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Abstract

This vignette introduces the R package WRS2 that implements various robust sta-
tistical methods. It starts with introducing robust location, dispersion, and correlation
measures. The location and dispersion measures are then used in robust variants of in-
dependent and dependent samples t-tests and ANOVA, including between-within subject
designs and quantile ANOVA. Further, robust ANCOVA as well as robust mediation
models are introduced.
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1. Introduction

Classic inferential methods based on means (e.g., the ANOVA F-test) assume normality
and homoscedasticity (equal variances). A fundamental issue is whether violating these two
assumptions is a serious practical concern. Based on numerous articles summarized in Wilcox
(2017), the answer is an unequivocal “yes”. Under general conditions they can have relatively
poor power, they can yield inaccurate confidence intervals, and they can poorly characterize
the extent groups differ. Even a small departure from normality can be a serious concern.
Despite the central limit theorem, certain serious concerns persist even when dealing with
large sample sizes. Least squares regression inherits all of these concerns and new concerns
are introduced.

A strategy for salvaging classic methods is to test assumptions. For example, test the hy-
pothesis that groups have equal varainces and if it fails to reject, assume homoscedasticity.
However, published papers summarized in Wilcox (2017) indicate that this strategy is unsat-
isfactory. Roughly, such tests do not have enough power to detect situations where violating
assumptions is a serious practical concern. A simple transformation of the data is another
strategy that is unsatisfactory under general conditions.

The family of robust statistical methods offers an attractive framework for dealing with these
issues. In some situations robust methods make little practical difference, but they can sub-
stantially alter our understanding of data. The only known method for determining whether
this is the case is to simply use a robust method and compare to the results based on a classic
technique.

The R (R Core Team 2018) package ecosystem gives the user many possibilities to apply
robust methods. A general overview of corresponding implementations is given on the CRAN
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task view on robust statistics!. Here we focus on the WRS2 package that implements methods
from the original WRS package (Wilcox and Schénbrodt 2017) in a user-friendly manner. It is
available on CRAN. We elaborate on basic testing scenarios especially relevant for the social
and behavioral sciences and introduce these methods in an accessible way. The article starts
with simple robust measures of location, dispersion and correlation, followed by robust group
comparison strategies such as t-tests, ANOVA, between-within subject designs, and quantile
comparisons. Subsequently, we present robust ANCOVA and robust mediation strategies.

Note that in the text we only give a minimum of technical details, necessary to have a basic
understanding of the respective method. An excellent introduction to robust methods within
a psychology context is given in Field and Wilcox (2017), more comprehensive treatments are
given in Wilcox (2017).

2. Robust Measures of Location, Scale, and Dependence

2.1. Robust Location Measures

A robust alternative to the arithmetic mean T is the class of trimmed means, which contains
the sample median as a special case. A trimmed mean discards a certain percentage at both
ends of the distribution. For instance, a 10% trimmed mean cuts off 10% at the lower end
and 10% the higher end of the distribution. Let 1, ...x19 be n = 10 sample values, sorted in
ascending order. The 10% trimmed sample mean is

Ty = (ra+ a3+ -+ a8+ 39)/8. (1)

That is, it excludes the lowest and the largest value and computes the arithmetic mean on
the remaining values. The sample size h after trimming is called effective sample size (here,
h = 8). Note that if the trimming portion is set to v = 0.5, the trimmed mean z; results in
the median Z. An appeal of a 20% trimmed mean is that it achieves nearly the same amount
of power as the mean when sampling from a normal distribution. And when there are outliers,
a 20% trimmed mean can have a subtantially smaller standard error.

In R, a trimmed mean can be computed via the basic mean function by setting the trim
argument accordingly. Let us illustrate its computation using a simple data vector taken
from a self-awareness and self-evaluation study by Dana (1990). The variable reflects the
time (in sec.) persons could keep a portion of an apparatus in contact with a specified target.
The 10% trimmed mean including the standard error (see Appendix) is the following:

R> library("WRS2")

R> timevec <- c¢(77, 87, 88, 114, 151, 210, 219, 246, 253, 262, 296, 299,
+ 306, 376, 428, 515, 666, 1310, 2611)

R> mean(timevec, 0.1)

[1] 342.7059

R> trimse(timevec, 0.1)

'URL: http://cran.r-project.org/web/views/Robust . html
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[1] 103.2686

The median including standard error from WRS2 is:
R> median(timevec)

[1] 262

R> msmedse (timevec)

[1] 77.83901

Note that in the case of ties, extant methods for estimating the standard error of the sample
median can be highly inaccurate. This includes the method used by msmedse. Inferential
methods based on a percentile bootstrap effectively deal with this issue.

Another robust location alternative to the mean is the Winsorized mean. A 10% Winsorized
mean, for example, is computed as follows. Rather than discarding the lowest 10% of the
values, as done by the 10% trimmed mean, they are set equal to the smallest value not
trimmed. In a similar manner, the largest 10% are set equal to the largest value not trimmed.
This process is called Winsorizing, which in effect transforms the tails of the distribution.
Instead of Eq. (1), the 10% Winsorized sample mean uses

jw:(x2+x2+$3+"'+$8+$9+x9)/10‘ (2)

Thus, it replaces the lowest and the largest values by its neighbors and computes the arithmetic
mean on this new sequence of values. Similar to the trimmed mean, the amount of Winsorizing
(i.e., the Winsorizing level 7) has to be chosen a priori. The WRS2 function to compute
Winsorized mean is called winmean, whereas winvar calculates the Winsorized variance.

R> winmean (timevec, 0.1)
[1] 380.1579

R> winse(timevec, 0.1)
[1] 92.9417

R> winvar (timevec, 0.1)
[1] 129679

A general family of robust location measures are so called M -estimators (the “M” stands
for “maximum likelihood-type”) which are based on a loss function to be minimized. In the
simplest case we can consider a loss function of the form > I, (z; — p)?. Minimization results
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in a standard mean estimator i = %2?21 x;. Instead of quadratic loss we can think of a
more general, differentiable distance function &(-):

Z &(z; — py,) — min! (3)
i=1

Let U = ¢'(-) denote its derivative. The minimization problem reduces to Y ;" | W(2;—fim) = 0
where pu,, denotes the M-estimator. Several distance functions have been proposed in the
literature. Huber (1981), for instance, proposed the following function:

K if |[z| < K
V(z) = {Ksign(x) if |z| > K @)

K is the bending constant for which Huber suggested a value of K = 1.28. Increasing K
decreases sensitivity to the tails of the distribution. The estimation of M-estimators is per-
formed iteratively (see Wilcox 2017, for details) and implemented in the mest function.

R> mest (timevec)
[1] 285.1576

R> mestse(timevec)
[1] 52.59286

Other M-estimators are the one-step estimator and the modified one-step estimator (MOM),
as implemented in the functions onestep and mom. In effect, they empirically determine
which values are outliers and eliminate them. One-sample tests for the median, one-step, and
MOM are implemented in onesampb (using a percentile bootstrap approach). Further details
on these measures including expressions for standard errors can be found in Wilcox (2017,
Chapter 3).

