioTemporal") and the R-code can be found as edit(vign-

ette("ST_tutorial", package="SpatioTemporal")) or Stangle(vign-

ette("ST_tutorial", package="SpatioTemporal")$file)

The remainder of this introduction provides some brief comments on common
problems that may arise when using the package (subsection 1.1) followed by
overviews of the data used in the examples of this tutorial (subsection 1.2) and
the theory behind the model (subsection 1.3). Following this background the
actual R-tutorial begins in section 2 with an overview of the data structures
used by the package to encapsulate data for the model fitting. Functions
that do parameter estimation and prediction are introduced in section 4,
along with tools for illustration of the results. The last part of the R-tutorial
is a cross-validation example in section 5.

The Appendices contain commented code for some additional examples: Ap-
pendix A gives an example of predictions at unobserved locations and times,
Appendix B provides the outlines of a simulation study, and an MCMC ex-
ample is given in Appendix C.

1.1 Common Problems — Troubleshooting

Before starting with the full tutorial it seems prudent to discuss some of
the common problems that might arise when using the package, along with
possible solutions.

If the parameter estimation fails consider:

� Covariate scaling: avoid covariates with extremely different ranges; this
may cause numerical instabilities.

� The meaning of the parameters, compare the starting values to what
occurrs in the actual data.

� Try multiple starting points in the optimisation.

1

Tutorial for SpatioTemporal

� Changing location coordinates from kilometres to metres will drastically
change the reasonable values of the range.

� An over parameterised (too many covariates) model may cause numer-
ical problems.

Other common problems are:

� Ensure that geographic covariates are provided for all locations.

� Ensure that spatio-temporal covariates are provided for all time-points
and locations.

� The spatio-temporal covariate(s) must be in a list or 3D-array.

1.2 Data

The data used in this tutorial consists of a subset of the NOx measure-
ments from coastal Los Angeles available to the MESA Air study; as well
as a few (geographic) covariates. A detailed description of the full data-
set can be found in Cohen et al. (2009), Szpiro et al. (2010), Lindström
et al. (2011, 2013) and a brief descriptions is given in vignette("ST_in-

tro", package="SpatioTemporal").

1.2.1 NOx Observations

The data consists of NOx-measurements from the national AQS network of
regulatory monitors as well as supplementary MESA Air (fixed site) monitor-
ing. The data has been aggregated to 2-week averages. Since the distribution
of the resulting 2-week average NOx concentrations (ppb) is skewed, the data
has also been log-transformed.

1.2.2 Geographic Covariates

To aid in the prediction at times and locations where we have no meas-
urements a set of spatial and/or spatio-temporal covariates can be used.
Covariates included in this example include both geographic covariates —
such as 1) distance to a major roads; 2) distance to coast (truncated to be
≤15km); and 3) average population density in a 2 km buffer — and a spatio-
temporal containing predictions from a deterministic air-pollution model —
Caline3QHC (EPA, 1992, Wilton et al., 2010, MESA Air Data Team, 2010).

2

1.3 Model and Theory

The covariates, and covariate selection, is described in detail by Mercer et al.
(2011), Cohen et al. (2009), and briefly in vignette("ST_intro", pack-

age="SpatioTemporal").

1.3 Model and Theory

The model and theory is described in vignette("ST_intro", package="SpatioTemporal")

or (Szpiro et al., 2010, Sampson et al., 2011, Lindström et al., 2011, 2013)
and the reader is referred to those papers for extensive details. We will inly
give a very brief overview here.

Denoting the quantity to be modelled (in this example ambient 2-week av-
erage log NOx concentrations) by y(s, t), we write the spatio-temporal field
as

y(s, t) = µ(s, t) + ν(s, t), (1)

where µ(s, t) is the mean field and ν(s, t) is the essentially random space-time
residual field. The mean field is modelled as

µ(s, t) =
L∑
l=1

γlMl(s, t) +
m∑
i=1

βi(s)fi(t), (2)

where the Ml(s, t) are spatio-temporal covariates; γl are coefficients for the
spatio-temporal covariates; {fi(t)}mi=1 is a set of (smooth) temporal basis
functions, with f1(t) ≡ 1; and the βi(s) are spatially varying coefficients for
the temporal functions.

The βi(s)-coefficients in (2) are treated as spatial fields with a universal
kriging structure, allowing the temporal structure to vary between locations:

βi(s) ∈ N (Xiαi,Σβi(θi)) for i = 1, . . . ,m, (3)

where Xi are n × pi design matrices, αi are pi × 1 matrices of regression
coefficients, and Σβi(θi) are n× n covariance matrices. The Xi matrices often
contain geographical covariates and we dentote this component a “land use”
regression (LUR). This structure allows for different covariates and covariance
structures in the each of the βi(s) fields; the fields are assumed to be apriori
independent of each other.

The residual space-time field, ν(s, t), is assumed to be independent in time

3

Tutorial for SpatioTemporal

with stationary parametric spatial covariance

ν(s, t) ∈ N

0,

Σ1
ν(θν) 0 0

0
. . . 0

0 0 ΣT
ν (θν)

︸ ︷︷ ︸

Σν(θν)

 , (4)

Here the size of each block matrix, Σt
ν(θν), is the number of observations, nt,

at each time-point.

1.3.1 Model parameters

The parameters of the model consist of the regression parameters for the geo-
graphical (α = (α>

1 , . . . , α
>
m)>) and spatio-temporal covariates (γ = (γ1, . . . , γL)>);

and covariance parameters for the βi- and ν-fields

θB = (θ1, . . . , θm) and θν .

2 Preliminaries

Some of the code in this tutorial takes considerable time to run, in these cases
precomputed results have been included in the package as data-files. The
tutorial marks time consuming code with the following warning/alternative
statements:

WARNING: The following steps are time-consuming.

> Some time consuming code

ALTERNATIVE: Load pre-computed results.

> An option to load precomputed results.

End of alternative

Here we will study NOx data from Los Angeles. The data are described
in subsection 1.2 and consist of 25 different monitor locations, with 2-week
average log NOx concentrations measured for 280 2-week periods.

4

2.1 The STdata object

First load the package, along with a few additional packages need by the
tutorial:

> library(SpatioTemporal)

> library(plotrix)

> library(maps)

2.1 The STdata object

The basic S3-object in this package, collecting covariates and observations,
is a an STdata-object. In the following an STdata-object will be created
from the data, thereafter the structure and the components of the object are
described.

2.1.1 Creating an STdata object from raw data

The data used in this example are contained in data(mesa.data.raw), which
we load and examine.

> data(mesa.data.raw, package="SpatioTemporal")

> str(mesa.data.raw,1)

List of 3

$ X :'data.frame': 25 obs. of 12 variables:

$ obs : num [1:280, 1:25] 4.58 3.89 4.01 4.08 3.73 ...

..- attr(*, "dimnames")=List of 2

$ lax.conc.1500: num [1:280, 1:25] 2.32 1.84 1.49 2.59 1.9 ...

..- attr(*, "dimnames")=List of 2

As we can see mesa.data.raw consists of a list with two matrices and one
data.frame; these contain the observations ("obs"), geographic covariates
("X") and spatio-temporal covariates ("lax.conc.1500") of the example.

We will use the createSTdata() function to create the STdata object. The
createSTdata() function requires (at least) two arguments: obs and covars.
Spatio-temporal covariates can be supplied through the optional argument
SpatioTemporal. An example of possible input for the covars argument is
given by the X data frame of mesa.data.raw:

> head(mesa.data.raw$X)

5

Tutorial for SpatioTemporal

ID x y long lat type

1 60370002 -10861.67 3793.589 -117.923 34.1365 AQS

2 60370016 -10854.95 3794.456 -117.850 34.1443 AQS

3 60370030 -10888.66 3782.332 -118.216 34.0352 AQS

4 60370031 -10891.42 3754.649 -118.246 33.7861 AQS

5 60370113 -10910.76 3784.099 -118.456 34.0511 AQS

6 60371002 -10897.96 3797.979 -118.317 34.1760 AQS

log10.m.to.a1 log10.m.to.a2 log10.m.to.a3 log10.m.to.road

1 2.861509 4.100755 2.494956 2.494956

2 3.461672 3.801059 2.471498 2.471498

3 2.561133 3.695772 1.830197 1.830197

4 3.111413 2.737527 2.451927 2.451927

5 2.762193 3.687412 2.382281 2.382281

6 2.760931 4.035977 1.808260 1.808260

km.to.coast s2000.pop.div.10000

1 15.000000 1.733283

2 15.000000 1.645386

3 15.000000 6.192630

4 1.023311 2.088930

5 6.011075 7.143731

6 15.000000 4.766780

Above we can see an excerpt of mesa.data.raw$X. In this example,
mesa.data.raw$X contains information about the monitoring locations, in-
cluding: names (or ID’s), x- and y-coordinates, covariates from a GIS to be
used in the LUR, monitor type, longitudes and latitudes. The covars ar-
gument of createSTdata() should, at a minimum, include coordinates and
covariates for all locations. Observations are matched to the locations by
matching the columnames of obs (see below) to 1) names given by a ID field
in covars; 2) the rownames of covars; 3) names infered from the ordering
of covars, see stCheckCovars.

Next, examine the $obs part of the raw data.

> mesa.data.raw$obs[1:6,1:5]

60370002 60370016 60370030 60370031 60370113

1999-01-13 4.577684 4.131632 NA NA 4.727882

1999-01-27 3.889091 3.543566 NA NA 4.139332

1999-02-10 4.013020 3.632424 NA NA 4.054051

1999-02-24 4.080691 3.842586 NA NA 4.392799

6

2.1 The STdata object

1999-03-10 3.728085 3.396944 NA NA 3.960577

1999-03-24 3.751913 3.626161 NA NA 3.958741

In this example the observations are stored as a (number of time-points)-
by-(number of locations) matrix with missing observations denoted by NA,
the row- and columnames identify the location and time point of each ob-
servation. Alternatively, one could have the observations as a data frame
with three fields: date, ID and obs. The format of mesa.data.raw$obs as
a matrix is most convenient for data with few (or no) missing observations.

The final element is a spatio-temporal covariate, i.e. the output from the
Caline3QHC model (see subsubsection 1.2.2),

> mesa.data.raw$lax.conc.1500[1:6,1:5]

60370002 60370016 60370030 60370031 60370113

1999-01-13 2.3188 0 8.0641 0.1467 2.9894

1999-01-27 1.8371 0 7.3568 0.2397 4.7381

1999-02-10 1.4886 0 6.3673 0.2463 4.3922

1999-02-24 2.5868 0 7.1783 0.1140 3.3456

1999-03-10 1.8996 0 6.3159 0.1537 3.8495

1999-03-24 2.0162 0 6.3277 0.1906 3.2170

This matrix contains spatio-temporal covariate values for all locations and
times. Similar to the mesa.data.raw$obs matrix, the row- and column
names of the mesa.data.raw$lax.conc.1500 matrix contain the dates and
location ID’s of the spatio-temporal covariate.

The measurement locations, LUR information, observations and spatio-tem-
poral covariates (optional) above constitute the basic raw data needed by
the createSTdata() function. Given these minimal elements, creation of
the STdata structure is easy:

> ##matrix of observations

> obs <- mesa.data.raw$obs

> ##data.frame/matrix of covariates

> covars <- mesa.data.raw$X

> ##list/3D-array with the spatio-temporal covariates

> ST.list <- list(lax.conc.1500=mesa.data.raw$lax.conc.1500)

> ##create STdata object

> mesa.data <- createSTdata(obs, covars, SpatioTemporal=ST.list,

n.basis=2)

7

Tutorial for SpatioTemporal

A few things to note here: we must first convert the
mesa.data.raw$lax.conc.1500 spatio-temporal covariate matrix to a list
(or 3D-array); the length of this list equals the number of spatio-temporal
covariates we want to use (in this case, just 1). We also specified n.basis=2,
which indicates we want to compute 2 temporal trends; for a discussion on
how to determine suitable temporal trends (or basis functions) see Section 4.3
in vignette("ST_intro", package="SpatioTemporal").

The resulting STdata-object contains a number of elements, described in the
following Sections (2.1.2–2.1.6).

> names(mesa.data)

[1] "obs" "covars" "SpatioTemporal"

[4] "trend" "trend.fnc"

2.1.2 The mesa.data$covars Data Frame

We begin our examination of the data by investigating mesa.data$covars:

> head(mesa.data$covars)

ID x y long lat type

1 60370002 -10861.67 3793.589 -117.923 34.1365 AQS

2 60370016 -10854.95 3794.456 -117.850 34.1443 AQS

3 60370030 -10888.66 3782.332 -118.216 34.0352 AQS

4 60370031 -10891.42 3754.649 -118.246 33.7861 AQS

5 60370113 -10910.76 3784.099 -118.456 34.0511 AQS

6 60371002 -10897.96 3797.979 -118.317 34.1760 AQS

log10.m.to.a1 log10.m.to.a2 log10.m.to.a3 log10.m.to.road

1 2.861509 4.100755 2.494956 2.494956

2 3.461672 3.801059 2.471498 2.471498

3 2.561133 3.695772 1.830197 1.830197

4 3.111413 2.737527 2.451927 2.451927

5 2.762193 3.687412 2.382281 2.382281

6 2.760931 4.035977 1.808260 1.808260

km.to.coast s2000.pop.div.10000

1 15.000000 1.733283

2 15.000000 1.645386

3 15.000000 6.192630

4 1.023311 2.088930

8

2.1 The STdata object

5 6.011075 7.143731

6 15.000000 4.766780

The covars data frame is a 25× 12 data frame. The first field contains the
ID, or names, for each of the 25 locations, this is the only mandatory field
in covars and will be added by createSTdata if missing; the second and
third fields contain x- and y-coordinates, which are used to calculate dis-
tances between locations. The following fields contain longitude and latitude
coordinates; a field describing the type of monitoring system to which each
location belongs; and LUR covariates. In this example, the LUR covariates
are log10 meters to A1, A2, A3 roads and the minimum of these three meas-
urements; kilometres to the coast; and average population density in a 2 km
buffer (divided by 10,000).

In addition to the ID-field the type-field is also special; when it exists it is
used to seperate different types of observtions locations (used by e.g. the
summary and plot functions). If included, this field should contain factors
or strings. In this example, we have two types: AQS refers to the EPA’s
regulatory monitors that are part of the Air Quality System, while FIXED

refers to the MESA Air locations.

