
acebayes: An R Package for Bayesian Optimal

Design of Experiments via Approximate Coordinate

Exchange

Antony M. Overstall
University of Southampton

David C. Woods
University of Southampton

Maria Adamou
University of Southampton

Abstract

We describe the R package acebayes and demonstrate its use to find Bayesian optimal
experimental designs. A decision-theoretic approach is adopted, with the optimal design
maximising an expected utility. Finding Bayesian optimal designs for realistic problems
is challenging, as the expected utility is typically intractable and the design space may be
high-dimensional. The package implements the approximate coordinate exchange algo-
rithm to optimise (an approximation to) the expected utility via a sequence of conditional
one-dimensional optimisation steps. At each step, a Gaussian process regression model
is used to approximate, and subsequently optimise, the expected utility as the function
of a single design coordinate (the value taken by one controllable variable for one run of
the experiment). In addition to functions for bespoke design problems with user-defined
utility functions, acebayes provides new functions tailored to finding designs for common
generalised linear and nonlinear models. The package provides a step-change in the com-
plexity of problems that can be addressed, enabling designs to be found for much larger
numbers of variables and runs than previously possible. We provide tutorials on the ap-
plication of the methodology for four illustrative examples of varying complexity where
designs are found for the goals of parameter estimation, model selection and prediction.
These examples demonstrate previously unseen functionality of acebayes.

Keywords:A-optimality, computer experiments, D-optimality, decision-theoretic design, Gaus-
sian process regression, generalised linear models, high-dimensional design, model selection,
nonlinear models, prediction, pseudo-Bayesian design.

2 acebayes: Bayesian Design via Approximate Coordinate Exchange

1. Introduction

A well-planned and executed experiment is an efficient and effective way of learning the effect
of an intervention on a process or system (Box et al. 2005), and design of experiments is a
key contribution of statistics to the scientific method (Stigler 2016, ch. 6). Statistical design
is an “a priori” activity, taking place before data is collected, and so fits naturally within a
Bayesian framework. Before experimentation, current knowledge on models and parameters
can be represented by prior probability distributions, and the experimental aim (e.g., param-
eter estimation, model selection, or prediction) can be incorporated into a decision-theoretic
approach through the specification of a utility function (Berger 1985, ch. 2). A Bayesian
optimal design is then found by maximising the expectation of this utility over the space of
all possible designs, where expectation is with respect to the joint distribution of all unknown
quantities including the, as yet, unobserved responses (Chaloner and Verdinelli 1995).

To formalise, suppose the aim of an experiment that varies k variables in n runs is to estimate
or identify quantities γ = (γ1, . . . , γp)

>, which, for example, may be (functions of) parameters,
model indicators or future responses. We perform this task using data y = (y1, . . . , yn)> ∈
Y ⊂ Rn collected using a design d ∈ D ⊂ Rn×k, an n × k matrix with ith row x>i =
(xi1, . . . , xik) holding the treatment, or combination of values of the controllable variables,
assigned to the ith run of the experiment (i = 1, . . . , n). We refer to nk as the dimensionality
of the design and the xij as coordinates of the design (j = 1, . . . , k).

A decision-theoretic Bayesian optimal design d? maximises

U(d) = Eγ,y|d [u(γ,y,d)]

=

∫
u(γ,y,d)π(γ,y|d) dγ dy (1)

=

∫
u(γ,y,d)π(γ|y,d)π(y|d) dγ dy (2)

=

∫
u(γ,y,d)π(y|γ,d)π(γ|d) dγ dy , (3)

with utility function u(γ,y,d) providing a measure of success of design d for quantities γ
and data y, and π(·|·) denoting a conditional probability density or mass function. The den-
sity/mass π(γ|d) quantifies prior information about γ available before the experiment is run.
The equivalence of Equations 2 and 3 follows from application of Bayes theorem; Equation 2
more clearly shows the dependency on the posterior distribution, whereas Equation 3 is often
more useful for calculations and computation.