2.2. Robust Correlation Coefficients

Pearson’s correlation is not robust. Outliers can mask a strong association among the bulk
of the data and even a slight departure from normality can render it meaningless (Wilcox
2017). Here we present two M-measures of correlation, meaning that they guard against the
deleterious impact of outliers among the marginal distributions. The first is the percentage
bend correlation p,y,, a robust measure of the linear association between two random variables.
When the underlying data are bivariate normal, p,, gives essentially the same values as Pear-
son’s p. In general, p, is more robust to slight changes in the data than p. The computation,
involving a bending constant 5 (0 < 5 < 0.5), is given in Wilcox (2017, p. 491). WRS2
provides the pbcor function to calculate the percentage bend correlation coefficient and to
perform a one-sample test (Hy: pp, = 0). For simultaneous inference on a correlation matrix,
pball can be used. It also includes a statistic H which tests the global hypothesis that all
percentage bend correlations in the matrix are equal to 0 in the population.
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A second robust correlation measure is the Winsorized correlation p,,, which requires the
specification of the amount of Winsorization. The computation is simple: it uses Person’s
correlation formula applied on the Winsorized data. The wincor function can be used in
a similar fashion as pbcor; its extension to several random variables is called winall and
illustrated here using the hangover data from Wilcox (2017). In a study on the effect of con-
suming alcohol, the number hangover symptoms were measured for two independent groups,
with each subject consuming alcohol and being measured on three different occasions. One
group consisted of sons of alcoholics and the other one was a control group. Here we are
interested in the Winsorized correlations across the three time points for the participants in
the alcoholic group:

R> library("reshape")

R> hangctr <- subset (hangover, subset = group == "alcoholic")
R> hangwide <- cast(hangctr, id ~ time, value = "symptoms")[,-1]
R> winall (hangwide)

Call:
winall(x = hangwide)

Robust correlation matrix:
1 2 3

1 1.0000 0.2651 0.4875

2 0.2651 1.0000 0.6791

3 0.4875 0.6791 1.0000

p-values:

1 2 3
1 NA 0.27046 0.03935
2 0.27046 NA 0.00284
3 0.03935 0.00284 NA

In order to test for equality of two correlation coefficients, twopcor can be used for Pearson
correlations and twocor for percentage bend or Winsorized correlations. As an example, using
the hangover dataset we want to test whether the time 1/time 2 correlation ppy; of the control
group is the same as the timel /time2 correlation ppye of the alcoholic group.

R> ctl <- subset (hangover, subset = (group == "control" & time == 1))$symp
R> ct2 <- subset(hangover, subset = (group == "control" & time == 2))$symp
R> atl <- subset(hangover, subset = (group == "alcoholic" & time == 1))$symp

R> at2 <- subset (hangover, subset
R> set.seed(123)
R> twocor(ctl, ct2, atl, at2, corfun = "pbcor", beta = 0.15)

(group == "alcoholic" & time == 2))$symp

Call:
twocor(xl = ctl, yl = ct2, x2 = atl, y2 = at2, corfun = "pbcor",
beta = 0.15)
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First correlation coefficient: 0.5886

Second correlation coefficient: 0.5628
Confidence interval (difference): -0.6855 0.8516
p-value: 0.94206

Note that the confidence interval (CI) for the correlation differences is bootstrapped. Other
types of robust correlation measures are the well-known Kendall’s 7 and Spearman’s p as
implemented in the base R cor function.

3. Robust Two-Sample Testing Strategies

3.1. Robust Tests for Two Independent Groups and Effect Sizes

Yuen (1974) proposed a test statistic for a two-sample trimmed mean test which allows for
the presence of unequal variances. The test statistic is

_ X — X
Y Vi +dy’

where d; is an estimate of the squared standard error for X;;, which is based in part on the
Winsorized data. Under the null (Ho: 1 = pu2), the test statistic follows, approximately,
a t-distribution? with v, degrees of freedom (df). Formal expressions for the standard error
in Eq. (5) and the df can be found in the Appendix. Note that if no trimming is involved,
this method reduces to Welch’s classical ¢-test with unequal variances (Welch 1938), as im-
plemented in t.test.

()

Yuen’s test is implemented in the yuen function. There is also a bootstrap version (see
yuenbt) which is suggested to be used when the amount of trimming is close to zero. The
example dataset, included in the WRS2 package, consists of various soccer team statistics in
five different European leagues, collected at the end of the 2008/2009 season. Here we focus
on the Spanish Primera Division (20 teams) and the German Bundesliga (18 teams). We
are interested in comparing the trimmed means of goals scored per game across these two
leagues. The group-wise boxplots and beanplots in Figure 1 visualize potential differences
in the distributions. Spain has a considerably right-skewed goal distribution involving three
outliers (Barcelona, Real Madrid, Atletico Madrid). In the German league, the distribution
looks fairly symmetric.

Yuen’s test based on the trimmed means with default trimming level of v = 0.2 can be
computed as follows

R> yuen(GoalsGame ~ League, data = SpainGer)

Call:
yuen(formula = GoalsGame ~ League, data = SpainGer)

2Tt is not suggested to use this test statistic for a v = 0.5 trimming level (which would result in median
comparisons) since the standard errors become highly inaccurate.
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Figure 1: Left panel: boxplots for scored goals per game (Spanish vs. German league). The
red dots correspond to the 20% trimmed means. Right panel: beanplots for the same setting.

Test statistic: 0.8394 (df = 16.17), p-value = 0.4135

Trimmed mean difference: -0.11494
95 percent confidence interval:
-0.405 0.1751

The result suggests that there are no significant differences in the trimmed means across the
two leagues.

In terms of effect size, Algina, Keselman, and Penfield (2005) propose a robust version of
Cohen’s d (Cohen 1988). B B
Xn — X
5 = 0.642“57*752 (6)

w
The formal expression for S}, as well as a modification for unequal variances can be found
in the Appendix. In WRS2 this effect size (equal variances assumed) can be computed as
follows:

R> akp.effect(GoalsGame ~ League, data = SpainGer)
[1] -0.281395

The same rules of thumb as for Cohen’s d can be used; that is, |6;] = 0.2, 0.5, and 0.8
correspond to small, medium, and large effects.

Wilcox and Tian (2011) proposed an ezplanatory measure of effect size £ which does not
require equal variances and can be generalized to multiple group settings. A simple way
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to introduce this measure is to use the concept of explanatory power from regression with
response Y and fitted values Y

o2 (F
& =) @

where 02(Y) is some measure of variation associated with Y. When ¢?(Y) is taken to be the
usual variance, £2 = p?, where p is Pearson’s correlation.

In a t-test setting with equal samples sizes, 02(Y) can be simply estimated by the sample
variance based on the 2n pooled observations, whereas o2(Y') is estimated with

(X1 — X))+ (X — X)%, (8)

where X is the grand mean®. The explanatory measure of effect size is simply & = \/572 . To
make this effect size measure “robust”, all that needs to be done is to replace the grand mean
X and group means X; and X, in Eq. (8) with a robust location measure (e.g., trimmed
mean, Winsorized mean, median) in order to estimate o2(Y). The variance o02(Y) needs to
be replaced by the a corresponding robust variance estimator (e.g., Winsorized variance).

In WRS2, the explanatory measure of effect size can be computed as follows:

R> set.seed(123)
R> yuen.effect.ci(GoalsGame ~ League, data = SpainGer)

$effsize
[1] 0.15517

$CI
[1] 0.0000000 0.6295249

Values of é = (.10, 0.30, and 0.50 correspond to sn}all, medium, and large effect sizes. The
function also gives a confidence interval (CI) for & based on a percentile bootstrap. Het-
eroscedasticity is allowed.

If we want to run a two-sample test on median differences or general M-estimator differences,
the pb2gen function can be used.

R> set.seed(123)
R> pb2gen(GoalsGame ~ League, data = SpainGer, est = "median")

Call:
pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "median")

Test statistic: -0.1238, p-value = 0.41736

95% confidence interval:
-0.4845 0.2082

R> pb2gen(GoalsGame ~ League, data = SpainGer, est = "onestep")

3For unequal sample sizes a slighly more involved estimator is used.
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Call:
pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "onestep")

Test statistic: -0.1181, p-value = 0.48748
95 confidence interval:
-0.3739 0.2153

These tests simply use the differences in medians (i.e., X; — X») and differences in Huber’s
U estimator from Eq. (4) (i.e., ¥(X1) — U(X2)), respectively, as test statistics. CIs and p-
values are determined through bootstrap. Currently, when using the median and there are
tied values, this is the only known method that performs well in simulations (Wilcox 2017).

Another function implemented in WRS2 is gcomhd for general quantile comparison across two
groups (Wilcox, Erceg-Hurn, Clark, and Carlson 2014) using the quantile estimator proposed
by Harrell and Davis (1982). The null hypothesis is simply Hp: 641 = 642, where 6, and
042 are the g-th quantiles in group 1 and 2, respectively. Confidence intervals for éql — éqz
and p-values are determined via a percentile bootstrap. This test provides a more detailed
understanding of where and how distributions differ. Let us apply this approach on the same
data as above. We keep the default setting which tests for differences in the 0.1, 0.25, 0.5,
0.75, and 0.95 quantiles.