Although we have observations at all the locations in this example, one could
also include locations in mesa.data$covars that do not have observations in
order to predict at those locations (see Appendix A for a prediction example).

The following code plots these locations on a map, shown in Figure 1.

> ###Plot the locations, see Figure 1

> par(mfrow=c(1,1))

> plot(mesa.data$covars$long, mesa.data$covars$lat,

pch=24, bg=c("red","blue")[mesa.data$covars$type],

xlab="Longitude", ylab="Latitude")

> ###Add the map of LA

> map("county", "california", col="#FFFF0055", fill=TRUE,

add=TRUE)

> ##Add a legend

> legend("bottomleft", c("AQS","FIXED"), pch=24, bty="n",

pt.bg=c("red","blue"))

2.1.3 The mesa.data$trend Data Frame

Next, look at mesa.data$trend and mesa.data$trend.fnc:

9

Tutorial for SpatioTemporal

−118.4 −118.2 −118.0 −117.8

33
.7

33
.8

33
.9

34
.0

34
.1

34
.2

Longitude

La
tit

ud
e

AQS
FIXED

Figure 1: Location of monitors in the Los Angeles area.

> head(mesa.data$trend)

V1 V2 date

1 -1.8591693 1.20721096 1999-01-13

2 -1.5200057 0.90473775 1999-01-27

3 -1.1880840 0.62679098 1999-02-10

4 -0.8639833 0.38411634 1999-02-24

5 -0.5536476 0.19683161 1999-03-10

6 -0.2643623 0.08739755 1999-03-24

> head(mesa.data$trend.fnc)

1 function (x = date.ind)

2 {

3 X.comps <- matrix(NA, length(x), length(spline))

10

2.1 The STdata object

4 for (i in 1:length(spline)) {

5 X.comps[, i] <- scale(predict(spline[[i]], as.double(x))$y,

6 center = scale.spline[[i]][1], scale = scale.spline[[i]][2])

The trend data frame consists of 2 smooth temporal basis functions com-
puted using singular value decomposition (SVD). These temporal trends cor-
responds to the fi(t):s in (2). The spatio-temporal model also includes an
intercept, i.e. a vector of 1’s; the intercept is added automatically and should
not be included in trend. Additionaly the functions used to compute the
smooth trends are stored in trend.fnc and can be used to compute tem-
poral trends at additional time-points, for observed time points trend.fnc

returns elements in trend.

> cbind(mesa.data$trend.fnc(mesa.data$trend$date[1:5]),

mesa.data$trend[1:5,])

V1 V2 V1 V2

1999-01-13 -1.8591693 1.2072110 -1.8591693 1.2072110

1999-01-27 -1.5200057 0.9047378 -1.5200057 0.9047378

1999-02-10 -1.1880840 0.6267910 -1.1880840 0.6267910

1999-02-24 -0.8639833 0.3841163 -0.8639833 0.3841163

1999-03-10 -0.5536476 0.1968316 -0.5536476 0.1968316

date

1999-01-13 1999-01-13

1999-01-27 1999-01-27

1999-02-10 1999-02-10

1999-02-24 1999-02-24

1999-03-10 1999-03-10

The mesa.data$trend data frame is 280 × 3, where 280 is the number of
time points for which we have NOx concentration measurements. Here,
the first two columns contain smooth temporal trends, and the last column
contains dates in the R date format. In general, one of the columns in
mesa.data$trend must be called date and have dates in the R date format;
the names of the other columns are arbitrary. Studying the date component,

> range(mesa.data$trend$date)

[1] "1999-01-13" "2009-09-23"

we see that measurements are made over a period of about 10 years, from
January 13, 1999 until September 23, 2009.

11

Tutorial for SpatioTemporal

2.1.4 The mesa.data$obs Data Frame

The observations are stored in mesa.data$obs:

> head(mesa.data$obs)

obs date ID

1 4.577684 1999-01-13 60370002

2 3.889091 1999-01-27 60370002

3 4.013020 1999-02-10 60370002

4 4.080691 1999-02-24 60370002

5 3.728085 1999-03-10 60370002

6 3.751913 1999-03-24 60370002

The data frame, mesa.data$obs, consists of observations, over time, for each
of the 25 locations. The data.frame contains three variables: obs — the
measured log NOx concentrations; date — the date of each observation; and
ID — labels indicating at which monitoring location each measurement was
taken. Details regarding the monitoring can be found in Cohen et al. (2009),
and a brief introduction is given in subsection 1.2.

The ID values should correspond to the ID of the monitoring locations given
in mesa.data$covars$ID. The dates in mesa.data$obs should correspond
to dates in mesa.data$trend$date; although as for mesa.data$covars$ID

additional, unobserved dates, are allowed in mesa.data$trend$date.

Note that the number of rows in mesa.data$obs is 4577, far fewer than the
280× 25 = 7000 observations there would be if each location had a complete
time series of observations.

2.1.5 The mesa.data$SpatioTemporal Array

Finally, examine the mesa.data$SpatioTemporal data:

> dim(mesa.data$SpatioTemp)

[1] 280 25 1

> mesa.data$SpatioTemp[1:5,1:5,,drop=FALSE]

, , lax.conc.1500

60370002 60370016 60370030 60370031 60370113

12

2.1 The STdata object

1999-01-13 2.3188 0 8.0641 0.1467 2.9894

1999-01-27 1.8371 0 7.3568 0.2397 4.7381

1999-02-10 1.4886 0 6.3673 0.2463 4.3922

1999-02-24 2.5868 0 7.1783 0.1140 3.3456

1999-03-10 1.8996 0 6.3159 0.1537 3.8495

The mesa.data$SpatioTemp element should be a three dimensional array
containing spatio-temporal covariates. In this example dataset we have only
one covariate, which is the output from the Caline3QHC model, see subsec-
tion 1.2. If no spatio-temporal covariates are used mesa.data$SpatioTemp

should be set to NULL.

Of the three dimensions of mesa.data$SpatioTemp, the first (280) refers to
the number of time points where we have spatio-temporal covariate meas-
urements, the second (25) refers to the number of locations, and the third
(1) refers to the number of different spatio-temporal covariates. Though the
entire array is not shown here, it should be noted that values of the spa-
tio-temporal covariate are specified for all 280-by-25 space-time locations.
Again, this array could contain values of the spatio-temporal covariate(s) at
times and/or locations that do not have observations, in order to predict at
those times/locations.

The dimnames of the SpatioTemp array are used to match covariates with
observations, locations, and time-points

> str(dimnames(mesa.data$SpatioTemp))

List of 3

$: chr [1:280] "1999-01-13" "1999-01-27" "1999-02-10" "1999-02-24" ...

$: chr [1:25] "60370002" "60370016" "60370030" "60370031" ...

$: chr "lax.conc.1500"

The rownames should match the dates of observations and the temporal
trends, i.e. they should be given by

> as.character(sort(unique(c(mesa.dataobsdate,

mesa.data$trend$date))))

the column names should match the location ID’s in
mesa.data$covars$ID, and the names of the third dimension

> dimnames(mesa.data$SpatioTemp)[[3]]

13

Tutorial for SpatioTemporal

[1] "lax.conc.1500"

identifies the different spatio-temporal covariates.

2.1.6 Summaries of mesa.data

Now that we have gone over a detailed description of what is in the mesa.data
object, we can use the following function to examine a summary of the ob-
servations:

> print(mesa.data)

STdata-object with:

No. locations: 25 (observed: 25)

No. time points: 280 (observed: 280)

No. obs: 4577

Trend with 2 basis function(s):

[1] "V1" "V2"

with dates:

1999-01-13 to 2009-09-23

12 covariate(s):

[1] "ID" "x"

[3] "y" "long"

[5] "lat" "type"

[7] "log10.m.to.a1" "log10.m.to.a2"

[9] "log10.m.to.a3" "log10.m.to.road"

[11] "km.to.coast" "s2000.pop.div.10000"

1 spatio-temporal covariate(s):

[1] "lax.conc.1500"

All sites:

AQS FIXED

20 5

Observed:

AQS FIXED

20 5

For AQS:

14

3. createSTmodel(): Specifying the
Spatio-Temporal model

Number of obs: 4178

Dates: 1999-01-13 to 2009-09-23

For FIXED:

Number of obs: 399

Dates: 2005-12-07 to 2009-07-01

Here we can see the number of AQS and FIXED locations in the mesa.data

structure. There are 20 AQS locations, which correspond to the number of
locations marked as AQS in mesa.data$covars$type, and 5 FIXED locations,
which correspond to the locations flagged as FIXED in
mesa.data$covars$type. We can also see that the observations are made
over the same range of time as the temporal trends; this is appropriate, as
discussed above. The summary also indicates the total number of locations
(and time points) as well as how many of these that have been observed, Nbr
locations: 25 (observed: 25). In this example all of our locations have
been observed; Appendix A provides an example with unobserved locations.

To graphically depict where and when our observation occurred we plot the
monitor locations in time and space.

> ###Plot when observations occurr, see Figure 2

> par(mfcol=c(1,1), mar=c(4.3,4.3,1,1))

> plot(mesa.data, "loc")

From Figure 2 we see that the MESA monitors only sampled during the
second half of the period. We also note that the number of observations vary
greatly between different locations.

3 createSTmodel(): Specifying the

Spatio-Temporal model

This section discusses how to specify everything we need to fit the Spatio-
Temporal model. We need to specify the type of spatial covariance model to
use for each β- and ν-field; define which covariates to use for each of β-fields;
and specify any spatio-temporal covariates.

The function createSTmodel() is used to convert STdata-objects to STmodel-
objects, by adding the covariance and covariate definitions. Geographic cov-
ariates for the β-fields are given by a list of formulas

15

Tutorial for SpatioTemporal

2000 2002 2004 2006 2008 2010

5
10

15
20

25

Date

Lo
ca

tio
n

ID

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●

●

AQS
FIXED

Figure 2: Space-time location of all our observations.

> LUR <- list(~log10.m.to.a1+s2000.pop.div.10000+km.to.coast,

~km.to.coast, ~km.to.coast)

and the covariace models are given by two lists, with elements that specify
covariance function, nugget, etc.

> cov.beta <- list(covf="exp", nugget=FALSE)

> cov.nu <- list(covf="exp", nugget=~type)

The above code shows that we want to use three LUR variables to model the
β0-field, namely, log10 meters to A1 road, population density, and kilometers
to coast. We will use only kilometer to coast to model the β1- and β2-fields.
An exponential covariance is used for all β-fields and for the ν-field. The β-
fields are assumed to have no nugget while the nugget in the ν-field is allowed

16

3. createSTmodel(): Specifying the
Spatio-Temporal model

to vary between the two types AQS/FIXED of locations, see also Section 4.4
in vignette("ST_intro", package="SpatioTemporal").

Next we specify a list that links variable names in the STdata$covars data
frame to locations:

> locations <- list(coords=c("x","y"), long.lat=c("long","lat"),

others="type")

Here the coords are used to compute distances between observation loca-
tions; long.lat and others are additional fields in mesa.data$covars that
we want included in the STmodel object.

We are now ready to construct a STmodel-object:

> mesa.model <- createSTmodel(mesa.data, LUR=LUR,

ST="lax.conc.1500",

cov.beta=cov.beta,

cov.nu=cov.nu,

locations=locations)

> print(mesa.model)

STmodel-object with:

No. locations: 25 (observed: 25)

No. time points: 280 (observed: 280)

No. obs: 4577

Trend with 2 basis function(s):

[1] "V1" "V2"

with dates:

1999-01-13 to 2009-09-23

Models for the beta-fields are:

$const

~log10.m.to.a1 + s2000.pop.div.10000 + km.to.coast

$V1

~km.to.coast

$V2

~km.to.coast

17

Tutorial for SpatioTemporal

1 spatio-temporal covariate(s):

[1] "lax.conc.1500"

Covariance model for the beta-field(s):

Covariance type(s): exp, exp, exp

Nugget: No, No, No

Covariance model for the nu-field(s):

Covariance type: exp

Nugget: ~type

Random effect: No

All sites:

AQS FIXED

20 5

Observed:

AQS FIXED

20 5

For AQS:

Number of obs: 4178

Dates: 1999-01-13 to 2009-09-23

For FIXED:

Number of obs: 399

Dates: 2005-12-07 to 2009-07-01

The above output summarizes the model specifications we’ve made: which
LUR covariates we use to model each of the β-fields; exponential covariances
with no nugget for each of the β-fields, and an exponential covariance with
nugget depending on location for the ν-field.

Note there is quite a bit of flexibility in specification of the β-fields. We can
specify different covariance models for each one, and allow some of them to
have nuggets. Using the updateCovf() function, we can alter the covari-
ance specification for an existing STmodel-object. In the following code we
change the covariance functions to: an exponential for the β0-field; a Gaus-
sian/double exponential covariance for the β1-field; and i.i.d. for the β2-fields
(i.e. only nugget). The help file for namesCovFuns() gives a description of
the available covariance functions.

> cov.beta2 <- list(covf=c("exp","exp2","iid"),

nugget=c(FALSE,FALSE,TRUE))

> mesa.model2 <- updateCovf(mesa.model, cov.beta=cov.beta2)

> print(mesa.model2)

18

3. createSTmodel(): Specifying the
Spatio-Temporal model

STmodel-object with:

No. locations: 25 (observed: 25)

No. time points: 280 (observed: 280)

No. obs: 4577

Trend with 2 basis function(s):

[1] "V1" "V2"

with dates:

1999-01-13 to 2009-09-23

Models for the beta-fields are:

$const

~log10.m.to.a1 + s2000.pop.div.10000 + km.to.coast

$V1

~km.to.coast

$V2

~km.to.coast

1 spatio-temporal covariate(s):

[1] "lax.conc.1500"

Covariance model for the beta-field(s):

Covariance type(s): exp, exp2, iid

Nugget: No, No, Yes

Covariance model for the nu-field(s):

Covariance type: exp

Nugget: ~type

Random effect: No

All sites:

AQS FIXED

20 5

Observed:

AQS FIXED

20 5

For AQS:

Number of obs: 4178

Dates: 1999-01-13 to 2009-09-23

For FIXED:

19

Tutorial for SpatioTemporal

Number of obs: 399

Dates: 2005-12-07 to 2009-07-01

4 Estimating the Model

We are now ready to fit the spatio-temporal model to data. since the estima-
tion is described in Section of vignette("ST_intro", package="SpatioTemporal"),
we focus here on the details of the output from the estimation functions.