R> set.seed(123)

R> fitqt <- qcomhd(GoalsGame ~ League, data = SpainGer,
+ g =c¢(0.1, 0.25, 0.5, 0.75, 0.95), nboot = 500)

R> fitqt

Call:
gcomhd (formula = GoalsGame ~ League, data = SpainGer, q = c(0.1,

0.25, 0.5, 0.75, 0.95), nboot = 500)

Parameter table:

q nl n2 estl est2 estl-est.2 ci.low «ci.up p.crit p.value
1 0.10 20 18 1.0313 0.9035 0.1278 -0.1552 0.3098 0.0100 0.268
2 0.25 20 18 1.1950 1.0892 0.1058 -0.1787 0.2899 0.0500 0.464
3 0.50 20 18 1.3109 1.4304 -0.1194 -0.5058 0.2690 0.0167  0.492
4 0.75 20 18 1.6220 1.8078 -0.1858 -0.6089 0.4862 0.0125 0.548
5 0.95 20 18 2.5160 2.2402 0.2758 -0.6043 0.8677 0.0250 0.512

The p-values are adjusted using Hochberg’s method (see p.crit for the critical values the
p-values in the last column should be compared to). Note that ties in the data are not
problematic for this particular test.

3.2. Robust Tests for Two Dependent Groups
Yuen’s trimmed mean ¢-test in Eq. (5) can be generalized to paired sample settings as follows:
X — Xio

T, =— % 9
Vo /di +dy + dia )
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Figure 2: Individual weight trajectories of anorexic girls before and after treatment.

Under the null (Ho: pn = pu2), Ty is t-distributed with df = h — 1, where h is the effective
sample size. Details on the computation of this statistic can be found in the Appendix.

The corresponding R function is called yuend which also reports the explanatory measure
of effect size. The dataset we use for illustration is in the MASS package (Venables and
Ripley 2002) and presents data pairs involving weights of girls before and after treatment for
anorexia. We use a subset of 17 girls subject to family treatment (FT). Figure 2 presents the
individual trajectories. We keep the default trimming level (20%) and get the following test
results.

R> library("MASS")
R> anorexiaFT <- subset(anorexia, subset = Treat == "FT")
R> with(anorexiaFT, yuend(Prewt, Postwt))

Call:
yuend(x = Prewt, y = Postwt)

Test statistic: -3.829 (df = 10), p-value = 0.00332
Trimmed mean difference: -8.56364

95 percent confidence interval:
-13.5469 -3.5804



Patrick Mair, Rand Wilcox

Explanatory measure of effect size: 0.6

The output suggests that overall the treatment was successful. The explanatory measure of
effect size, constructed according to the same principles as outlined above, suggests a large
effect.

Quantile comparisons for paired samples (Hp: 04 = 642) can be computed using Dqcomhd
(Wilcox and Erceg-Hurn 2012). As the independent sample version in qcomhd, it uses the
quantile estimator proposed by Harrell and Davis (1982), and bootstrapping to determine the
CI for éql — éqg and the p-values (corrected for multiple testing).

R> set.seed(123)
R> with(anorexiaFT, Dqcomhd(Prewt, Postwt, q = c(0.25, 0.5, 0.75)))

Call:
Dgcomhd(x = Prewt, y = Postwt, q = c(0.25, 0.5, 0.75))

Parameter table:

q nl n2 estl est2 estl-est.2 ci.low ci.up p.crit p.value
1 0.25 17 17 79.9588 84.5667 -4.6079 -12.2888 1.8423 0.0500 0.25
2 0.50 17 17 83.1703 92.7727 -9.6024 -11.8829 -4.5479 0.0250 0.00
3 0.75 17 17 86.3380 95.8962 -9.5583 -11.8997 -6.9818 0.0167 0.00

We obtain significant weight decrease effects for the second and the third weight quartiles,
but not for the first quartile.

3.3. Comparing Two Discrete Distributions

Having two discrete variables X and Y (small sample space), sometimes it is of interest to test
whether the distributions differ at each realization = and y (Hy: P(X =z) = P(Y =y)). The
function binband provides such an implementation allowing for both the method proposed by
Storer and Kim (1990) and the one by Kulinskaya, Morgenthaler, and Staudte (2010). The
test statistic is given in the Appendix.

Let us look at a simple artificial example involving responses on a five-point rating scale item
across two groups of participants with group sizes n; and ns. The binband function compares
the two distributions at each possible value (here 1,2,...,5) in the joint sample space.

-

R> gl <-c(2, 4, 4, 2, 2, 2, 4, 3, 2, 4, 2
R> g2 <- c(5, 1, 4, 4, 2, 3, 3, 1, 1, 1, 1
R> binband(gl, g2, KMS = TRUE)

» 4,3,2,2,3,5,5, 2,2
1, 1, 5, 3, 5)

-

Call:
binband(x = gl, y = g2, KMS = TRUE)

Parameter table:
Value pl.est p2.est pl-p2 ci.low ci.up p.value p.crit
1 1 0.0000 0.3889 -0.3889 -0.6266 -0.1194 0.004 0.0100

11
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2 0.5000 0.1667 0.3333 0.0201 0.6115 0.037 0.0125
3 0.1818 0.1667 0.0152 -0.2337 0.2565 0.930 0.0500
4 0.2273 0.1111 0.1162 -0.1353 0.3504 0.390 0.0167
5 0.0909 0.1667 -0.0758 -0.2969 0.1458 0.510 0.0250

g W N

The CIs are determined using the Kulinskaya-Morgenthaler-Staudte method (KMS = TRUE).
The function uses Hochberg’s multiple comparison adjustment to determine critical p-values
with the goal of controlling the probability of one or more Type I errors. The results suggest
that the distributions differ significantly at (z,y) = 1 only (p < perit)-

4. One-Way Robust Testing Strategies

Often it is said that F-tests are quite robust against normality violations. As Field and
Wilcox (2017, p. 37) recommend, such statements should be banned because based on many
papers published during the past fifty years, it is well established that this statement is
not correct (especially when dealing with heavy-tailed distributions, unequal sample sizes,
and distributions differing in skewness). In this section we present various robust one-way
ANOVA strategies, followed by higher order models in the next section.

4.1. One-Way Trimmed Means Comparisons

The first robust ANOVA alternative presented here is a one-way comparison of J trimmed
group means (Hy : g = o2 = -+ - = ), allowing for heteroscedasticity. Technical details
on this F-distributed Welch-type test statistic (Welch 1951) can be found in the Appendix.

In WRS2 this approach is implemented via the t1way function, here applied to the weight dif-
ferences in the anorexia data from above (post-treatment weight minus pre-treatment weight).
There are two different types of treatment in the data (family treatment FT and cognitive be-
havioral treatment CBT) as well as one control group. Figure 3 shows the corresponding
boxplots and beanplots.

The robust one-way ANOVA based on trimmed means (20% trimming level) can be computed
as follows:

R> anorexia$Wdiff <- anorexia$Postwt - anorexia$Prewt
R> set.seed(123)
R> tlway(Wdiff ~ Treat, data = anorexia)

Call:
tlway(formula = Wdiff ~ Treat, data = anorexia)

Test statistic: F = 5.6286
Degrees of freedom 1: 2
Degrees of freedom 2: 24.89
p-value: 0.00962

Explanatory measure of effect size: 0.52
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Figure 3: Top panel: Boxplots for scored goals per game across five European soccer leagues.
Bottom panel: Beanplots for the same setting.

There is a significant overall effect in weight differences across the treatments. The explana-
tory measure of effect size { follows the same logic as outlined in Eq. (7). The difference
compared to the two-sample version is that Eq. (8) generalizes to

. 1
2 _
V) =57,

J

(V; —Y)% (10)

J
=1

The same rules of thumb apply as in the two-sample case. In this example we obtain a large
effect.

Post hoc tests on trimmed means use the linear contrast expression
J
U = ZCthj. (11)
j=1

In WRS2 the constants are specified in a way such that all pairwise post hoc tests are carried

13
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out. For instance, for comparing the first two trimmed means ¢; = 1 and ¢co = —1, whereas
the remaining c’s are 0.

R> lincon(Wdiff ~ Treat, data = anorexia)

Call:
lincon(formula = Wdiff ~ Treat, data = anorexia)

psihat ci.lower ci.upper p.value
CBT vs. Cont 2.96250 -3.03709 8.96209 0.22201
CBT vs. FT -6.10909 -12.33490 0.11672 0.01943
Cont vs. FT -9.07159 -16.08255 -2.06064 0.00293

The function reports the ¥ value according to Eq. (11) denoting pairwise trimmed mean
differences. The 95% CIs and the p-values are adjusted for multiple testing in the sense that
the simultaneous probability coverage of the Cls is 1 — a and the family-wise error rate is a.
Details on this procedure can be found in Wilcox (1986).

A bootstrap version of tlway is implemented in tiwaybt with corresponding bootstrap post
hocs in mcppb20.

4.2. One-Way Quantile Comparisons

In this section we focus on testing Hy : 61 = ---60; where the ’s represent a particular
quantile in group j. Let us start with testing for equality of medians across J groups. The
test statistic Fis, given in the Appendix, follows the same concept as the one for trimmed
means above; the only difference is that it uses an alternative estimate for the standard error.
Using our anorexia dataset, it can be computed as follows:

R> set.seed(123)
R> medlway (Wdiff ~ Treat, data = anorexia)

Call:
medlway (formula = Wdiff ~ Treat, data = anorexia)

Test statistic F: 4.5708
Critical value: 2.8398
p-value: 0.008

A few remarks regarding this test statistic. First, it has been found that by evaluating the
test statistic using the df as quoted in the Appendix (i.e., 1 = J — 1 and vy = o0) can result
in the actual level being less than the nominal level, (i.e., around 0.02-0.025 when testing at
the 0.05 level and n is small). A better strategy, as provided by this implementation, is to
simulate the critical value and computing the p-value accordingly. In order to make the result
reproducible, above we set a seed.

Second, if there are too many ties in the data, the standard error becomes inaccurate. In such
situations, the Qanova function provides a good alternative, which allows for general quantile
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testing across J groups, not only the median. Similar to qcomhd, the quantile ANOVA
implemented in Qanova uses the Harrel-Davis estimator for the quantiles. It tests the global
hypothesis:

Hy : 9q1—9q2:9q2—9q3:"‘:9q(J,1)—GqJ.
The p-value is determined using a bootstrap (see Wilcox 2017, p. 378-379 for details). In case

multiple quantiles are tested at the same time, the p-values are corrected using Hochberg’s
method.

R> set.seed(123)

R> fitqa <- @anova(Wdiff ~ Treat, data = anorexia,
+ q = c(0.25, 0.5, 0.75))

R> fitqga

Call:

Qanova(formula = Wdiff ~ Treat, data = anorexia, q = c(0.25,
0.5, 0.75))

p.value p.adj

q=0.25 0.0100 0.0200
q=0.5 0.0050 0.0150
q=0.75 0.0217 0.0217

It reports the unadjusted and adjusted p-values, to be compared to the a-level. We find
significant overall differences at each of the quartiles.

5. Robust Two-Way and Three-Way Comparisons

This section elaborates on higher order ANOVA designs including post hoc tests. Note that
all WRS2 robust ANOVA functions allow the user to fit the full model (i.e., including all
possible interactions) only. For more parsimonious models and specific post hoc contrasts, it
is suggested to use the corresponding WRS functions from Wilcox and Schénbrodt (2017).

5.1. Robust Two-Way ANOVA Strategies

Let us start with a two-way factorial ANOVA design involving J categories for the first
factor, and K categories for the second factor. The test statistic for the one-way trimmed
mean comparisons, as implemented in tlway, can be generalized to two-way designs; details
are given in the Appendix. The hypothesis to be tested are the usual two-way ANOVA
hypotheses using the trimmed means. Let p; be the grand trimmed mean (population), ju
the mean in factor level combination jk, py;. the trimmed factor level means of the first
factor, and piz.; the trimmed factor level means for the second factor. Let a; = ;. — pue,
Br = ek — e, and (af)jr = pjk — faj. — pek + p¢. Using this notation, the null hypotheses
are:

e First factor: Hp: Z}]:l aj2~ =0.

e Second factor: Hy : Zszl B2 =0.



16 The WRS2 Package

Interaction Plot Alcohol|Gender Interaction Plot Gender|Alcohol

65
1
65
!

60
1
60
1

55
1
55
1

— None
—— 2Pints
— 4 Pints

50
50
1

Attractiveness
Attractiveness

45

40
|
40
|

female

Female Male None 2 Pints 4 Pints

Gender Gender

Figure 4: Trimmed means interaction plot for beer goggles dataset.

e Interaction: Hj : 23-121 25:1(045)?k =0.

Such a robust two-way ANOVA can be carried out using the function t2way. To illustrate, we
use the beer goggles dataset by Field, Miles, and Field (2012) who studied the effects of alcohol
on mate selection in night clubs. The hypothesis is that after alcohol had been consumed,
subjective perceptions of physical attractiveness would become more inaccurate (beer goggles
effect). In this study we have the factors gender (24 male and 24 female students) and the
amount of alcohol consumed (none, 2 pints, 4 pints). At the end of the evening the researcher
took a photograph of the person the participant was chatting up. The attractiveness of the
person on the photo was then evaluated by independent judges on a scale from 0-100 (response
variable).

Figure 4 shows the interaction plots using the trimmed mean (20% trimming level) as location
measure. The two-way ANOVA on the trimmed means can be fitted as follows.

R> goggles$alcohol <- relevel(goggles$alcohol, ref = "None")
R> t2way(attractiveness ~ gender*alcohol, data = goggles)

Call:
t2way (formula = attractiveness ~ gender * alcohol, data = goggles)

value p.value
gender 1.6667 0.209
alcohol 48.2845 0.001
gender:alcohol 26.2572  0.001

Not surprisingly, based on what we see in Figure 4, the interaction between gender and alcohol
is significant.
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Post hoc tests can be applied using the mcp2atm function, which, internally calls the 1lincon
function described above.

R> postgoggle <- mcp2atm(attractiveness ~ gender*alcohol, data = goggles)
R> postgoggle$contrasts

genderl alcoholl alcohol2 alcohol3 genderl:alcoholl

Female_None 1 1 1 0 1

Female_2 Pints 1 -1 0 1 -1

Female_4 Pints 1 0 -1 -1 0

Male_None -1 1 1 0 -1

Male_2 Pints -1 -1 0 1 1

Male_4 Pints -1 0 -1 -1 0
genderl:alcohol2 genderl:alcohol3

Female_None 1 0

Female_2 Pints 0 1

Female_4 Pints -1 -1

Male_None -1 0

Male_2 Pints 0 -1

Male_4 Pints 1 1

The second line prints the contrast matrix which illustrates what effects are actually being
tested. The results are the following:

R> postgoggle

Call:
mcp2atm(formula = attractiveness

gender * alcohol, data = goggles)

psihat ci.lower ci.upper p-value
genderl 10.00000 -6.00223 26.00223 0.20922
alcoholl -3.33333 -20.49551 13.82885 0.61070
alcohol2 35.83333 19.32755 52.33911 0.00003
alcohol3 39.16667 22.46796 55.86537 0.00001
genderl:alcoholl -3.33333 -20.49551 13.82885 0.61070
genderl:alcohol2 -29.16667 -45.67245 -12.66089 0.00025
genderl:alcohol3 -25.83333 -42.53204 -9.13463 0.00080

Let us focus on the interaction first by starting at the bottom. The last effect tells us that
the difference attractiveness ratings for 4 pints vs. 2 pints differs significantly in men and
women. Similary, the second to last effect tells us that this significant gender difference also
applies to 4 pints vs. none. However, males and females do not behave differently if we look
at 2 pints vs. none (no significant effect; see third line from the bottom). Note that the 95%
CIs and the p-values are adjusted for multiple testing.