4.1 Parameter Estimation

Before estimating the parameters, we can look at the important dimensions
of the model:

> model.dim <- loglikeSTdim(mesa.model)

> str(model.dim)

List of 12

$ T : int 280

$ m : int 3

$ n : int 25

$ n.obs : int 25

$ p : Named int [1:3] 4 2 2

..- attr(*, "names")= chr [1:3] "const" "V1" "V2"

$ L : int 1

$ npars.beta.covf: Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.beta.tot : Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.nu.covf : int 2

$ npars.nu.tot : int 4

$ nparam.cov : int 10

$ nparam : int 19

T gives us the number of time points; m the number of β-fields; n the number
of locations; n.obs the number of observed locations (equal to n in this case,
since we have no unobserved locations); p a vector giving the number of
regression coefficients for each of the β-fields; L the number of spatio-temporal

20

4.1 Parameter Estimation

covariates. The rest of the output gives numbers of parameters by field, and
total number of parameters. An important dimension is nparam.cov, which
gives us the total number of covariance parameters. Since the regression
coefficients are estimated by profile likelihood, in essence only the covariance
parameters need starting values specified. We do this accordingly:

> x.init <- cbind(c(rep(2, model.dim$nparam.cov-1), 0),

c(rep(c(1,-3), model.dim$m+1), -3, 0))

Here each column of x.init contains a starting value for the optimisation
process in estimating the MLE’s of the 10 covariance parameters. Note
that these are starting values for only the optimisation of the covariance
parameters; once those have been optimised, the maximum-likelihood es-
timate of the regression coefficients can be inferred using generalised least
squares (see Lindström et al., 2013, for details). In general x.init should
be a (nparam.cov)-by-(number of starting points) matrix, or just a vector of
length nparam.cov vector if only one starting point is desired.

What parameters are we specifying the starting points for? We can verify
this using loglikeSTnames, which gives the order of variables in x.init and
also tells us which of the parameters are logged. Specifying all=FALSE gives
us only the covariance parameters.

> rownames(x.init) <- loglikeSTnames(mesa.model, all=FALSE)

> x.init

[,1] [,2]

log.range.const.exp 2 1

log.sill.const.exp 2 -3

log.range.V1.exp 2 1

log.sill.V1.exp 2 -3

log.range.V2.exp 2 1

log.sill.V2.exp 2 -3

nu.log.range.exp 2 1

nu.log.sill.exp 2 -3

nu.log.nugget.(Intercept).exp 2 -3

nu.log.nugget.typeFIXED.exp 0 0

We are now ready to estimate the model parameters!

WARNING: The following steps are time-consuming.

> est.mesa.model <- estimate(mesa.model, x.init,

type="p", hessian.all=TRUE)

21

Tutorial for SpatioTemporal

ALTERNATIVE: Load pre-computed results.

> data(est.mesa.model, package="SpatioTemporal")

End of alternative

The function estimate() (strictly estimate.STmodel) estimates all the model
parameters. Specifying type="p" indicates we want to maximize the profile
likelihood. hessian.all=TRUE indicates we want the Hessian for all model
parameters; if we leave this entry blank, the default will compute the Hessian
for only the log-covariance parameters.

From the output, which is mainly due to the R-function optim, we see that the
two optimisation consumed 93 and 95 function evaluations each and ended
with the same value, 5748.562. The exact behaviour, including amount of
progress information, of optim is controlled by the pass-through argument
control = list(trace=3, maxit=1000).

The log-likelihood function called by estimate() is included in the package
as loglikeST, with loglikeSTgrad and loglikeSTHessian computing the
(finite difference) gradient and hessian of the log-likelihood functions. In
case of trouble with the optimisation the user is recommended to study the
behaviour of the log-likelihood at the troublesome parameter values.

Here we just verify that the log-likelihood value given parameters from the
optimisation actually equals the maximum reported from the optimisation.

> loglikeST(est.mesa.model$res.best$par, mesa.model)

[1] 5748.563

> est.mesa.model$res.best$value

[1] 5748.563

4.2 Evaluating the Results

The first step in evaluating the optimisation results is to study the message
included in the output from estimate(), as well as the converged parameter
values from the two starting points:

> print(est.mesa.model)

22

4.2 Evaluating the Results

Optimisation for STmodel with 2 starting points.

Results: 2 converged, 0 not converged, 0 failed.

Best result for starting point 2, optimisation has converged

No fixed parameters.

Estimated parameters for all starting point(s):

[,1] [,2]

gamma.lax.conc.1500 0.0008974712 0.0008978266

alpha.const.(Intercept) 3.7403623155 3.7401860388

alpha.const.log10.m.to.a1 -0.2021666282 -0.2021109943

alpha.const.s2000.pop.div.10000 0.0402093462 0.0402186866

alpha.const.km.to.coast 0.0374438274 0.0374357454

alpha.V1.(Intercept) -0.7424941400 -0.7427147900

alpha.V1.km.to.coast 0.0173683410 0.0173855016

alpha.V2.(Intercept) -0.1290170229 -0.1291748864

alpha.V2.km.to.coast 0.0155335639 0.0155418776

log.range.const.exp 2.4236209882 2.4252079596

log.sill.const.exp -2.7543738952 -2.7530652909

log.range.V1.exp 2.9250935694 2.9212909392

log.sill.V1.exp -3.5194123375 -3.5230779066

log.range.V2.exp 1.7870147389 1.7833703171

log.sill.V2.exp -4.6784625732 -4.6776455920

nu.log.range.exp 4.3830937438 4.3833567348

nu.log.sill.exp -3.2127991617 -3.2127208289

nu.log.nugget.(Intercept).exp -4.4124997680 -4.4118811769

nu.log.nugget.typeFIXED.exp 0.6769586148 0.6750069008

Function value(s):

[1] 5748.562 5748.563

The message at the top of the output indicates that of our 2 starting points
both converged, and the best overall result was found for the first starting
value.

The function estimate() determines convergence for a given optimisation
by studying the convergence field in the output from optim, with 0 indic-
ating a successful completion; followed by an evaluation of the eigenvalues of
the Hessian (the 2nd derivative of the log-likelihood) to determine if the mat-
rix is negative definite; indicating that the optimisation has found a (local)
maximum.

23

Tutorial for SpatioTemporal

Included in the output from estimate()

> names(est.mesa.model)

[1] "res.best" "res.all" "summary"

is the results from all the optimisations and the best possible result. Here
res.all is a list with the optimisation results for each starting point, and
res.best contains the “best” optimisation results.

Examining the optimisation results

> names(est.mesa.model$res.best)

[1] "par" "value" "counts" "convergence"

[5] "message" "hessian" "conv" "par.cov"

[9] "par.all" "hessian.all"

> names(est.mesa.model$res.all[[1]])

[1] "par" "value" "counts" "convergence"

[5] "message" "hessian" "conv" "par.cov"

[9] "par.all"

> names(est.mesa.model$res.all[[2]])

[1] "par" "value" "counts" "convergence"

[5] "message" "hessian" "conv" "par.cov"

[9] "par.all"

we see that the results include several different fields, several of which are
taken directly from the output of the optim function —

par The estimated log-covariance parameters.

value The value of the log-likelihood.

counts The number of function evaluations.

convergence and message Convergence information from optim.

conv An indicator of convergence that combines convergence with a check
if the Hessian is negative definite

hessian The Hessian of the profile log-likelihood, from optim

24

4.2 Evaluating the Results

par.cov A data frame containing estimates, estimated standard errors, ini-
tial or fixed values depending on whether we estimated or fixed the
various parameters (in this case, all were estimated), and t-statistics
for the log-covariance parameters

par.all The same summary as par.cov, but for all the parameters of the
model. The regression coefficents are computed using generalised least
squares (See Lindström et al., 2013, for details.).

hessian.all The Hessian of the full log-likelihood (computed by
loglikeSTHessian), this is only computed for the best result point,
par.est$res.best.

Refer back to the output from print(est.mesa.model); we consider now the
two columns of parameter estimates resulting from the two starting values.
The parameters are similar but not identical, with the biggest difference
being for log.range.V1. The differences have to do with where and how the
numerical optimisation stopped/converged. Due to the few locations (only
25) the log-likelihood is flat, implying that even with some variability in the
parameter values we will still obtain very similar log-likelihood values.

The flat log-likelihood implies that some parameter estimates will be rather
uncertain. Extracting the estimated parameters and parameter uncertaintie,
we note large standard-deviations for the β-field covariance parameters.

> coef(est.mesa.model, pars="cov")[,1:2]

par sd

log.range.const.exp 2.4252080 0.59198470

log.sill.const.exp -2.7530653 0.39329269

log.range.V1.exp 2.9212909 0.72546209

log.sill.V1.exp -3.5230779 0.54042577

log.range.V2.exp 1.7833703 0.56569386

log.sill.V2.exp -4.6776456 0.33558690

nu.log.range.exp 4.3833567 0.09639940

nu.log.sill.exp -3.2127208 0.06161702

nu.log.nugget.(Intercept).exp -4.4118812 0.05634108

nu.log.nugget.typeFIXED.exp 0.6750069 0.11763780

This is due to the number of “observations” that go into estimating the β-
field covariance parameters; there are only 25 locations. On the other hand,
the entire contingent of observations (4577 in this data set) can be used to

25

Tutorial for SpatioTemporal

estimate the covariance parameters of the spatial-temporal residual fields.
Another way of seeing this is that we have only one replicate of each β-field
— given by the regression of observations on the smooth-temporal basis func-
tions — but T = 280 replicates of the residual field, one for each timepoint
— given by the residuals from the regression. Either way, the larger sample
size for the residual field is making the standard error for those covariance
parameters smaller, leading to tighter confidence intervals.

4.3 Predictions

Having estimated the model parameters we use predict.STmodel to compute
the conditional expectations for different parts of the model.

WARNING: The following steps are time-consuming.

> pred.mesa.model <- predict(mesa.model, est.mesa.model,

pred.var=TRUE)

ALTERNATIVE: Load pre-computed results.

> data(pred.mesa.model, package="SpatioTemporal")

End of alternative

The results from predict contains the following elements

> names(pred.mesa.model)

[1] "opts" "pars" "beta" "EX.mu"

[5] "EX.mu.beta" "EX" "VX" "VX.pred"

[9] "I"

described in detail by the plot-function

> print(pred.mesa.model)

Prediction for STmodel.

Regression parameters:

0 Spatio-temporal covariate(s).

8 beta-fields regression parameters in x$pars.

26

4.3 Predictions

Regression parameters are assumed to be known and

prediction variances do NOT include

uncertainties in regression parameters.

Prediction of beta-fields, (x$beta):

List of 3

$ mu: num [1:25, 1:3] 3.79 3.67 4.03 3.23 3.69 ...

..- attr(*, "dimnames")=List of 2

$ EX: num [1:25, 1:3] 3.7 3.37 4.19 3.67 3.52 ...

..- attr(*, "dimnames")=List of 2

$ VX: num [1:25, 1:3] 0.000186 0.000186 0.001112 0.002198 0.000186 ...

..- attr(*, "dimnames")=List of 2

Predictions for 280 times at 25 locations.

List of 3

$ EX.mu : num [1:280, 1:25] 4.82 4.62 4.43 4.25 4.08 ...

..- attr(*, "dimnames")=List of 2

$ EX.mu.beta: num [1:280, 1:25] 4.39 4.24 4.1 3.97 3.86 ...

..- attr(*, "dimnames")=List of 2

$ EX : num [1:280, 1:25] 4.55 4 4.03 4.18 3.72 ...

..- attr(*, "dimnames")=List of 2

Variances have been computed.

List of 2

$ VX : num [1:280, 1:25] 0.00509 0.00505 0.00501 0.00499 0.00497 ...

..- attr(*, "dimnames")=List of 2

$ VX.pred: num [1:280, 1:25] 0.0172 0.0172 0.0171 0.0171 0.0171 ...

..- attr(*, "dimnames")=List of 2

The most important components of these results are the estimated β-fields
and their variances (EX.beta and VX.beta); as well as the conditional ex-
pectations and variances at all the 280 × 25 space-time locations (EX and
VX).

All the components of EX are compute conditional on the estimated para-
meters and observed data. The components are:

opts Options used in the call to predict, or implicitly assumed.

pars The regression parameters in (2) and (3), computed using generalised
least squares (see Lindström et al., 2013, for details).

27

Tutorial for SpatioTemporal

EX The expected spatio-temporal process (1), or
E(y(s, t)|Ψ, observations).

EX.mu The regression component of the spatio-temporal process,

µ(s, t) =
L∑
l=1

γlMl(s, t) +
m∑
i=1

Xiαifi(t).

Note that this differs from (2).

EX.mu.beta The mean part (2) of the spatio-temporal process (1); this
includes the conditional expectations of the β-fields,

µβ(s, t) =
L∑
l=1

γlMl(s, t) +
m∑
i=1

fi(t)E(βi|Ψ, observations).

VX The conditional variance of the spatio-temporal process in EX.

VX.pred The predictive conditional variance for the spatio-temporal pro-
cess in EX (essentially VX, plus the nugget in the ν-field).

beta A structure containing reconstructions and uncertainties for the latent
β-fields.

I An index vector that can be used to extract the observed spatio-temporal
locations from EX, EX.mu, EX.mu.beta, etc.

First we compare the β-fields computed by fitting each of the times series of
observations to the smooth trends,

> beta <- estimateBetaFields(mesa.model)

with the β-fields obtained from the full model, see Figure 3.

> par(mfrow=c(2,2), mar=c(3.3,3.3,1.5,1), mgp=c(2,1,0), pty="s")

> for(i in 1:3){

plotCI(x=beta$beta[,i], y=pred.mesa.model$beta$EX[,i],

uiw=1.96*beta$beta.sd[,i], err="x",

main=paste("Beta-field for f", i, "(t)", sep=""),

xlab="Empirical estimate",

ylab="Spatio-Temporal Model",

pch=NA, sfrac=0.005, asp=1)

28

4.3 Predictions

plotCI(x=beta$beta[,i], y=pred.mesa.model$beta$EX[,i],

uiw=1.96*sqrt(pred.mesa.model$beta$VX[,i]),

add=TRUE, pch=NA, sfrac=0.005)

abline(0, 1, col="grey")

}

We can see from Figure 3 that the two ways of computing the β-fields lead to
very comparable results. The largest discrepancies lie with the coefficient for
the second temporal trend, where it appears the coefficients calculated via
conditional expectation are larger than those calculated by fitting the time
series to the temporal trend. However, the uncertainty in these coefficients
is large.