Other options for robust two-way ANOVAs are median comparisons using med2way, and
general M-estimator comparisons using pbad2way. For both functions post hoc comparisons
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can be computed using mcp2a (the estimator argument needs to be specified correspondingly)
which uses precentile bootstrap for ClIs and p-values. Using the beer goggles dataset, the
function calls for median and modified one-step estimators (MOM) are the following.

R> set.seed(123)
R> med2way(attractiveness ~ gender*alcohol, data = goggles)

R> mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "median")
R> pbad2way(attractiveness ~ gender*alcohol, data = goggles, est = "mom")
R> mcp2a(attractiveness ~ gender*alcohol, data = goggles, est = "mom")

We omit showing the output here; the results are consistent with the trimmed mean compar-
isons above. Formal details on the median test are given in the Appendix; elaborations on
M-estimator comparisons are given in Wilcox (2017, p. 385-388).

5.2. Robust Three-Way ANOVA Strategies

Having three-way designs, WRS2 provides the function t3way for robust ANOVA based on
trimmed means. The test statistics are determined according to the same principles as in
t2way (see Appendix). Again, the critical values are adjusted such that no df of the y2-
distributed test statistics are reported (see Wilcox 2017, p. 341-346, for details).

The dataset we use to illustrate this approach is from Seligman, Nolen-Hoeksema, Thornton,
and Thornton (1990). At a swimming team practice, 58 participants were asked to swim
their best event as far as possible, but in each case the time reported was falsified to indicate
poorer than expected performance (i.e., each swimmer was disappointed). 30 minutes later
the athletes did the same performance again. The authors predicted that on the second
trial more pessimistic swimmers would do worse than on their first trial, whereas optimistic
swimmers would do better. The response is ratio = Timel/Time2. A ratio larger than 1
means that a swimmer performed better in trial 2. Figure 5 shows two separate interaction
plots for male and female swimmers, using the 20% trimmed means.

A three-way robust ANOVA on the trimmed means using t3way can be computed as follows:
R> t3way(Ratio ~ Optim*Sex*Event, data = swimming)

Call:
t3way(formula = Ratio ~ Optim * Sex * Event, data = swimming)

value p.value

Optim 7.1799150 0.016
Sex 2.2297985 0.160
Event 0.3599633  0.845
Optim:Sex 6.3298070 0.023
Optim:Event 1.1363057 0.595
Sex:Event 3.9105283 0.192
Optim:Sex:Event 1.2273516  0.572

The crucial effect for interpretation is the significant Optim:Sex two-way interaction. We
could produce corresponding two-way interaction plots and see that, independently from the
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Figure 5: Interaction plot involving the trimmed means of the time ratio response for males
and females separately.

swimming style, for the females it does not matter whether someone is an optimist or a
pessimist, the time ratio does not change drastically. For the males, there is a substantial
difference in the time ratio for optimists and pessimists.

6. Repeated Measurement and Mixed ANOVA Designs

6.1. Paired Samples/Repeated Measurement Designs

In this section we consider paired samples/repeated measurement designs for more than two
dependent groups/time points. The WRS2 package provides a robust implementation of a
heteroscedastic repeated measurement ANOVA based on the trimmed means. The formulas
for the test statistic and the df computations are given in the Appendix.

In WRS2, the function to compute a robust repeated measurements ANOVA is rmanova with
corresponding post hoc tests in rmmcp. The data need to be in long format and balanced
across the groups. Each of these functions takes three arguments: a vector with the responses
(argument: y), a factor for the groups (e.g., time points; argument: groups), and a factor for
the blocks (typically a subject ID; argument: blocks).

The example we use is from Wilcox (2017, p. 452). In a study on the effect of consuming
alcohol, hangover symptoms were measured for two independent groups, with each subject
consuming alcohol and being measured on three different occasions. One group consisted of
sons of alcoholics and the other was a control group. A representation of the dataset is given
in Figure 6.

Here we focus on a single between subjects factor only: control group. In the next section
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Figure 6: 20% trimmed means of the number of hangover symptoms across three time points.

we consider the full dataset with the corresponding between-within subjects design. After
subsetting the data accordingly, a robust repeated measurement ANOVA using the rmanova
function can be fitted as follows:

R> hangoverC <- subset (hangover, subset = group == "control")
R> with(hangoverC, rmanova(y = symptoms, groups = time, block = id))

Call:
rmanova(y = symptoms, groups = time, blocks = id)

Test statistic: F = 2.6883
Degrees of freedom 1: 2
Degrees of freedom 2: 22
p-value: 0.09026

Even though non-significant, for illustration purposes we show how to perform corresponding
post hoc tests:

R> with(hangoverC, rmmcp(y = symptoms, groups = time, block = id))

Call:
rmmcp(y = symptoms, groups = time, blocks = id)
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psihat ci.lower ci.upper p.value p.crit sig
1 vs. 2 -2.66667 -7.47192 2.13858 0.14588 0.0169 FALSE
1 vs. 3 -1.00000 -3.17265 1.17265 0.22085 0.0250 FALSE
2 vs. 3 0.50000 -2.57826 3.57826 0.65583 0.0500 FALSE

The rmmcp function uses Hochberg’s approach to control for the FWE. The bootstrap version
of rmanova is rmanovab with bootstrap post hocs in pairdepb.

6.2. Mixed Designs

Let us extend the ANOVA setting above towards mixed designs. That is, we have within-
subjects effects (e.g., due to repeated measurements) and between-subjects effects (group
comparisons). The main function in WRS2 for computing a between-within subjects ANOVA
on the trimmed means is bwtrim. For general M-estimators, the package offers the bootstrap
based functions sppba, sppbb, and sppbi for the between-subjects effect, the within-subjects
effect, and the interaction effect, respectively. Each of these functions requires the full model
specification through the formula interface as well as an id argument that accounts for the
within-subject structure.

We use the hangover data from above and fit a between-within subjects ANOVA on the 20%
trimmed means:

R> bwtrim(symptoms ~ group*time, id = id, data = hangover)

Call:
bwtrim(formula = symptoms

group * time, id = id, data = hangover)

value df1l df2 p.value
group 6.6087 1 14.4847 0.0218
time 4.4931 2 15.4173 0.0290

group:time 0.5663 2 15.4173 0.5790

We get a non-significant interaction; both main effects are significant.

We can also perform post hoc comparisons on the single effects. WRS2 implements a boot-
strap based approach for one-step M estimators, modified one-step estimators (MOM), and
medians. To illustrate the hypotheses being tested, we use a different dataset with a slightly
more complex design (in terms of the number of factor levels). The study by McGrath (2016)
looked at the effects of two forms of written corrective feedback on lexico-grammatical ac-
curacy (errorRatio) in the academic writing of English as a foreign language university
students. It had a 3 x 4 within-by-between design with three groups (two treatment and
one control; group) measured over four occasions (pre-test, treatment, post-test, delayed
post-test; essay).

It helps to introduce the following notations. We have j = 1,...,J between subjects groups
(in our example J = 3) and k = 1,..., K within subjects groups (e.g., time points; in
our example K = 4). Let Yj;;, be the response of participant i, belonging to group j on
measurement occasion k.

21
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Ignoring the group levels j for the moment, Y;;;, can be simplified to Y;;. For two occasions k
and k' we can compute the difference score D;ppr = Y — Yirr. Let O be some M-estimator
associated with Djgis. In the special case of two measurement occasions (i.e., K = 2), we can
compute a single difference. In our example with K = 4 occasions we can compute (;‘) =6
such M-estimators. The null hypothesis is:

Hy:012=013=014="033=024 =034

Thus, it is tested whether the “typical” difference score (as measured by an M-estimator)
between any two levels of measurement occasions is 0 (while ignoring the between-subjects
groups). For the essays dataset we get:

R> set.seed(123)
R> sppbb(errorRatio ~ group*essay, id, data = essays)

Call:
sppbb(formula = errorRatio

group * essay, id = id, data = essays)

Test statistics:
Estimate
essayl-essay2 -0.083077
essayl-essay3 0.068214
essayl-essay4 0.003929
essay2-essay3 0.092500
essay2-essay4 -0.033333
essay3-essay4 -0.065769

Test whether the corrresponding population parameters are the same:
p-value: 0.362

The p-value suggests that we cannot reject the Hy of equal difference scores.

In terms of comparisons related to the between-subjects we can think of two principles. The
first one is to perform pairwise group comparisons within each measurement occasion (K = 4).
In our case this leads to 4 x (;’) parameters (here, the first index relates to j and the second
index to k). We can establish the following K null hypotheses:

Hé” i 011 =021 =031
H(()Z) :
Hég) i 013 =103 =033
H(()4) i 014 =004 =03,.

012 =102 =1032

We aggregate these hypotheses into a single Hy which tests whether these K null hypotheses
are simultaneously true.

Hy: 0110621 =011—031=01—031=
B2 — 020 =012 —0320="022—032=
03— 023 ="013—033="023—033=
04— 024 =014—034="034—034=0.
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In WRS2 this hypothesis can be tested as follows:

R> set.seed(123)

R> sppba(errorRatio ~ group*essay, id, data = essays, avg = FALSE)

Call:

sppba(formula = errorRatio ~ group * essay, id = id, data = essays,
avg = FALSE)

Test statistics:

Estimate
essayl Control-Indirect 0.17664
essayl Control-Direct 0.10189
essayl Indirect-Direct -0.07475
essay2 Control-Indirect 0.23150
essay2 Control-Direct 0.25464
essay2 Indirect-Direct  0.02314
essay3 Control-Indirect 0.05614
essay3 Control-Direct 0.18000
essay3 Indirect-Direct 0.12386
essay4 Control-Indirect 0.43300
essay4 Control-Direct  -0.11489
essay4 Indirect-Direct -0.54789

Test whether the corrresponding population parameters are the same:
p-value: 0.546

Again, we cannot reject Hy.

Using this principle, many tests have to be carried out. An alternative that seems more
satisfactory in terms of Type I errors is to use the average across measurement occasions,
that is

_ 1 &
0. = EZejk. (12)
k=1
Correspondingly, in our example a null hypothesis can be formulated as
Ho: 01 = 05, = 05,

and computed as follows by using the default avg = TRUE:

R> set.seed(123)
R> sppba(errorRatio ~ group*essay, id, data = essays)

Call:
sppba(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:
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Estimate
Control 0.2243
Indirect 0.1054
Direct -0.1189

Test whether the corrresponding population parameters are the same:
p-value: 0.464

Finally, let us elaborate on the sppbi function which performs tests on the interactions.
In the sppbb call six parameters were tested and we ignored the between-subjects group
structure. Now we do not further ignore the group structure and compute M-estimators
based on measurement occasion differences for each group separately. In the notation below,
the group index is on the right hand side of the pipe symbol, the differences in measurement
occasions on the left hand side. The null hypothesis is a follows:

Ho: 0191 — 01310 =0141 — 02311 =041 — 0341 =
01212 — 01,32 = 0142 — Oa312 = Oz 420 — U342 =

01213 — 01,33 = 01,43 — 233 = 02,43 — 0343 = 0.

The WRS2 function call to test this hypothesis is:

R> set.seed(123)
R> sppbi(errorRatio ~ group*essay, id, data = essays)

Call:
sppbi(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:

Estimate
Control essayl-essay2 -0.14667
Control essayl-essay3 0.12083
Control essayl-essay4 0.26750
Control essay2-essay3 -0.11778
Control essay2-essay4 -0.02222
Control essay3-essay4 0.09556
Indirect essayl-essay2 -0.23600
Indirect essayl-essay3 0.21678
Indirect essayl-essay4 0.45278
Indirect essay2-essay3 0.19293
Indirect essay2-essay4 -0.07889
Indirect essay3-essay4 -0.27182
Direct essayl-essay2 0.10571
Direct essayl-essay3 0.26905
Direct essayl-essay4 0.16333
Direct essay2-essay3 -0.20221
Direct essay2-essay4 0.10643
Direct essay3-essay4 0.30864
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Test whether the corrresponding population parameters are the same:
p-value: 0.646

Again, we cannot reject Hy.

7. Robust nonparametric ANCOVA

7.1. Running interval smoothers

In this section we introduce a robust ANCOVA version which uses smoothing internally.
When dealing with regression, there are situations the usual linear model appears to suffice.
But it is well established that parametric regression models can be highly unsatisfactory. In
general, a smoother is a function that approximates the true regression line via a technique
that deals with curvature in a reasonably flexible manner. Smoothing functions typically have
a smoothing parameter by means of which the user can steer the degree of smoothing. If the
parameter is too small, the smoothing function might overfit the data. If the parameter is
too large, we might disregard important patterns. The general strategy is to find the smallest
parameter so that the plot looks reasonably smooth.

A popular regression smoother is LOWESS (locally weighted scatterplot smoothing) regres-
sion which belongs to the family of nonparametric regression models and can be fitted using
the lowess function. The smoothers presented here involve robust location measures from
above and are called running interval smoothers which work as follows.

We have pairs of observations (X;, Y;). The strategy behind an interval smoother is to
compute the y-trimmed mean using all of the Y; values for which the corresponding X;’s are
close to a value of interest x (Wilcox 2017). Let MAD be the median absolute deviation,
that is, MAD = median|X; — )N(| Let MADN = MAD/zg 75, where zy.75 represents the 0.75
quantile of the standard normal distribution. The point «x is said to be close to X if

|X; — x| < f x MADN.

Here, f as a constant called the smoothing parameter. As f increases, the neighborhood of x
gets larger. Let
N(X;) ={j:|1Xj — 2 < f x MADN},

such that N(X;) indexes all the X; values that are close to . Let 0; be a robust location
parameter of interest. A running interval smoother computes n 0; values based on the corre-
sponding Y-value for which Xj is close to X;. That is, the smoother defines an interval and
runs across all the X-values. Within a regression context, these estimates represent the fitted
values. Then we can plot the (X;,6;) tuples into the (X;,Y;) scatterplot which gives us the
nonparametric regression fit. The smoothness of this function depends on f.

The WRS2 package provides smoothers for trimmed means (runmean), general M-estimators
(rungen), and bagging versions of general M-estimators (runmbo), recommended for small
datasets.

Let us look at a data example taken from Wright and London (2009) where we have measure-
ments for the length of a chile and its heat (scored on a scale from 0-11). We study various f
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Figure 7: Left panel: smoothers with various robust location measures. Right panel: trimmed
mean smoother with varying smoothing parameter f.

values and various robust location measures 6;. The left panel in Figure 7 displays smoothers
involving different robust location measures. The right panel shows a trimmed mean inter-
val smoothing with varying smoothing parameter f. We see that, at least in this dataset,
there are no striking differences between various smoothers (see functions runmean, rungen,
and runmbo) among the various location measures. However, the choice of the smoothing
parameter f affects the function heavily.

7.2. Robust ANCOVA

ANCOVA involves a factorial design and metric covariates that were not part of the exper-
imental manipulation. It assumes homogeneity of regression slopes across the groups when
regressing the dependent variable on the covariate. In addition, normality is assumed as
well as two types of homoscedasticity. Violating any of these assumptions can have a serious
negative impact on the classic ANCOVA method. The robust ANCOVA function in WRS2
does not assume homoscedasticity nor homogeneity of regression slopes. In fact, it does not
make any parametric assumption on the regressions at all and uses running interval smooth-
ing (trimmed means) for each subgroup. Both nonparametric curves can be compared for
subgroup differences at various points of interest along the x-continuum.