3.0 3.5 4.0

3.
0

3.
5

4.
0

Beta−field for f1(t)

Empirical estimate

S
pa

tio
−

Te
m

po
ra

l M
od

el

−1.0 −0.8 −0.6 −0.4 −0.2

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Beta−field for f2(t)

Empirical estimate

S
pa

tio
−

Te
m

po
ra

l M
od

el

−0.4 −0.2 0.0 0.2

−
0.

3
−

0.
1

0.
1

0.
3

Beta−field for f3(t)

Empirical estimate

S
pa

tio
−

Te
m

po
ra

l M
od

el

Figure 3: Comparing the two estimates of the β–field for the constant tem-
poral trend and for the two smooth temporal trends.

29

Tutorial for SpatioTemporal

In addition to predictions of the β-fields, predict also computes the condi-
tional expectation at all the 280 × 25 space-time locations. As an example
we study 4 of these locations, see Figure 4.

> par(mfrow=c(4,1),mar=c(2.5,2.5,2,.5))

> for(i in c(1,10,17,22)){

plot(pred.mesa.model, ID=i, STmodel=mesa.model,

col=c("black","red","grey"), lwd=1)

plot(pred.mesa.model, ID=i, pred.type="EX.mu",

col="green", lwd=1, add=TRUE)

plot(pred.mesa.model, ID=i, pred.type="EX.mu.beta",

col="blue", lwd=1, add=TRUE)

}

Plotting these predictions along with 95% confidence intervals, the compon-
ents of the predictions, and the observations at 4 different locations indic-
ates that the predictions capture the seasonal variations in the data, see
Figure 4. The important thing to note here is that the predictions are com-
puted as the conditional expectation of a latent field given observations. For
unobserved locations this distinction does not matter, but for observed loc-
ations this implies smoothing over the nugget in the ν-fields resulting in
E(x(s, t)|y(s, t)) 6= y(s, t), where y(s, t) is an observations of the latent field,
x(s, t) at time t and locations s. Thus predictions do not coincides with ob-
servations. Adding the components of the predictions that are due to only
the regression (green) and both regression and β-fields (blue) allows us to
investigate how the different parts of the model capture the observations.

5 Cross-validation

As a last step in the tutorial we will study a cross-validation (CV) example.
The first step is to define 10 CV groups:

> Ind.cv <- createCV(mesa.model, groups=10, min.dist=.1)

> Ind.cv[1:10]

[1] 1 3 8 2 10 4 3 10 10 4

Here Ind.cv is a 4577 vector defining the CV-groups. Each element of the
vector indicates for which of the 10 CV-groups that the corresponding ob-
servation should be left out. For the ith group, we are going to use our

30

5. Cross-validation

2000 2002 2004 2006 2008 2010

3.
0

4.
0

60370002

time

2000 2002 2004 2006 2008 2010

3.
0

4.
0

5.
0

60371601

time

2000 2002 2004 2006 2008 2010

2.
0

3.
5

5.
0

60590001

time

2000 2002 2004 2006 2008 2010

3.
5

4.
5

5.
5

L002

Figure 4: The predicted and observed data for 4 of the 25 locations. The
red-lines denote observations, the black line and grey shading give predictions
and 95% confidence intervals at unobserved time-points. The green and blue
give the contribution to the predictions from the regression and regression +
β-fields respectively.

model to predict at the observations marked by the number of that group
(i.e. Ind.cv = i), using all other observations (i.e. Ind.cv 6= i). Once we have
done this for each CV-group we can compare our predictions to the truth
and calculate cross-validated statistics such as RMSE and R2.

However first we will take a closer look at the CV-groupings.

> table(Ind.cv)

Ind.cv

1 2 3 4 5 6 7 8 9 10

31

Tutorial for SpatioTemporal

438 389 811 556 546 165 228 487 160 797

We see that the number of observations left out of each group is rather
uneven; the main goal of createCV is to create CV-groups such that the
groups contain roughly the same number of locations ignoring the number of
observations at each location. If there are large differences in the number
of observations at different locations one could use the subset option to
create different CV-groupings for different types of locations. If the groups
are computed using a logical matrix (option Icv.vector=FALSE) instead of
a vector, it is possible to combine the resulting CV-groups. As an example,
group locations with more than 270 observations separately.

> n.obs <- table(mesa.modelobsID)

> ID1 <- names(n.obs[n.obs>270])

> ID2 <- names(n.obs[n.obs<=270])

> Ind.cv1 <- createCV(mesa.model, groups=10,

subset=ID1, Icv.vector=FALSE)

> Ind.cv2 <- createCV(mesa.model, groups=10,

subset=ID2, Icv.vector=FALSE)

Study the number of observations in each group for the two CV-grouping,

> colSums(Ind.cv1)

[1] 275 279 278 277 277 280 277 279 278 278

> colSums(Ind.cv2)

[1] 111 242 215 165 348 256 208 94 80 80

combine to one grouping,

> Ind.cv.final <- Ind.cv1 | Ind.cv2

> colSums(Ind.cv.final)

[1] 386 521 493 442 625 536 485 373 358 358

and compare with the previous grouping.

> table(Ind.cv)

32

5. Cross-validation

Ind.cv

1 2 3 4 5 6 7 8 9 10

438 389 811 556 546 165 228 487 160 797

> ##easier if we sort by number of observations in each group

> rbind(sort(table(Ind.cv)), sort(colSums(Ind.cv.final)))

9 6 7 2 1 8 5 4 10 3

[1,] 160 165 228 389 438 487 546 556 797 811

[2,] 358 358 373 386 442 485 493 521 536 625

If we instead look at which locations that will be excluded from which CV-
group:

> ID.cv <- sapply(split(mesa.modelobsID, Ind.cv),unique)

> print(ID.cv)

$`1`

[1] "60370002" "L002" "LC001"

$`2`

[1] "60371002" "60370030" "LC003"

$`3`

[1] "60370016" "60371301" "60374002"

$`4`

[1] "60371201" "60372005"

$`5`

[1] "60591003" "60595001"

$`6`

[1] "60370031" "60375005"

$`7`

[1] "60375001" "60590001"

$`8`

[1] "60370113" "60590007"

$`9`

33

Tutorial for SpatioTemporal

[1] "LC002" "60371602"

$`10`

[1] "60371103" "60371601" "60371701" "L001"

We see that the groups are a lot more even. The four locations in the 10th

group is due to the fact that 60371103 and L001 are colocated.

> mesa.model$D.beta[ID.cv[[10]],ID.cv[[10]]]

60371103 60371601 60371701 L001

60371103 0.00000000 16.36527 43.75141 0.08363892

60371601 16.36527030 0.00000 29.06447 16.44669372

60371701 43.75141252 29.06447 0.00000 43.83429713

L001 0.08363892 16.44669 43.83430 0.00000000

By studying the distance between the locations in the 10th group we see
that the 60371103 and L001 are only 0.084 km apart, which is less than the
min.dist=.1 specified in the createCV-call above. This causes createCV

to lump the two locations together, treating them as “one” location when
creating the CV-grouping.

Instead of creating a list with which location(s) get dropped in each CV-
group is might be more useful with a vector that, for each location, indicates
which CV-group it belongs to.

> I.col <- apply(sapply(ID.cv,

function(x) mesa.model$locations$ID

%in% x), 1,

function(x) if(sum(x)==1) which(x) else 0)

> names(I.col) <- mesa.model$locations$ID

> print(I.col)

60370002 60370016 60370030 60370031 60370113 60371002

1 3 2 6 8 2

60371103 60371201 60371301 60371601 60371602 60371701

10 4 3 10 9 10

60372005 60374002 60375001 60375005 60590001 60590007

4 3 7 6 7 8

60591003 60595001 L001 L002 LC001 LC002

5 5 10 1 1 9

LC003

2

34

5. Cross-validation

Using this vector we can plot the locations on a map, colour-coded by which
CV-group they belong to, see Figure 5.

> par(mfrow=c(1,1))

> plot(mesa.model$locations$long,

mesa.model$locations$lat,

pch=23+floor(I.col/max(I.col)+.5), bg=I.col,

xlab="Longitude", ylab="Latitude")

> map("county", "california", col="#FFFF0055",

fill=TRUE, add=TRUE)

−118.4 −118.2 −118.0 −117.8

33
.7

33
.8

33
.9

34
.0

34
.1

34
.2

Longitude

La
tit

ud
e

Figure 5: Location of monitors in the Los Angeles area. The different cross-
validation groups are indicated by colour and shape of the points, i.e. all
points of the same colour and shape belong to the same cross-validation
group.

35

Tutorial for SpatioTemporal

Having created the CV-grouping we need to estimate the parameters for each
of the CV-groups and then predict the left out observations given the estim-
ated parameters. The estimation and prediction is described in subsection 5.1
and 5.2 below.

5.1 Cross-Validated Estimation

Parameter estimation for each of the CV-groups is done by the estimateCV

function, which calls estimate.STmodel. The inputs to estimateCV are
similar to those of estimate.STmodel. As described in subsection 4.1 the
estimation function require at least a STmodel and a matrix (or vector) of ini-
tial values, in addition to these estimateCV also requires a vector (or matrix)
describing the CV-grouping, e.g. Ind.cv. Since the parameter estimation for
10 CV-groups using 2 initial values takes some considerable time the results
have been pre-computed.

WARNING: The following steps are time-consuming.

> x.init <- coef(est.mesa.model, pars="cov")[,c("par","init")]

> est.cv.mesa <- estimateCV(mesa.model, x.init, Ind.cv)

ALTERNATIVE: Load pre-computed results.

> data(est.cv.mesa, package="SpatioTemporal")

End of alternative

We first study the results of the estimation.

> print(est.cv.mesa)

Cross-validation parameter estimation for STmodel

with 10 CV-groups and 2 starting points.

Results: 10 converged, 0 not converged.

No fixed parameters.

Estimated function values and convergence info:

value convergence conv eigen.min eigen.all.min

1 5185.641 TRUE TRUE 0.05494492 NA

2 5175.569 TRUE TRUE 1.50038651 NA

3 4699.504 TRUE TRUE 0.23374084 NA

36

5.1 Cross-Validated Estimation

4 4939.731 TRUE TRUE 1.02781382 NA

5 5002.364 TRUE TRUE 1.65927388 NA

6 5748.083 TRUE TRUE 0.12411344 NA

7 5423.788 TRUE TRUE 1.35862268 NA

8 5182.118 TRUE TRUE 0.93230857 NA

9 5513.730 TRUE TRUE 1.34766589 NA

10 4488.807 TRUE TRUE 1.08730352 NA

Here we see that the parameter estimates for all 10 groups have converged, it
also gives the optimal log-likelihood value for each estimate along with con-
vergence information and the smallest eigenvalue of the Hessian; very small
eigenvalues would indicate that some parameters in that CV-group have large
uncertainties. This information can also be obtained from est.cv.mesa$status.

The estimated parameters for each CV-group can be found in

> head(coef(est.cv.mesa))

[,1] [,2]

gamma.lax.conc.1500 0.001300551 -0.0007469093

alpha.const.(Intercept) 3.785148274 4.0184242867

alpha.const.log10.m.to.a1 -0.220741894 -0.2861358490

alpha.const.s2000.pop.div.10000 0.033861734 0.0407000867

alpha.const.km.to.coast 0.041069423 0.0340540672

alpha.V1.(Intercept) -0.715712019 -0.7523194640

[,3] [,4]

gamma.lax.conc.1500 0.003210104 0.0008822506

alpha.const.(Intercept) 3.689188133 3.6745268844

alpha.const.log10.m.to.a1 -0.171915684 -0.1806221585

alpha.const.s2000.pop.div.10000 0.024549744 0.0387008796

alpha.const.km.to.coast 0.040649511 0.0405245737

alpha.V1.(Intercept) -0.773503934 -0.7334151753

[,5] [,6]

gamma.lax.conc.1500 0.001056902 0.001144488

alpha.const.(Intercept) 3.865320581 3.672403194

alpha.const.log10.m.to.a1 -0.211921468 -0.209735008

alpha.const.s2000.pop.div.10000 0.037492322 0.037409895

alpha.const.km.to.coast 0.032909451 0.045984052

alpha.V1.(Intercept) -0.684990007 -0.787318698

[,7] [,8]

gamma.lax.conc.1500 -0.003493563 0.001380976

alpha.const.(Intercept) 3.856148801 3.743798417

37

Tutorial for SpatioTemporal

alpha.const.log10.m.to.a1 -0.237413477 -0.210574809

alpha.const.s2000.pop.div.10000 0.038503677 0.047651999

alpha.const.km.to.coast 0.038217637 0.037295311

alpha.V1.(Intercept) -0.751122498 -0.756181663

[,9] [,10]

gamma.lax.conc.1500 0.001416772 0.002142981

alpha.const.(Intercept) 3.701278756 3.511170174

alpha.const.log10.m.to.a1 -0.191588765 -0.146673738

alpha.const.s2000.pop.div.10000 0.042629229 0.041749214

alpha.const.km.to.coast 0.037463438 0.033134254

alpha.V1.(Intercept) -0.765400789 -0.737418155

with uncertainties stored in est.cv.mesa$par.cov.sd and
est.cv.mesa$par.all.sd.

If the option verbose.res=TRUE is used in the call to estimateCV the results
of each estimate.STmodel call are stored in the est.cv.mesa$res.all.

5.2 Cross-Validated Prediction

Once parameters have been estimated predictCV() computes predictions
for each of the CV-groups. This is done by computing the conditional ex-
pectations of the left-out observations, as indicated in by the columns in
Ind.cv, given all other observations and the estimated parameters. Details
can be found in (Lindström et al., 2013, Szpiro et al., 2010) or Section 4.6 of
vignette("ST_intro", package="SpatioTemporal")

We now compute cross-validation predictions Gaussian, along with temporal
averages based on only the observed time-points.

WARNING: The following steps are time-consuming.

> pred.cv.mesa <- predictCV(mesa.model, est.cv.mesa, LTA=TRUE)

ALTERNATIVE: Load pre-computed results.

> data(pred.cv.mesa, package="SpatioTemporal")

End of alternative

First we examine the results of the predictions:

> print(pred.cv.mesa)

38

5.2 Cross-Validated Prediction

Cross-validation prediction for STmodel with 10 CV-groups.

Predictions for 25 locations and 280 time points.

Temporal averages predicted for 25 locations.

Variances have been computed.

Regression parameters are assumed to be known,

prediction variances do NOT include

uncertainties in regression parameters.

> names(pred.cv.mesa)

[1] "opts" "Ind.cv" "pred.obs" "pred.LTA" "pred.all"

Here the pred.obs contains a data frame with observations, predictions,
prediction variances, and residuals for each observed space-time location

> str(pred.cv.mesa$pred.obs)

'data.frame': 4577 obs. of 10 variables:

$ obs : num 4.58 4.13 4.73 5.35 5.28 ...

$ date : Date, format: "1999-01-13" ...

$ ID : chr "60370002" "60370016" "60370113" "60371002" ...

$ EX.mu : num 4.85 4.77 4.89 4.95 4.79 ...

$ EX.mu.beta: num 4.24 4.44 4.71 4.95 5.06 ...

$ EX : num 4.38 4.51 4.87 5.11 5.21 ...

$ VX : num 0.1148 0.1165 0.0823 0.154 0.0679 ...

$ VX.pred : num 0.1279 0.1293 0.0922 0.1676 0.0803 ...

$ res : num 0.1983 -0.3768 -0.1396 0.2395 0.0742 ...

$ res.norm : num 0.554 -1.048 -0.46 0.585 0.262 ...

Only predictions at observed locations are given in pred.obs, and full predic-
tions for all space-time locations are collected in pred.all

> str(pred.cv.mesa$pred.all,1)

List of 6

$ EX.mu : num [1:280, 1:25] 4.85 4.66 4.47 4.29 4.12 ...

..- attr(*, "dimnames")=List of 2

$ EX.mu.beta: num [1:280, 1:25] 4.24 4.14 4.04 3.94 3.86 ...

..- attr(*, "dimnames")=List of 2

$ EX : num [1:280, 1:25] 4.38 3.98 3.97 4.22 3.71 ...

..- attr(*, "dimnames")=List of 2

$ VX : num [1:280, 1:25] 0.1148 0.0952 0.0804 0.0701 0.0637 ...

39

Tutorial for SpatioTemporal

..- attr(*, "dimnames")=List of 2

$ VX.pred : num [1:280, 1:25] 0.1279 0.1083 0.0936 0.0832 0.0768 ...

..- attr(*, "dimnames")=List of 2

$ beta :List of 3

which contains fields coresponding to those in pred.mesa.model from pre-

dict.STmodel

> names(pred.mesa.model)

[1] "opts" "pars" "beta" "EX.mu"

[5] "EX.mu.beta" "EX" "VX" "VX.pred"

[9] "I"

If requested — LTA=TRUE in the call to predictCV — the temporal averages
are collected in

> str(pred.cv.mesa$pred.LTA)

'data.frame': 25 obs. of 9 variables:

$ obs : num 3.7 4.15 3.24 4.32 4.17 ...

$ ID : chr "60370002" "L002" "LC001" "60370030" ...

$ EX.mu : num 3.83 3.89 3.24 4.11 3.93 ...

$ EX.mu.beta: num 3.72 4.04 2.97 4.28 3.94 ...

$ EX : num 3.72 4.02 2.95 4.3 3.94 ...

$ VX : num 0.0519 0.0482 0.0328 0.0264 0.0524 ...

$ VX.pred : num 0.052 0.0485 0.0331 0.0269 0.0524 ...

$ res : num -0.0196 0.1276 0.2834 0.0186 0.2312 ...

$ res.norm : num -0.0859 0.5793 1.557 0.1133 1.0099 ...

Some standard cross-validation statistics can be obtained through:

> summary(pred.cv.mesa)

Cross-validation predictions for STmodel with 10 CV-groups.

Predictions for 4577 observations.

Temporal averages for 25 locations.

RMSE:

EX.mu EX.mu.beta EX

obs 0.4260103 0.3564484 0.3150911

40

5.2 Cross-Validated Prediction

average 0.3115791 0.2248556 0.2246617

R2:

EX.mu EX.mu.beta EX

obs 0.6533988 0.7573483 0.8103896

average 0.3747796 0.6743855 0.6749468

Coverage of 95% prediction intervals:

EX

obs 0.9228752

average 0.9200000

Here summary.predCVSTmodel computes RMSE, R2, and coverage of pre-
diction intervalls for the observations and for the long term average at each
location.

If temporal averages were not computed by predictCV, the option LTA=TRUE

can be used in summary.predCVSTmodel to obtain some statistics for the
averages (not coverage since the variance will not be computed). We can
also ask summary to perform a transformation of observations and predictions
before computing the CV-statistics. This transform is not biased corrected,
and for the exponential case the better option is often to use the transform

option of predict and predictCV.

5.2.1 Residual Analysis

Before we start with a more thorough residual analysis, we need to create an
indicator vector for which season each observation belongs to.

> I.season <- as.factor(as.POSIXlt(pred.cv.mesa$pred.obs$date)$mon+1)

> levels(I.season) <- c(rep("Winter",2), rep("Spring",3),

rep("Summer",3), rep("Fall",3), "Winter")

Given this we can investigate how many observations we have during each
season.

> table(I.season)

I.season

Winter Spring Summer Fall

1096 1223 1172 1086

41

Tutorial for SpatioTemporal

We now take a look at the residuals from the prediction, to do this we use the
pred.cv.mesa object computed above which contains prediction residuals.
First we’ll examine a residual QQ-plot to assess the normality of the residuals,
both raw and normalised, shown in Figure 6.

> par(mfrow=c(1,2), mar=c(3,2,1,1), pty="s")

> qqnorm(pred.cv.mesa, col=I.season, line=2)

> qqnorm(pred.cv.mesa, norm=TRUE, main="Normalised residuals",

col=I.season)

> legend("bottomright", legend=as.character(levels(I.season)),

pch=1, col=1:nlevels(I.season))

Here we have used the I.season indicator to colour code our observations,
this should help us to detect any seasonal effects on the predictions.

●

●

●

●

●●●

●

●

●●
●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●●●

●

●●
●

●●

●

●

●

●
●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●●

●●●

●

●

●
●●●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●●●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●
●

●

●
●

●●

●

●
●

●

●●

●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●

●●●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

●
●

●

●●●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●
●

●
●●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●

●

●
●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●●

●

●

●

●
●

●
●

●●

●

●●
●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●
●●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●

●
●●

●
●

●

●●●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●●●●
●

●●
●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●
●

●●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●●
●

●

●●

●
●

●

●
●●●

●

●
●

●

●
●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●●

●

●

●

●●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●●●●
●

●●

●

●

●

●●●

●

●

●
●

●

●
●●

●●

●

●

●
●●

●
●

●●

●

●
●●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●
●●

●

●●

●

●●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●
●

●

●
●

●●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●●
●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●●

●●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●●
●

●●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●●
●

●●

●●

●

●

●●

●

●●

●

●
●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●●
●

●

●
●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●
●●

●●●

●
●

●●
●

●
●●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●
●

●

●

●●

●
●

●●

●

●

●●●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●●●
●

●

●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●

●●

●

●

●●

●

●
●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●●

●

●
●●

●
●

●●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●●●

●
●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

−2 0 2

−
1.

5
−

0.
5

0.
5

1.
0

Q−Q plot for CV residuals

Theoretical Quantiles

●

●

●

●
●●●

●

●

●●●
●●●
●

●

●

●
●

●

●
●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●

●
●

●●●●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●●●
●

●

●

●●
●●

●

●

●●
●

●●

●

●

●

●●

●

●
●

●

●●●●●
●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●●

●

●●

●

●●●●
●

●

●

●

●●

●

●●

●

●
●

●
●●●

●

●

●●●
●

●

●

●●●

●

●
●●

●

●

●●
●

●

●

●

●
●

●
●

●
●●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●
●

●

●

●●

●

●●

●

●

●

●

●●
●●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●●
●

●

●

●●
●●●

●

●
●●●
●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●●
●

●

●●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●●
●●●

●

●

●

●

●
●

●

●●

●

●

●
●

●●●
●

●

●
●

●●

●

●
●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●●

●

●

●●

●

●
●●●

●●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●
●

●

●

●●●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●●
●

●

●●

●
●

●

●

●

●
●

●
●

●●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●●●

●
●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●●
●

●

●●
●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●●●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●●

●●

●●
●●

●●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●

●

●●
●

●

●

●●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●●●

●

●

●
●

●

●
●

●

●

●●

●
●

●●●

●

●

●●●
●

●

●

●●●
●

●●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●

●●

●●

●
●●

●

●●●●
●

●●
●

●

●

●
●

●
●●

●

●

●
●●

●

●●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●●
●●

●
●

●

●

●●
●

●
●

●

●
●

●●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●
●

●

●

●

●●●

●

●●

●

●

●

●●
●

●

●●

●
●

●
●

●●
●

●

●
●

●

●
●●

●
●●

●●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●●
●

●
●●

●

●

●

●●●

●

●

●
●

●

●
●●

●●

●

●

●
●●

●●

●●

●

●
●●

●
●

●

●

●
●

●

●●

●
●

●

●
●●

●●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●●●

●

●
●●

●
●

●●
●●

●

●

●
●●

●

●●

●

●●

●
●●●

●

●

●
●●

●

●
●

●

●
●

●

●
●●

●

●

●●●
●

●
●

●

●
●

●●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●
●

●
●●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●●

●●●●
●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●●●●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●
●●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●●
●●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●●●

●●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●●

●

●

●
●

●●

●●

●
●

●

●●

●

●
●●●

●
●

●

●●

●
●

●

●

●

●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●●●

●
●

●●

●

●

●●

●

●
●

●

●
●

●

●●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●

●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●●●

●

●●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●●

●●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●●
●●

●

●

●●●
●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●●●

●
●●

●
●

●
●

●●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●●●
●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●●

●

●●

●

●
●

●●

●

●
●●

●
●

●●

●●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●●●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●
●●

●

●

●

●●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●
●●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

−2 0 2

−
6

−
4

−
2

0
2

4

Normalised residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

Winter
Spring
Summer
Fall

Figure 6: QQ-plots for the residuals, colour-coded by season.

In Figure 6 the raw residuals are on the left and the normalised, (y −
E(y))/

√
V(y), on the right. Both are close to normal, but have slightly

heavier tails than expected. Though the departure from normality is not
drastic for either, the normalised residuals are noticeably better (i.e. closer
to Gaussianity).

We can also plot the residuals versus the temporal trends or versus any of
the land use regression variables. In Figure 7 we plot the residuals against
the first temporal trend and one of the LUR variables used to model the

42

5.2 Cross-Validated Prediction

β0(s)-field; the additional argument STdata=mesa.model is used to define
the covariates and temporal trends.

> par(mfcol=c(2,1),mar=c(4.5,4.5,2,2))

> scatterPlot(pred.cv.mesa, trend=1, group=I.season, col=c(2:5,1),

xlab="First temporal smooth", type="res",

STdata=mesa.model, main="CV Residuals - All data")

> scatterPlot(pred.cv.mesa, covar="log10.m.to.a1", group=I.season,

col=c(2:5,1), STdata=mesa.model, type="res",

main="CV Residuals - All data")

> legend("topleft", levels(I.season), col=c(2:5), pch=1, cex=.75)

Finally we can use the mesa.data$covars$type field to distinguish between
AQS and FIXED locations, doing separate plots for separate types of locations,
see Figure 8.

> par(mfcol=c(1,2),mar=c(4.5,4.5,2,2))

> scatterPlot(pred.cv.mesa, covar="log10.m.to.a1", group=I.season,

subset=with(mesa.data$covars, ID[type=="AQS"]),

col=c(2:5,1), lty=c(rep(2,4),1), type="res",

STdata=mesa.model, main="AQS sites")

> legend("topleft", levels(I.season), col=c(2:5), pch=1, cex=.75)

> ##and for the FIXED sites

> scatterPlot(pred.cv.mesa, covar="log10.m.to.a1", group=I.season,

subset=with(mesa.data$covars, ID[type=="FIXED"]),

col=c(2:5,1), lty=c(rep(2,4),1), type="res",

STdata=mesa.model, main="FIXED sites")

The plots in Figure 7 and 8 show us residuals that are roughly centred around
zero and that are relatively constant over space and time. This is good to
see: the model seems to be capturing the spatio-temporal relationships of
NOx in the data set.