The WRS2 function ancova fits a robust ANCOVA. In its current implementation it is lim-
ited to one factor with two categories and one covariate only. A bootstrap version of it is
implemented as well (ancboot). Both functions perform the running interval smoothing on
the trimmed means. Yuen’s tests on trimmed mean differences are applied at specified design
points. It the design point argument (pts) is not specified, the routine automatically com-
putes five points (for details see Wilcox 2017, p. 695). It is suggested that group sizes around
the design point subject to Yuen’s test should be at least 12. Regarding the multiple testing
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problem, the Cls are adjusted to control the probability of at least one Type I error. The
p-values are not adjusted.

The dataset we use to demonstrate robust ANCOVA is from Gelman and Hill (2007). It is
based on data involving an educational TV show for children called “The Electric Company”.
In each of four grades, the classes were randomized into treated groups and control groups.
The kids in the treatment group were exposed to the TV show, those in the control group
not. At the beginning and at the end of the school year, students in all the classes were
given a reading test. The average test scores per class (pre-test and post-test) were recorded.
In this analysis we use the pretest score as the covariate and are interested in possible dif-
ferences between treatment and control group with respect to the post-test scores. We are
interested in comparisons at six particular design points. We set the smoothing parameters
to a considerably small value.

R> comppts <- c(18, 70, 80, 90, 100, 110)

R> fitanc <- ancova(Posttest ~ Pretest + Group, frl = 0.3, fr2 = 0.3,
+ data = electric, pts = comppts)

R> fitanc

Call:
ancova(formula = Posttest ~ Pretest + Group, data = electric,
fr1 = 0.3, fr2 = 0.3, pts = comppts)

nl n2 diff se lower CI upper CI statistic p-value
Pretest = 18 21 20 -11.1128 4.2694 -23.3621 1.1364 2.6029 0.0163
Pretest = 70 20 21 -3.2186 1.9607 -8.8236 2.3864 1.6416 0.1143
Pretest = 80 24 23 -2.8146 1.7505 -7.7819  2.1528 1.6079 0.1203
Pretest = 90 24 22 -5.0670 1.3127 -8.7722 -1.3617 3.8599 0.0006
Pretest = 100 28 30 -1.8444 0.9937 -4.6214  0.9325 1.8561 0.0729
Pretest = 110 24 22 -1.2491 0.8167 -3.5572 1.0590 1.5294 0.1380

Figure 8 shows the results of the robust ANCOVA fit. The vertical gray lines mark the design
points. By taking into account the multiple testing nature of the problem, the only significant
group difference we get for a pretest value of x = 90. For illustration, this plot also includes
the linear regression fits for both subgroups (this is what a standard ANCOVA would do).

8. Robust mediation analysis

In this section we focus on a simple robust mediator model, involving a response Y, a predictor
X, and a mediator M, and consisting of the following set of regressions:

Yi =B + BuXi + €,
M; = Boz + P12Xi + iz,
Yi = Bos + B13Xi + PasM; + eis.
The amount of mediation is reflected by the indirect effect 512523 (also called the mediating

effect). The state-of-the-art approach to test for mediation (Hp: [12823 = 0) is to apply a
bootstrap approach as proposed by Preacher and Hayes (2004).
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Figure 8: Robust ANCOVA fit on TV show data across treatment and control group. The
nonparametric regression lines for both subgroups are shown as well as the OLS fit (dashed
lines). The vertical lines show the design points our comparisons are based on.

In terms of a robust mediator model version, instead of OLS a robust estimation routine needs
be applied to estimate the regression equations above (e.g., an M-estimator as implemented in
the rlm function can be used). For testing the mediating effect, Zu and Yuan (2010) proposed
a robust approach which is implemented in WRS2 via the ZYmediate function. For technical
details we refer to Zu and Yuan (2010).

The example we use for illustration is taken from Howell (2012), and based on data by
Leerkes and Crockenberg (2002). In this dataset (n = 92), the relationship between how girls
were raised by there own mother (MatCare) and their later feelings of maternal self-efficacy
(Efficacy), that is, our belief in our ability to succeed in specific situations, is studied. The
mediating variable is self-esteem (Esteem). All variables are scored on a continuous scale.

In the first part we fit a standard mediator model with bootstrap-based testing of the medi-
ating effect using the mediation package (Tingley, Yamamoto, Hirose, Keele, and Imai 2014).

R> library("mediation")

R> fit.mx <- Im(Esteem ~ MatCare, data = Leerkes)

R> fit.yxm <- Im(Efficacy ~ MatCare + Esteem, data = Leerkes)

R> set.seed(123)

R> fitmed <- mediation::mediate(fit.mx, fit.yxm, treat = "MatCare",
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+ mediator = "Esteem", sims = 999, boot = TRUE, boot.ci.type = "bca")
R> summary(fitmed)

Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the BCa Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.05631 0.0152 0.10 0.006 *x
ADE 0.0565 -0.0229 0.13 0.152
Total Effect 0.1096 0.0422 0.17 0.002 *x
Prop. Mediated 0.4843 0.2453 2.68 0.008 *x
Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Sample Size Used: 92

Simulations: 999

In this output the ACME (average causal mediation effect) represents the indirect effect of
MatCare on Efficacy, including the 95% bootstrap CI. It suggests that there is a significant
mediator effect.

Now we fit this mediation model in a robust way with ZYmediate from WRS2 which uses
bootstrap for the CI of the mediation effect as well.

R> set.seed(123)
R> with(Leerkes, ZYmediate(MatCare, Efficacy, Esteem, nboot = 2000))

Call:
ZYmediate(x = MatCare, y = Efficacy, med = Esteem, nboot = 2000)

Mediated effect: 0.0513
Confidence interval: 0.016 0.0979
p-value: 0.001

For the robust regression setting we get similar results as with OLS. The bootstrap based
robust mediation test suggests again a significant mediator effect.

Note that robust moderator models can be fitted in a similar fashion as ordinary moderator
models. Moderator models are often computed on the base of centered versions of predictor
and moderator variable, including a corresponding interaction term (see, e.g., Howell 2012).
In R, a basic moderator model can be fitted using 1m. A robust version of it can be achieved
by replacing the 1m call by an rlm call from the MASS package.
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9. Discussion

This article introduced the WRS2 package for computing basic robust statistical methods in a
user-friendly manner. Such robust models and tests should be used when certain distributional
assumptions, as required by classical statistical methods, cannot be justified. The main focus
of the WRS2 package is on simple ANOVA (and related) strategies. For more complex
designs, we suggest to consider the following packages. The robustlmm package (Koller 2016)
implements robust mixed-effects models. For instance, if researchers have to deal with more
complex between-within subjects settings that go beyond of what the bwtrim function offers,
robustlmm with its rlmer function is highly attractive. For complex mediator-moderator
structures, or robust path models with or without latent variables in general, lavaan (Rosseel
2012) offers a variety of robust estimators. Some applications are shown in Field and Wilcox
(2017).
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Appendix

In this Appendix section we give some technical details on various test statistics using in the
text. This part is largely taken from various chapters in Wilcox (2017).

Trimmed/Winsorized mean: Let Wi,..., W, be the Winsorized random sample based on
Xi,...,Xp, obtained from replacing the most extreme values (based on Winsorizing level )
by its neighbors. The Winsorized mean is

1 n
Xw:nZIWZ
1=

The Winsorized variance is

n—14
=1

Using this expression, the standard error of the trimmed mean can be written as

_ Sy
) = T avm

Yuen’s test on trimmed means (yuen): Let n; and ny denote the number of observations
in each group, and h; and hs the number of observations left after trimming. The standard
error in the denominator of Eq. (5) is

(= 1)5511 (n2 — 1)51202
it = \/ (i —1)

ho(hy —1)
The df of the t-distribution the test statistic approximates under the null are

B (dl + d2)2
e
e s

The CI is (Xy1 — Xg2) & tv/d1 + da where t is the 1 — a/2 quantile of the ¢-distribution (with
corresponding df).
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Robust Cohen’s d version (yuen.effect.ci): The denominator in the effect size expres-
sion in Eq. (6) is
(m — 1S3, + (n2 — 1)S5,

Sy =
ni+ng —2

w

For unequal Winsorized variances Eq. (6) can be replaced by

X — X
S5 = 0.642°21 — 212
Swl
X - X
Oy = 0.642°21 — 212
Sw2

Yuen’s trimmed means test for dependent samples (yuend): Let X;; denote the ob-
served values in group j (here j = 1,2; n observations per group) with trimmed mean X,
and Y;; be the Winsorized observations with Winsorized means Y. Let g denote the number
of observations Winsorized /trimmed. The effective sample size is h = n — 2g. We define the
variance term
1 n
dj =Y (Yij = Y;)?
J h(h—l) ;( 1] ]) )

for groups 7 = 1,2, and the covariance term

n

D (Vi = Y1) (Yig — Ya).
i=1

1

dip= ———
2T h(h—1)
The t-distributed test statistic (df = h — 1) is given in Eq. (9).