43

Tutorial for SpatioTemporal

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

CV Residuals − All data

First temporal smooth

re
s ●

●

●

●
●●●
●

●

●●●
●●● ●

●

●

●

●

●

●
●

●

●

●●

●
●● ●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●
●
●
●

●
●

●

●
●

●●●● ●

●

●●
●
●

●

●

●

●

●●●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●

● ●

●

●
●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●

●
●
●●
●

●

●

●

●
●●●●

●

●●
●

●●

●

●

●

●
●

●

●
●

●

●●●●●
●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●●●
●
●

●

●

●

●●

●

●
●

●

●
●
●●● ●

●

●

●●●
●

●

●

●●
●
●

●
● ●

●

●

●●
●

●
●

●

●●●●

●● ●

●

●

●
●
●
●

●

●

●
●●●
●
●

●

●

●

●●

●

●●

●

●
●

●
●
●●

●

●

●

●
●

●

●●

●

●

●
●
●●
● ●

●

●●
●
●

●
●

●

●

●●●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

● ●

●

●
●●

●

●
●

●

●●●●

●

●
●

●

●●
●

●

●●

●

●

●
●●

●

●
●

●

●
●●

●

●
●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●●●

●

●

●
●●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●

●

●

●

●●
●

●

●●

●

●

●●

●●●

●

●

●
●●●●

●

●
●●●
●

●

●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●
●●●

●

●

●●●●
●

●

●●
●
●●
●

●

●

●

●●
●
●
●

●

●

●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●●
●●●

●

●

●

●

●●

●

●
●

●

●

●
●
●●● ●

●

●●

●●

●

●
●

●

●●
●●

●

●
●

●
●
●
●●
●

●

●

●

●
●
●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●●

●

●

●●●

●

● ●

●

●

●
●
●

●

●●

●

●
●
●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●●

●

●

●●

●

●
●●●

●
●

●
●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●
●
●

●

●●●●●

●

●

●

●●

●

●●

●●
●
●

●

●●
●
●
●●

●
●

●

●

●

●
●
●
●
●●

●

●●

●
●
●●
●

●

●

●

●

●

●

●●

●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●
●

●
●

●

●●●
●
●

●●
●

●

●

●

●

●
●●

●

●

●

●
●
●●
●
●
●
●

●

●

●

●

●

●
●●
●

●

●●
●●●●
●

●

●

●

●

●
●
●
●●

●

●●
●
●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●
● ●

●

●

●
●
●
●
●
●●

●

●●
●
●
●
●● ●

●

●

●
●
●
●

●

●●

●

●
●
●
●●●

● ●

●

●

●
●●
●

●

●
●

●

●
●●
●
●

●

● ●●●

●●
●

●●

●

●

●

●

●

●

●
●

●

●
●●
●

●
●●

●

●

●●

●

●
●●●
●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

● ●
●●

●●
●

●
●

●●

●

●

●

●●

●
●

●
●
●

●●

●

●
●

●●

●

●

●
●

●
●

●●●

●
●●

●●

●
●

●

●

●

●●
●

●

●
●●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●●

●

●
●●
●
●

●

●
●
●

●
●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●●
●
●

●

●

●●
●
●●
●

●

●●
●
●
●

●

●

●

●
●
●

●

●●

●

●
●
●
●
●●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●
●

●●

●

●
●
●●
●●
●

●

●

●

●
●

●

●●

●

●
●●

●
●

●●●

●

●

●●
●

●

●

●

●

●●

●
●

●●●

●

●

●●●
●
●

●

●●●●
●●

●

●

●

●
●●
●
●

●

●
●
●
●●

●●

●

●
●

●
●
●
●●

●

●●●
●
●
●●

●

●

●

●
●●
●●

●

●

●
●●
●

●
●

●

●

●

●
●
●
●●

●

●
●
●
●●

●
●

●

●

●
●●●

●●

●

●
●

●●●
●

●
●

●

●
●●●

●
●

●

●
●

●●
●
●

●
●

●

●
●
●

●

●●

●

●
●
●
●●

●

●

●

●

●●
●

●

●
●

●

●

●
●●●
●

●

●

●

●●

●

●
●

●

●
●
●●●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●●●

●

● ●
●●

●
●
●●
●

●

●
●
●

●●
●

●
●●
●●
●
●

●●

●

●

●

●
●●
●

●●

●

●●
●
●

●●

●

●

●

●●
●●

●●
●

●●
●
●●

●

●

●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●●
●
●
●●

●

●

●

●

●
●

●
●

●●

●
●
●

●●

●

●

●

●●
●

●●●●●
●●
●

●

●

●●●

●

●

●
●

●

●●●
●●
●

●

●
●●
●●

●●

●

●
●●
●●
●

●

●
●●

●
●

●
●

●

●●●
●●

●

●

●●

●

●●

●

●

●

●
●●
●
●

●

●●
●

●

●
●●

●
●

●
●●●●

●

●
●●

●
●●

●

●●

●
●
●●

●

●

●
●●

●

●

●
●

●
●

●

●
●●
●

●

●●●
●

●
●

●

●
●

●●
●
●●

●

●●
●●

●

●

●

●

●●

●

●●

●

●

●●

●
●●

●

●

●

●
●

●

●●

●

●

●
●
●●
●

●

●

●

●●

●

●●

●

●

●
●
●
●

● ●

●
●

●
●

●●

●

●

●

●

●●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●●
●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●
●

●●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●
●
●●

●

●
●

●

●
●
●

●●

●
●
●

●

●●

●●●

●

●
●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●
●

●●

●

●

●

●●●
●

●

●

●

●●
●

●
●

●

●

●
●●
●

●

●

●

●

●
●●
●

●

●●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●
●

●

●●
●
●
●

●●

●
●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●●

●

●●
●

●●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●●
●

●
●

●
●

●

●

●
●
●
●

●

●●
●●

●●

●

●
●

●

●●
●

●

●

●
●

●

●●●●

●●

●

●

●
●

●

●●

●

●
●●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●

●

●
●
●●
●
●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●
●
●●●

●

●

●

●

●●

●

●

●

●
●
●
●●

●

●
●●

●
●

●

●

●

●
●
●

●

●

●●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●●
●●●

●

●
●

●

●

●●

●

●●

●●
●

●
●●●
●●
●

●

●
●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●
●
●
●

●

●

●●

●
●

●●
●

●

●

●●

●

●
●

●

●●

●

●

●●

●
●
●

●

●
●
●●
●●

●
●

●
●●

●

●

●
●

●
●

●●

●

●

●●
●●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●
●

●

●●

●

●●
●

●
●

●

●

●
●
●●

●

●

●

●●

●●
●

●

●
●

●

●

●
●
●●

●●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●●
●
●●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●●
●

●●
●

●

●

●
●

●

●
●
●●
●●

●

●
●
●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●●
●
●●
●

●

●
●

●●

●
●

●
●
●
●
●

●

●
●●●
●
●

●

●
●

●●

●

●

●

●

●●
●●●

●

●

●

●

●●

●

●
●

●

●
●
●●

●

●
●
●

●●

●
●

●

●

●●
●
●

●

●

●
●
●
●
●

●●
●

●
●

●

●

●

●
●
●

●

●●

●

●●
●
●
●

●●●

●●

● ●

●

●

●●

●

●●

●

●●

●

●●

●●●

●
●

●

●

●

●

●●

●
●
●

●

●●

●●

●

●●●
●
●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●
●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●●

●

●
● ●

●

●●●

●

●
●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●●
●

●

●

●
●

●

●●

●

●●

●●
●
●
●

●
●●
●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●
●
●●
●

●

●

●

●

●

●
●
●

●

●
●

●●

●
●

●

●●
●●

●

●●

●

●

●
●

●

●

●●
●
●

●●

●
●
●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●
●

●
●●

●
●●

●

●
●●
●

●

●
●●
●●●

●
●
●●●

●
●●

●

●
●●●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●●

●●

●

●●●
●

●●

●

●

●●

●

●●

●

●

●
●
●

●

●
●
●

●

●

●

●

●
●
●●●●

●

●

●●●

●
●
●

●

●

●●

●

●

●●

●

●●

●

●

●
●●

●●
●

●

●

●

●
●

●●

●
●

●

●

●●

●

●●

●●●

●
●

●

●

●●

●
●●●
●

●

●●●●●

●●
●

●
●

●●

●

●

●
●

●

●
●

●

●●
●●●●●●

●●

●
●

●●

●

●
●

●
●

●

●●●●
●
●

●

●●

●
●
●

●

●

●●●●
●
●

●

●

●

●●

●

●
●

●

●●
●●
●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●
●

●
●

● ●

●

●

●●
●

●

●

●

●●●
●
●
●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●●
●
●
●●
●

●
●

● ●

●

●

●●

●

●●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●●

●

●
●●

●
●

● ●

●
●

●●

●

●

●

●

●

●●

●

●●
●

●
●

●
●

●

●
●●

●

●
●

●

●

●
●●

●

●●●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●
● ●●

●●

●

●

●

●

●

●
●

●

●

●
●
●●

●●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●
●
●

●●

●
●
●●

●

●

●●
●
●

●●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●
●●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●●

●

●
●

●

●

●●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●
●

●●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●
●

●

●
●

●

●
●

●

●

●●

●●●

●

●

●
●

●

●

●

●
●
●
●

●●

●
●

●
●●
●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●
●
●

●
●
●
●●

●

●

●

●

●
●

●●

●

●●●

●●
●●

●

●●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●
●●

●

●

●●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●
●
●

●

●

●

●●

●

●

●

●●●
●
●

●
●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

●●
●

●
●
●
●

●

●●
●●

●

●

●

●

●●

●
●
●

●
●●

●●

●

●

●

●

●

●

●
●
●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●●
●

●

●
●

●

●
●
●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

2.0 2.5 3.0 3.5

−
1.

5
−

0.
5

0.
5

CV Residuals − All data

log10.m.to.a1

re
s ●

●

●

●
● ●●

●

●

●●●
● ● ●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●
●

●
●

●

●
●

● ● ● ●
●

●

●●
●

●

●

●

●

●

●● ●

●

●

●
●

●
● ●

●

●
●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●
●

●

●
●

● ●
●

●

●

●

●
● ●●●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●●
● ● ●

●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●●

●

●●●
●

●

●

●

●

● ●

●

●
●

●

●
●

● ● ●●

●

●

● ● ●
●

●

●

●●●
●

●
●●

●

●

● ●
●

●
●

●

●●● ●

● ●●

●

●

●
●

●
●

●

●

●
●● ●

●
●

●

●

●

● ●

●

●●

●

●
●

●
●

● ●
●

●

●

●
●

●

●●

●

●

●
●

● ●
●●

●

●●
●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●
● ●

●

●
●

●

●●● ●

●

●
●

●

●●
●

●

●●

●

●

●
● ●

●

●
●

●

●
● ●

●

●
●

●

●

●● ●

●

●

● ●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●● ●

●

●

●
●●

●

●
●

●
●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●
●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●● ●

●

●

●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●● ●

●

●

●

●●
●

●

●●

●

●

●●

● ●●

●

●

●
● ●●●

●

●
●● ●

●
●

●

●

● ●
●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

● ●●

●

●

● ●
●●

●

●

●●
●

● ●
●

●

●

●

● ●
●

●
●

●

●

●
● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●●
● ● ●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ● ●
●

●

● ●

● ●

●

●
●

●

●●
● ●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●●

●

●

●● ●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●●

●

●

●●

●

●
● ●●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
● ●

●
●

●

●●● ●
●

●

●

●

●●

●

●●

● ●
●

●

●

●●
●

●
● ●

●
●

●

●

●

●
●

●
●

●●

●

●●

●
●

● ●
●

●

●

●

●

●

●

● ●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
● ●

● ●
●

●

●

●

●

●
●

●
●●

●

●●●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●
●●

●

●

●
●
●

●
●

●●

●

●●
●

●
●

● ●●

●

●

●
●
●

●

●

●●

●

●
●

●
●● ●

●●

●

●

●
●●

●

●

●
●

●

●
●●

●
●

●

●● ●●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●●

●

●

●●

●

●
●●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

● ●

●
●

●●
●●

●●
●

●
●

●●

●

●

●

● ●

●
●

●
●

●

●●

●

●
●

●●

●

●

●
●

●
●

●● ●

●
●●

● ●

●
●

●

●

●

● ●
●

●

●
● ●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●
●

●

●
●

●

●
●

● ●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●● ●

●
●

●

●

●●
●

●●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

● ●
●

●

●●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●● ●
●

●●

●

●
●

● ●
● ●

●
●

●

●

●
●

●

●●

●

●
●●

●
●

● ●●

●

●

● ●
●

●

●

●

●

●●

●
●

● ●●

●

●

● ● ●
●

●

●

●● ●
●

● ●

●

●

●

●
● ●●

●

●

●
●

●
●●

● ●

●

●
●

●
●

●
●●

●

●●● ●
●

● ●
●

●

●

●
● ●

●●

●

●

●
● ●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●
●●

●
●

●

●

●
● ●

●

●●

●

●
●

● ●●
●

●
●

●

●
● ● ●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●

●

●●
●

●

●
●

●

●

●
●● ●

●
●

●

●

● ●

●

●
●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●
●

●

●● ●

●

●●

●

●

●
● ●●

●

●●
●●

●
●

●●●

●

●
●

●

●●
●

●
● ●

●●
●

●

●●

●

●

●

●
●●

●

●●

●

●●
●

●

●●

●

●

●

● ●
● ●

●●
●

●●
●

●●

●

●

●

●

●

●

●

●● ●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●●
●

●
●●

●

●

●

●

●
●

●
●

●●

●
●

●

●●

●

●

●

● ●
●

●● ●●●
● ●

●

●

●

●●●

●

●

●
●

●

●● ●
●●

●

●

●
●●

● ●

●●

●

●
● ●

●●
●

●

●
●●

●
●

●
●

●

● ● ●
●●

●

●

●●

●

● ●

●

●

●

●
● ●

●
●

●

●●●

●

●
●●

●
●

●
● ●●

●

●

●
●●

●
● ●

●

●●

●
●

●●

●

●

●
●●

●

●

●
●

●
●

●

●
●●

●

●

●●●
●

●
●

●

●
●

● ●
●

●●

●

●●
● ●

●

●

●

●

● ●

●

●●

●

●

●●

●
● ●

●

●

●

●
●

●

●●

●

●

●
●

● ● ●

●

●

●

● ●

●

●●

●

●

●
●

●
●

●●

●
●

●
●

●●

●

●

●

●

● ●

●

● ●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●●

● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

● ●

●

● ●

●● ●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●

●
●

●

●
●

●

● ●

●
●

●

●

● ●

●●●

●

●
●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

● ●
●

●●

●

●

●

●● ●
●

●

●

●

● ●
●

●
●

●

●

●
●● ●

●

●

●

●

●
●●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●

●
●

●

●

●
●

●

●●
●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●●
●●

●

●

●

●

●

●

●
●

● ●
●

●

●●

● ●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●
●

●

●●
●●

● ●

●

●
●

●

● ●
●

●

●

●
●

●

● ●● ●

●●

●

●

●
●

●

●●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●

●

●
●

●●
●

●
●

●
●

● ●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●
●

●● ●

●

●

●

●

● ●

●

●

●

●
●

●
● ●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

● ● ●
●● ●

●

●
●

●

●

●●

●

●●

● ●
●

●
● ●●

● ●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●●

●
●

●●
●

●

●

● ●

●

●
●

●

● ●

●

●

●●

●
●

●

●

●
●

●●
● ●

●
●

●
● ●

●

●

●
●

●
●

●●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●●
●

●

● ●

●

●●
●

●
●

●

●

●
●

●●

●

●

●

● ●

●●
●

●

●
●

●

●

●
●

● ●

●●
●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●●
●

● ●

●

●●

●

●

●
●

●
●

● ●

●

●
●

●

●
●

●●
●

●●
●

●

●

●
●

●

●
●

● ●
● ●

●

●
●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
● ●●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
● ●●

●
●

●

●
●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●●

●

●
●

●

● ●

●
●

●

●

● ●
●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

● ●

●

●●
●

●
●

●●●

● ●

● ●

●

●

● ●

●

● ●

●

●●

●

● ●

●●●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●●

●

●●●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
● ●

●

●● ●

●

●
●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●●
●

●

●

●
●

●

● ●

●

●●

● ●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●●● ●

●

● ●

●

●

●
●

●

●

●●
●

●

● ●

●
●
● ●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●
●

●
● ●

●
● ●

●

●
● ●

●

●

●
●●

● ●●

●
●

●● ●

●
● ●

●

●
● ●●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●●

●●

●

●●●
●

●●

●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
● ●● ●

●

●

●● ●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●
● ●

●●
●

●

●

●

●
●

● ●

●
●

●

●

●●

●

● ●

●●●

●
●

●

●

●●

●
● ●●

●

●

●● ●● ●

●●
●

●
●

● ●

●

●

●
●

●

●
●

●

●●
●● ● ●

●●

● ●

●
●

●●

●

●
●

●
●

●

●● ●●
●

●

●

●●

●
●

●

●

●

●● ●●
●

●

●

●

●

● ●

●

●
●

●

●● ●●
●

●●
●

● ●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●
●

●
●

● ●

●

●

● ●
●

●

●

●

●● ●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●● ●●
●

●●●

●
●

● ●

●

●

● ●

●

● ●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●●

●

●
●●

●
●

● ●

●
●

● ●

●

●

●

●

●

●●

●

●●●

●
●

●
●

●

●
● ●

●

●
●

●

●

●
●●

●

●●
●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●
● ● ●

●●

●

●

●

●

●

●
●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

● ●
●
●

● ●

●

●

●

●
●

●●
●

●

●

● ●

●

●

● ●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

● ●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●● ●

●

●

●

●

●● ●

●

● ●

●

●●

●

●

●

●●●

●

●

●
●

●

●
● ●

●

●
●

●

●

● ●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●

●●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

● ● ●

●

●

●
●

●

●

●

●
●

●
●

● ●

●
●

●
● ●

●

●

●

●

●
● ●

●

●

●
●

●
● ●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

●
●

●●

●

●● ●

● ●
●●

●

● ●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●●● ●
●

●
●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

● ●●

●
●

●
●

●

●●
●●

●

●

●

●

● ●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

Winter
Spring
Summer
Fall

Figure 7: Residual scatter plots

44

5.2 Cross-Validated Prediction

2.0 2.5 3.0 3.5

−
1.

0
0.

0
0.

5
1.

0

AQS sites

log10.m.to.a1

re
s ●

●

●

●

● ●●

●

●

●●●

● ● ●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ● ● ●
●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●●●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●●
● ● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ●●

●

●

●
● ●

●

●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

● ●

●
●●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●●

●

●
●

●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●●● ●

●

●

●

●

●●
●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

● ●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●● ●

●

●

●

●●

●

●

●
●

●

●

●●

● ●
●

●

●

●
● ●●

●

●

●
●●
●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●●

●

●

●●
●

● ●
●

●

●

●

● ●

●
●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●
● ● ●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ● ●
●

●

●
●

● ●

●

●
●

●

●●

● ●

●

●
●

●

●
●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●●

●

●

●● ●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●

● ●●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
● ●

●
●

●

●●●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●
●

●
● ●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
● ●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●

●

●
●

●
●

●●

●

●●
●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●

●● ●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●
●●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●●
●●

●●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
● ●

●

●●

● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●●

●

●

● ●

●

●

●

●

●

●●

●
●

● ●●

●

●

●
● ●

●
●

●

●● ●
●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●●● ●
●

● ●
●

●

●

●

●
●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

● ●
●

●

●
●

●

●

● ●
●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●● ●

●

●
●

●

●

●

● ●
●

●

●●

●
●

●

●
●●●

●

●
●

●

●
●

●

●
● ●

●●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●●

●

●

●

● ●
● ●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●● ●●
●

● ●

●

●

●

●●●

●

●

●
●

●

●
● ●

●●

●

●

●
●●

●
●

●●

●

●
● ●

●
●

●

●

●
●

●

●
●

●
●

●

●
● ●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●
●●

●

● ●

●

●●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●
●

●

●
●

● ●

●

●
●

●

●●

● ●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●●
●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

● ●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

●
●

●

●● ●●
● ●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
●

●
●●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●

●

●

●

●

● ●

●

●
●

●

●
●

●●
●

●
●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●
●

●

●
●

●
●

●

●
● ●●

●
●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●
●

●

●

●

●

● ●

●

● ●

●

●
●

●

● ●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●

●●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

● ●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●●
●

●●
●

●
● ●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●
●

●

● ●

●

●

●
●

●

●

●●

●

●

● ●●
●

●

●

●
● ●

●
●

●

●

● ●

●

● ●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●●

●

● ●

●●

●●

●
●

●●

●

●

●● ●
● ●

●

●

●

●

●

●

●

●
●

●

●●

●● ●
●

●

●
●

●

●

●

●

●

●

●● ●●
●

●

●

●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

● ●

●

●
●

●

●
●

●●

●

●●

●

●

●
●

●

● ●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

● ●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●● ●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●
●●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

Winter
Spring
Summer
Fall

1.8 2.2 2.6 3.0

−
1.

0
−

0.
5

0.
0

0.
5

FIXED sites

log10.m.to.a1

re
s

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●
●

●

●
●

●

●

●

●

●●

● ●
●

●
●

●

●●

●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

● ●

●

Figure 8: Residual scatter plots, by location type.

45

Tutorial for SpatioTemporal

Acknowledgements

Data used in the examples has been provided by the Multi-Ethnic Study
of Atherosclerosis and Air Pollution (MESA Air). Details regarding
the data can be found in Cohen et al. (2009), Wilton et al. (2010).

Although this tutorial and development of the package described there in has
been funded wholly or in part by the United States Environmental Protec-
tion Agency through assistance agreement CR-834077101-0 and grant
RD831697 to the University of Washington, it has not been subjected to
the Agency’s required peer and policy review and therefore does not neces-
sarily reflect the views of the Agency and no official endorsement should be
inferred.

Travel for Johan Lindström has been paid by STINT Grant IG2005-2047.

Additional funding was provided by grants to the University of Washington
from the National Institute of Environmental Health Sciences (P50
ES015915) and the Health Effects Institute (4749-RFA05-1A/06-10).

46

REFERENCES

References

Cohen, M. A., Adar, S. D., Allen, R. W., Avol, E., Curl, C. L., Gould,
T., Hardie, D., Ho, A., Kinney, P., Larson, T. V., Sampson, P. D., Shep-
pard, L., Stukovsky, K. D., Swan, S. S., Liu, L.-J. S., and Kaufman, J. D.
(2009). Approach to estimating participant pollutant exposures in the
Multi-Ethnic Study of Atherosclerosis and air pollution (MESA air). En-
vironmental Science & Technology, 43(13):4687–4693.

EPA (1992). User’s guide to CAL3QHC version 2.0: A modeling methodology
for predicting pollutant concentrations near roadway intersections. Tech-
nical Report EPA-454/R-92-006, U.S. Environmental Protection Agency,
Research Triangle Park, NC, USA.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109.

Lindström, J., Szpiro, A. A., Sampson, P. D., Oron, A., Richards, M., Larson,
T., and Sheppard, L. (2013). A flexible spatio-temporal model for air
pollution with spatial and spatio-temporal covariates. Under revision for
Environmental and Ecological Statistics, TBD:?–?

Lindström, J., Szpiro, A. A., Sampson, P. D., Sheppard, L., Oron, A.,
Richards, M., and Larson, T. (2011). A flexible spatio-temporal model
for air pollution: Allowing for spatio-temporal covariates. Technical Re-
port Working Paper 370, UW Biostatistics Working Paper Series.

Mercer, L. D., Szpiro, A. A., Sheppard, L., Lindström, J., Adar, S. D., Allen,
R. W., Avol, E. L., Oron, A. P., Larson, T., Liu, L.-J. S., and Kauf-
man, J. D. (2011). Comparing universal kriging and land-use regression
for predicting concentrations of gaseous oxides of nitrogen (NOx) for the
multi-ethnic study of atherosclerosis and air pollution (MESA air). Atmo.
Environ., 45(26):4412–4420.

MESA Air Data Team (2010). Documentation of MESA air implementation
of the Caline3QHCR model. Technical report, University of Washington,
Seattle, WA, USA.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953). Equations of state calculations by fast computing machines. J.
Chem. Phys., 21:1087–1092.

47

Tutorial for SpatioTemporal

Roberts, G., Gelman, A., and Gilks, W. (1997). Weak convergence and
optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab.,
7:110–120.

Sampson, P. D., Szpiro, A. A., Sheppard, L., Lindström, J., and Kaufman,
J. D. (2011). Pragmatic estimation of a spatio-temporal air quality model
with irregular monitoring data. Atmo. Environ., 45(36):6593–6606.

Szpiro, A. A., Sampson, P. D., Sheppard, L., Lumley, T., Adar, S., and
Kaufman, J. (2010). Predicting intra-urban variation in air pollution con-
centrations with complex spatio-temporal dependencies. Environmetrics,
21(6):606–631.

Wilton, D., Szpiro, A. A., Gould, T., and Larson, T. (2010). Improving
spatial concentration estimates for nitrogen oxides using a hybrid met-
eorological dispersion/land use regression model in Los Angeles, CA and
Seattle, WA. Sci. Total Environ., 408(5):1120–1130.

48

A. Prediction at Unobserved Locations

A Prediction at Unobserved Locations

The following is an example of predictions at unobserved locations and times.
For brevity, most of the function outputs have been omitted in the Appen-
dices.

A.1 Load Data

Let us first load relevant libraries and data.

> ##libraries

> library(SpatioTemporal)

> library(plotrix)

> ##load data

> data(mesa.data.raw)

> data(mesa.model)

> data(est.mesa.model)

A.2 Setup and Study the Data

We then setup data structures — dropping the spatio-temporal covariate and
all observations at two sites — and study the resulting data.

> mesa.data.raw$obs <-

mesa.data.raw$obs[,!(colnames(mesa.data.raw$obs) %in%

c("60595001", "LC003"))]

> mesa.data <- with(mesa.data.raw,

createSTdata(obs, X, n.basis=2))

Let us also expand the temporal trends to every week instead of every 2-
weeks, giving us unobserved time-points at which to predict.

> mesa.data.org <- mesa.data

> T <- with(mesa.data$trend, seq(min(date), max(date), by=7))

> mesa.data <- updateTrend(mesa.data, n.basis=2, extra.dates=T)

Studying the reduced data structure, we see that 2 locations lack observa-
tions, there are additional time-points, and no spatio-temporal covariates.

49

Tutorial for SpatioTemporal

> print(mesa.data)

STdata-object with:

No. locations: 25 (observed: 23)

No. time points: 559 (observed: 280)

No. obs: 4229

Trend with 2 basis function(s):

[1] "V1" "V2"

with dates:

1999-01-13 to 2009-09-23

12 covariate(s):

[1] "ID" "x"

[3] "y" "long"

[5] "lat" "type"

[7] "log10.m.to.a1" "log10.m.to.a2"

[9] "log10.m.to.a3" "log10.m.to.road"

[11] "km.to.coast" "s2000.pop.div.10000"

No spatio-temporal covariates.

All sites:

AQS FIXED

20 5

Observed:

AQS FIXED

19 4

For AQS:

Number of obs: 3910

Dates: 1999-01-13 to 2009-09-23

For FIXED:

Number of obs: 319

Dates: 2005-12-07 to 2009-07-01

> print(mesa.data.org)

STdata-object with:

No. locations: 25 (observed: 23)

No. time points: 280 (observed: 280)

No. obs: 4229

50

A.2 Setup and Study the Data

Trend with 2 basis function(s):

[1] "V1" "V2"

with dates:

1999-01-13 to 2009-09-23

12 covariate(s):

[1] "ID" "x"

[3] "y" "long"

[5] "lat" "type"

[7] "log10.m.to.a1" "log10.m.to.a2"

[9] "log10.m.to.a3" "log10.m.to.road"

[11] "km.to.coast" "s2000.pop.div.10000"

No spatio-temporal covariates.

All sites:

AQS FIXED

20 5

Observed:

AQS FIXED

19 4

For AQS:

Number of obs: 3910

Dates: 1999-01-13 to 2009-09-23

For FIXED:

Number of obs: 319

Dates: 2005-12-07 to 2009-07-01

We can also compare the smooth temporal trends in the two models

> par(mfrow=c(2,1), mar=c(2,2,2,1))

> plot(mesa.data$trend$date, mesa.data$trend$V1,

xlab="", ylab="", main="Trend 1")

> points(mesa.data.org$trend$date, mesa.data.org$trend$V1,

col="red", pch=3)

> plot(mesa.data$trend$date, mesa.data$trend$V2,

xlab="", ylab="", main="Trend 2")

> points(mesa.data.org$trend$date, mesa.data.org$trend$V2,

col="red", pch=3)

51

Tutorial for SpatioTemporal

The trends are identical, since they are based on observations from the same
23 locations.

We then create a STmodel for the reduced data-set (Using the model spe-
cification in mesa.model).

> mesa.model.1 <- createSTmodel(mesa.data,

LUR=mesa.model$LUR.list, cov.beta=mesa.model$cov.beta,

cov.nu=mesa.model$cov.nu,

locations=mesa.model$locations.list)

> mesa.model.2 <- createSTmodel(mesa.data.org,

LUR=mesa.model$LUR.list, cov.beta=mesa.model$cov.beta,

cov.nu=mesa.model$cov.nu,

locations=mesa.model$locations.list, strip=TRUE)

Studying the models,

> print(mesa.model.1)

> print(mesa.model.2)

we note that they contain different number of locations

> str(loglikeSTdim(mesa.model.1))

List of 12

$ T : int 280

$ m : int 3

$ n : int 25

$ n.obs : int 23

$ p : Named int [1:3] 4 2 2

..- attr(*, "names")= chr [1:3] "const" "V1" "V2"

$ L : int 0

$ npars.beta.covf: Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.beta.tot : Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.nu.covf : int 2

$ npars.nu.tot : int 4

$ nparam.cov : int 10

$ nparam : int 18

> str(loglikeSTdim(mesa.model.2))

52

A.3 Predictions

List of 12

$ T : int 280

$ m : int 3

$ n : int 23

$ n.obs : int 23

$ p : Named int [1:3] 4 2 2

..- attr(*, "names")= chr [1:3] "const" "V1" "V2"

$ L : int 0

$ npars.beta.covf: Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.beta.tot : Named int [1:3] 2 2 2

..- attr(*, "names")= chr [1:3] "exp" "exp" "exp"

$ npars.nu.covf : int 2

$ npars.nu.tot : int 4

$ nparam.cov : int 10

$ nparam : int 18

and different number of unobserved time-points

> dim(mesa.model.1$trend)

[1] 559 3

> dim(mesa.model.2$trend)

[1] 280 3

A.3 Predictions

Having created data structures that contain some unobserved locations and
time-points we are now ready to compute predictions at all unobserved times
and locations.