Comparing two discrete distributions (binband): The Stoner-Kim method for comparing
two distributions (group sizes n; and ng; number of successes r1 and r2) defines

1 if | Y| > | _r2
= ni ng | — |n1 no |2
Ay = '
0 otherwise.
The test statistic implemented in binband is
ny n2
T=3" awB(x;n1,p)B(y; n2, p)
z=0y=0

with B(-) as the probability mass function of the binomial distribution with p = (r1+7r2)/(n1+
ng). For the CI of the differences in binomial proportions it is referred to Kulinskaya et al.
(2010).

One-way test trimmed means (tiway): For j =1,...,J groups it uses

d — (n; — 1)5313‘
7 hi(hy - 1)
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and subsequently computes w; = 1/d;, U = Z]- wj, and X = % Zj w; Xy;. 1t follows that

A= g 2 (%)
J

po 2= 5 (w0

2 _ R
o1 e k1

Based on these components the test statistic as used in tlway can be formulated as

which is F-distributed with df

I/1:J—1,

One-way test medians (mediway): It follows the same testing strategy as the one for the
trimmed means. The starting point is the McKean-Schrader estimate of the squared standard
error for the sample median M in group j:

§2 — (le - ]')S’l%)j
N

Subsequently, w; = 1/5]2, U= Zj wj, and M= % Zj w;M;. As above,

A gy Do (20 1)
J

27 —2) 5~ (1= wy/U)

21 1
;Y

B =

Based on these components the test statistic as used in medlway can be formulated as

A

Fop = ———
M=1T B

which, under the null, is F-distributed with df v; = J — 1 and 1» = .

Two-way test trimmed means (t2way): For a J x K two-way ANOVA design with factors
A and B, let P = JK the total number of cells. The starting point is to construct two contrast
matrices, one of dimension (J —1) x J for factor A, and one of dimension K —1 x K for factor
B. In our 2 x 3 example we get (see Wilcox 2017, p. 335 for a general construction principle):

C;=(1 -1),
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and
1 -1 0
Cx = (0 1 —1> ‘
Now we define two unit vectors of length J and K, i.e., 17 and 1. Using these vectors we
blow up the contrast matrices using the Kronecker product in order to get a final contrast

matrix encoding the main effects for A (dimension (J — 1) x P), the main effects for B
(dimension (K — 1) x P), and the interaction effects (dimension (K — 1) X p):

cW=cCc,®1k=(111 -1 -1 -1)

1 -1 0 1 -1 0>

(B) _ 1/ _
C _1J®CK_<0 1 10 1 -1

C(AXB):CJ®CK:<1 -1 0 -1 1 0)

0o 1 -1 0 -1 1

In the remainder of this section let C be a placeholder for either C4), CB) or CAXB)  Let
V be a P x P diagonal matrix with the squared standard errors of the sample trimmed means
on the diagonal. That is,

o (np - 1)‘93@
T hp(hy— 1)
We also define X} = (Xy1, Xp12, ..., Xug, Xeor, Xioo, - Xoores - Xog1, Xego, .-, Xpyk ) as
the vector of length p of the sample trimmed means. Based on these matrices we can now
define the x2-distributed test statistics (main effects for A and B, interaction effect):

Q =X,c(cva)tex,

The df’s are J — 1, K — 1, and (J — 1)(K — 1), respectively, depending on which effect we
study in C. However, the t2way function adjusts the critical value ¢, especially necessary for
small sizes. Therefore it does not report any df’s. The adjusted critical value is

. c 3¢
c _C+2kz <H<1+k+2>>’

where k is the rank of C, H = (r5,/(h, — 1)), and R = VC(CVC)~'C. If Q > ¢*, reject
Hy.

Two-way test medians (med2way): For the j-th level of factor A and the k-th level of factor
B, let n;; be the number of observations, Mj; be the sample median with squared standard
error szk (McKean-Schrader estimate, see above). We define R; = >, M, Wi, = i M,

and dj, = szk. We focus on the main effects first. We need
2
K
. ( k=1 djk:)
I/j = 174 d2 ,
P jk/(”jk -1

2
) (Z}'Izl djk)
Wg = 7 > .
Zj:l djk/(njk -1)




36 The WRS2 Package

Let rj = 1/ Ek ik and wy = 1/ Ej dj, with sums r, = Z]- rj and wg = ), 7. Further,
R= (>2;miRj)/rs and W = (3, wxWi)/ws. We compute

= Y
K 2
(1 —wj/ws)
B, =

which allows us to compute the test statistics for the main effects:
J .
VA — Zj:l rj(Rj - R)2
2(J—2)B,
(7= 1) (1+ 2520

VB _ Sy we (Wi — W)?
2(K-2)B
(K 1) (1+ 2022 )

Both statistics are F-distributed with the following df: v; = J — 1 and vy = oo for V(4 and
v =K —1 and vy = oo for V(5.

For the A x B interaction we need D, = 1/dj, D = Zj Dji, Dj. = >, Dji, and D.. =
> >k Djk- Based on

J K J K
Mjk = ZleMlk/D-k + Z Dijjm/DjA — Z Z Dllim/D“

=1 m=1 =1 m=1

we define the test statistic

J K
Vs Z Z My, = Mje)*.
=1 k=1
This statistic is x2-distributed with df v = (J — 1)(K — 1).

One-way repeated measures ANOVA (rmanova): Let X;; denote the observed values at
time (or group) j with trimmed means X;; and X; = > X;j/J, and Y;; be the Winsorized
observations with Winsorized means Y;., Yj, and Y.. Let h = n — 2g be the effective sample
size based on the trimming amount. We compute

J
Qc=(n—29)) (Xy—X1)°,
J=1

and
n

J
Z j +Y..)2.

j= z:1
Let Re = Q./(J+ 1) and R. = Q./((h — 1)(J — 1)). The test statistic is

—_

F = R./R..
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For the df we define

n

D (Vi = Y (Y — V).
=1

Let v. =33 v/ J?, Vg = > vij/J, and v =37 v/ J. Further,
A= J* g —0.)%/(J - 1),

1
n—1

Ujk =

J J J
B= Vi — 20 ) 0+ T2,
j=1 k=1 j=1
and
n(J—1)é—2

€ =

(J—1(n—-1—(J—=1)
with é = A/B. Subsequently, the df can be expressed as

v = (J - 1)¢,
vo = (J — 1)(h — 1)e.

Between-within subjects ANOVA on the trimmed means (bwtrim): The test statistic
is constructed according to the same principles as in t2way. The main difference is that for
each factor level j of factor A we estimate

(n; —1)S;
b
hj(hj —1)
where S; is an estimate for the K x K Winsorized covariance matrix. The V; matrices are

collected in the block diagonal matrix V. Let C be the contrast matrix (rank k) of the effect
we want to study. The test statistic is

Q =X,c(cva)lcx;,.

V; =

This statistic needs to be modified as follows in order to be F-distributed. Let Q; be a
JK x JK a block diagonal matrix. We compute

J

A= ;;(tr«vc’(cvcf)—lcgj)?) + (tr(VC'(CVC)1CQy))?)/ (h; — 1),
and 6A
c=k+2A4— m

Under Hy, Q/c is F-distributed with df vy = k and vo = k(k + 2)/(3A).
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