In a real world application we would first use estimate.STmodel to estim-
ate parameters. Here we will just use the covariance-parameters previously
estimated in subsection 4.1,

> x <- coef(est.mesa.model, pars="cov")$par

and compute predictions for the two models (this may take several seconds,
we have omitted variance computations to save time).

53

Tutorial for SpatioTemporal

> E.1 <- predict(mesa.model.1, x, pred.var=FALSE)

> E.2 <- predict(mesa.model.2, x, pred.var=FALSE)

Studying the resulting structures, we see that the first case has computed
predictions at all locations, while the second case only computed predictions
at the 23 locations, and 280 time-points

> colnames(E.1$EX)

[1] "60370002" "60370016" "60370030" "60370031" "60370113"

[6] "60371002" "60371103" "60371201" "60371301" "60371601"

[11] "60371602" "60371701" "60372005" "60374002" "60375001"

[16] "60375005" "60590001" "60590007" "60591003" "L001"

[21] "L002" "LC001" "LC002" "60595001" "LC003"

> str(E.1$EX)

num [1:559, 1:25] 4.55 4.31 4 4.17 4.03 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:559] "1999-01-13" "1999-01-20" "1999-01-27" "1999-02-03" ...

..$: chr [1:25] "60370002" "60370016" "60370030" "60370031" ...

> colnames(E.2$EX)

[1] "60370002" "60370016" "60370030" "60370031" "60370113"

[6] "60371002" "60371103" "60371201" "60371301" "60371601"

[11] "60371602" "60371701" "60372005" "60374002" "60375001"

[16] "60375005" "60590001" "60590007" "60591003" "L001"

[21] "L002" "LC001" "LC002"

> str(E.2$EX)

num [1:280, 1:23] 4.55 4 4.03 4.18 3.72 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:280] "1999-01-13" "1999-01-27" "1999-02-10" "1999-02-24" ...

..$: chr [1:23] "60370002" "60370016" "60370030" "60370031" ...

The predictions are equal (to within numerical precision).

> range(E.1$EX[rownames(E.2$EX),colnames(E.2$EX)] - E.2$EX)

[1] 0 0

We could also use the original data structure to define additional prediction
locations.

54

A.3 Predictions

> E.3 <- predict(mesa.model.2, x, STdata=mesa.data, pred.var=FALSE)

Here, the trend from mesa.model.2 is used for prediction, with values at
additional time-points computed by mesa.model.2$trend.fnc. Having ob-
tained predictions at all locations and times in mesa.data, we compare these
to those in E.1.

> colnames(E.3$EX)

[1] "60370002" "60370016" "60370030" "60370031" "60370113"

[6] "60371002" "60371103" "60371201" "60371301" "60371601"

[11] "60371602" "60371701" "60372005" "60374002" "60375001"

[16] "60375005" "60590001" "60590007" "60591003" "L001"

[21] "L002" "LC001" "LC002" "60595001" "LC003"

> str(E.3$EX)

num [1:559, 1:25] 4.55 4.31 4 4.17 4.03 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:559] "1999-01-13" "1999-01-20" "1999-01-27" "1999-02-03" ...

..$: chr [1:25] "60370002" "60370016" "60370030" "60370031" ...

> all.equal(E.3,E.1)

[1] TRUE

A.3.1 Temporal Averages

The predict function provides an option for computing temporal averages,
and variances of the temporal averages. The averages can either be over
all time points or over only a few time-points. Here we will ilustrate by
computing temporal averages for each year. The first step is to create a list
where each component gives the dates over which to average, e.g. by splitting
the observations dates between each year.

> LTA <- with(mesa.model.1$trend, split(date,as.POSIXlt(date)$year+1900))

> str(LTA)

List of 11

$ 1999: Date[1:51], format: "1999-01-13" ...

$ 2000: Date[1:52], format: "2000-01-05" ...

$ 2001: Date[1:52], format: "2001-01-03" ...

55

Tutorial for SpatioTemporal

$ 2002: Date[1:52], format: "2002-01-02" ...

$ 2003: Date[1:53], format: "2003-01-01" ...

$ 2004: Date[1:52], format: "2004-01-07" ...

$ 2005: Date[1:52], format: "2005-01-05" ...

$ 2006: Date[1:52], format: "2006-01-04" ...

$ 2007: Date[1:52], format: "2007-01-03" ...

$ 2008: Date[1:53], format: "2008-01-02" ...

$ 2009: Date[1:38], format: "2009-01-07" ...

> lapply(LTA[1:3], range)

$`1999`

[1] "1999-01-13" "1999-12-29"

$`2000`

[1] "2000-01-05" "2000-12-27"

$`2001`

[1] "2001-01-03" "2001-12-26"

To allow for averaging over different time at each location, we need a list
with each element named by the location and containing the temporal list
constructed above.

> ID <- mesa.model.1$locations$ID

> LTA <- rep(list(LTA), length(ID))

> names(LTA) <- ID

The LTA object can now be used as an argument to predict, specifying which
times, at each location, that we should average over.

> E.1.LTA <- predict(mesa.model.1, x, pred.var=FALSE, LTA=LTA)

The resulting predictions now contain a LTA field that provides the averages
and (not shown here) variances.

> head(E.1.LTA$LTA)

EX.mu EX.mu.beta EX

60370002.1 4.156456 4.080504 4.072988

60370002.2 4.060114 3.952042 3.956384

60370002.3 3.972375 3.922069 3.904141

56

A.3 Predictions

60370002.4 3.919108 3.881755 3.876229

60370002.5 3.882735 3.824435 3.827195

60370002.6 3.729919 3.578361 3.562588

The element E.1.LTAoptsLTA.list contains a copy of the LTA option provided
in the call to predict that can be used to check over which time points each
average has been computed.

In this simple case the averages are the same as those obtained by just aver-
aging the predictions; the main need for seperate computation of averages are
to: 1) get correct variances, accounting for temporal dependencies due to the
temporal basis functions; and 2) account for non-linearities when averaging
over log-Gaussian fields.

> E.1.LTA.alt <- sapply(split(E.1$EX[,1], as.POSIXlt(rownames(E.1$EX))$year),mean)

> cbind(E.1.LTA.alt, E.1.LTALTAEX[1:11])

E.1.LTA.alt

99 4.072988 4.072988

100 3.956384 3.956384

101 3.904141 3.904141

102 3.876229 3.876229

103 3.827195 3.827195

104 3.562588 3.562588

105 3.628571 3.628571

106 3.624019 3.624019

107 3.540996 3.540996

108 3.400788 3.400788

109 3.159180 3.159180

57

Tutorial for SpatioTemporal

B Simulation

Another option for evaluating model behaviour is to use simulated data.
Instead of using actual observations and comparing predictions to actual
observations, we simulate log NOx observations using the same model as in
section 4, and compare predictions to the simulated data.

B.1 Load Data

Let us first load relevant libraries and data.

> ##Load libraries

> library(SpatioTemporal)

> library(plotrix)

> library(maps)

> ##and data

> data(mesa.model)

> data(est.mesa.model)

B.2 Simulating some Data

First we simulate 4 samples of new data, using the parameters previously
estimated in subsection 4.1.

> x <- coef(est.mesa.model)$par

> sim.data <- simulate(mesa.model, nsim=4, x=x)

Examine the result

> names(sim.data)

[1] "param" "B" "X" "obs"

> str(sim.data,1)

List of 4

$ param: Named num [1:19] 0.000898 3.740186 -0.202111 0.040219 0.037436 ...

..- attr(*, "names")= chr [1:19] "gamma.lax.conc.1500" "alpha.const.(Intercept)" "alpha.const.log10.m.to.a1" "alpha.const.s2000.pop.div.10000" ...

$ B : num [1:25, 1:3, 1:4] 3.98 3.89 3.97 3.61 3.8 ...

..- attr(*, "dimnames")=List of 3

58

B.3 Studying the Results

$ X : num [1:280, 1:25, 1:4] 4.91 4.53 4.43 4.11 4.12 ...

..- attr(*, "dimnames")=List of 3

$ obs :List of 4

Here sim.data$X contains the 4 simulations, sim.data$B contains the sim-
ulated beta fields and sim.data$obs contains observations data.frames that
can be used to replace mesa.model$obs.

Let’s create model structures based on the simulated observations

> mesa.data.sim <- list()

> for(i in 1:length(sim.data$obs)){

##copy the mesa.data.model object

mesa.data.sim[[i]] <- mesa.model

##replace observations with the simulated data

mesa.data.sim[[i]]$obs <- sim.data$obs[[i]]

}

Compute predictions for the 4 simulated datasets We do the computations
for only one location to save time, thus we need to define a STdata-object
with one unobserved-site and all covariates.

> data(mesa.data.raw)

> mesa.data.raw$X <- mesa.data.raw$X[mesa.data.raw$X[,"ID"]=="60590001",]

> mesa.data <- createSTdata(obs=NULL, covars=mesa.data.raw$X,

extra.dates=as.Date(mesa.model$trend$date),

SpatioTemporal=list(lax.conc.1500=mesa.data.raw$lax.conc.1500))

For these predicitons we’ll just use the known parameters, however one could
easily estimate new parameters based on the simulated data using estim-

ate.STmodel (although this would take more time). Please note that follow-
ing the predictions may take a few minutes.

> E <- list()

> for(i in 1:length(sim.data$obs)){

E[[i]] <- predict(mesa.data.sim[[i]], x, STdata=mesa.data)

}

B.3 Studying the Results

Given simulated datasets and predictions based on the simulated data we
study how well the estimates agree with the simulated data.

59

Tutorial for SpatioTemporal

Let’s compare the predicted values and the simulated data for all four simu-
lations

> par(mfrow=c(2,2),mar=c(2.5,2.5,2,.5))

> for(i in 1:4){

##plot predictions, but not the observations

plot(E[[i]])

##add the simulated data (i.e. observations +

##simulated values at points where we've predicted)

lines(as.Date(rownames(sim.data$X)),

sim.data$X[,mesa.data$covars$ID,i], col="red")

}

60

C. MCMC

C MCMC

The following is an example of estimation using the Metropolis-Hastings al-
gorithm (Metropolis et al., 1953, Hastings, 1970).

C.1 Load Data

Let us first load relevant libraries and data.

> library(SpatioTemporal)

> library(plotrix)

> ##load data

> data(mesa.model)

> data(est.mesa.model)

C.2 Running the MCMC

In addition to the standard model fitting described in subsection 4.1 the
model (and parameter uncertainties) can be estimated using a simple Metropolis-
Hastings algorithm.

Here we run a standard random-walk MCMC starting at the mode found in
subsection 4.1 and using a proposal matrix based on the Hessian, as suggested
in Roberts et al. (1997).

> ##parameters

> x <- coef(est.mesa.model)

> ##and Hessian

> H <- est.mesa.model$res.best$hessian.all

WARNING: The following steps are time-consuming.

> MCMC.mesa.model <- MCMC(mesa.model, x$par, N = 2500,

Hessian.prop = H)

ALTERNATIVE: Load pre-computed results.

> data(MCMC.mesa.model)

61

Tutorial for SpatioTemporal

End of alternative

C.3 Results

We start by looking at the status of the MCMC-runs, and components of the
result structure.

> print(MCMC.mesa.model)

MCMC for STmodel, results over 2500 iterations.

19 unknown parameters

Acceptance rate: 0.2786025

No fixed parameters.

> names(MCMC.mesa.model)

[1] "par" "log.like" "acceptance" "Sigma.prop"

[5] "chol.prop" "x.fixed"

as well as some summaries of the results (e.g. which values the parameters
took).

> summary(MCMC.mesa.model)

C.3.1 Plotting the Results

Having studied the elements of the result structure we now plot the parameter
tracks and MCMC estimates of the parameter densities.

> par(mfrow=c(4,1),mar=c(2,2,2.5,.5))

> for(i in c(4,9,13,15)){

plot(MCMC.mesa.model, i, ylab="", xlab="", type="l")

}

And estimated densities for the log-covariance parameters. The red line is the
approximate normal distribution given by the maximum-likelihood estimates,
e.g. ML-estimate and standard deviation from the observed information
matrix.

62

C.3 Results

> dens <- density(MCMC.mesa.model, estSTmodel=x)

> ##plots for all covariance parameters

> par(mfrow=c(3,3),mar=c(4,4,2.5,.5))

> for(i in 9:17){

plot(dens, i, norm.col="red")

}

The large uncertainties (and bad mixing) for some of the log-covariance para-
meters are not unexpected. Recall that we only have 25 locations to base the
estimates of the range and sill for the β-fields on (see subsection 4.2). For
the residual ν-fields, on the other hand, the estimates are essentially based
on T = 280 replicates of the residual field; implying that the estimates of
range, sill and nugget for the residual field are much more certain.

63

	1 Introduction
	1.1 Common Problems — Troubleshooting
	1.2 Data
	1.2.1 NOx Observations
	1.2.2 Geographic Covariates

	1.3 Model and Theory
	1.3.1 Model parameters

	2 Preliminaries
	2.1 The STdata object
	2.1.1 Creating an STdata object from raw data
	2.1.2 The mesa.data$covars Data Frame
	2.1.3 The mesa.data$trend Data Frame
	2.1.4 The mesa.data$obs Data Frame
	2.1.5 The mesa.data$SpatioTemporal Array
	2.1.6 Summaries of mesa.data

	3 createSTmodel(): Specifying the Spatio-Temporal model
	4 Estimating the Model
	4.1 Parameter Estimation
	4.2 Evaluating the Results
	4.3 Predictions

	5 Cross-validation
	5.1 Cross-Validated Estimation
	5.2 Cross-Validated Prediction
	5.2.1 Residual Analysis

	Acknowledgements
	References
	A Prediction at Unobserved Locations
	A.1 Load Data
	A.2 Setup and Study the Data
	A.3 Predictions
	A.3.1 Temporal Averages

	B Simulation
	B.1 Load Data
	B.2 Simulating some Data
	B.3 Studying the Results

	C MCMC
	C.1 Load Data
	C.2 Running the MCMC
	C.3 Results
	C.3.1 Plotting the Results