Although straightforward in principle, there are several hurdles to the practical evaluation
and optimisation of Equations 2 or 3, highlighted in recent reviews by Ryan et al. (2016) and
Woods et al. (2017).

1. The expected utility often results from an analytically intractable and, typically, high-
dimensional integral. For such utilities, U(d) may be approximated by a weighted sum

Ũ(d) =
B∑
b=1

wbu(γb,yb,d) , (4)

for wb > 0. For example, a Monte Carlo approximation would sample {γb,yb}Bb=1 from
the joint distribution π(γ,y|d) and set wb = 1/B; maximisation of Ũ(d) would be a

Antony M. Overstall, David C. Woods, Maria Adamou 3

stochastic optimisation problem. For simple utility functions not depending on data
y, a deterministic quadrature approximation may be applied, with γb and wb being
quadrature abscissae and weights, respectively.

2. The design space may be continuous and of high dimension.

3. The utility function itself may not be available in closed form, requiring an approxima-
tion ũ(γ,y,d) to be substituted into Equation 4.

Most Bayesian optimal design methodology in the literature has been restricted to low-
dimensional designs, i.e., small values of nk. See Müller and Parmigiani (1995), Müller (1999),
Amzal et al. (2006), Long et al. (2013), and Drovandi et al. (2013, 2014), where the largest
designs found had nk = 4. To find designs with larger n for k = 1 variable, Ryan et al. (2014)
chose design points as quantiles of a parametric distribution. Although such an approach
reduces the dimension of the optimisation problem (e.g., to finding the optimal values of a
small number of parameters controlling the distribution), the original optimal design problem
is not being directly addressed and hence usually sub-optimal designs will be found.

Overstall and Woods (2017) recently presented the first general methodology for finding high-
dimensional Bayesian optimal designs using the approximate coordinate exchange (ACE)
algorithm. As will be described in Section 2.1, the main feature of this approach is the combi-
nation of the low-dimensional smoothing methodology of Müller and Parmigiani (1995) with
a coordinate exchange, or cyclic ascent, algorithm (Meyer and Nachtsheim 1995; Lange 2013,
p. 171). In essence, the high-dimensional, computationally expensive and often stochastic
optimisation problem is reduced to a sequence of one-dimensional, computationally cheaper,
and deterministic optimisations. In this paper, we describe the R package acebayes (Overstall
et al. 2017) which implements the ACE algorithm, and introduce functionality that facilitates
finding optimal designs for common classes of models, including generalised linear models
and nonlinear models. The package provides the first general-purpose software for finding
fully-Bayesian optimal designs. In addition, the package implements methods to find pseudo-
Bayesian designs (see Section 3.2) using coordinate exchange and quadrature approximations
(see Gotwalt et al. 2009). The package has been demonstrated by finding Bayesian opti-
mal designs for non-trivial statistical models, addressing design spaces with dimensionality
approaching two orders of magnitude greater than existing methods.

There are only a few other R packages that attempt to find optimal designs, and none that
tackle the general Bayesian design problem addressed by acebayes. The package AlgDesign
(Wheeler 2014) implements exchange-type algorithms to find D-, A- and I-optimal designs for
linear models. The package OptimalDesign (Harman and Filova 2016) tackles similar linear
model design problems using various algorithms including integer quadratic programming.
For nonlinear models, package ICAOD (Masoudi et al. 2017b) can be used to find designs for
quite general classes of models under “optimum-on-average” criteria, amongst others. Such
criteria are mathematically equivalent to“pseudo-Bayesian”design criteria, see Section 3. This
package uses the meta-heuristic imperialist competitive algorithm (Masoudi et al. 2017a). For
special classes of nonlinear models, locally optimal designs, with a point mass prior for γ and
utility functions not depending on y, can be found by packages LDOD (Masoudi et al. 2013),
designGLMM (Bush and Ruggiero 2016) and PopED (Nyberg et al. 2012).

This paper is structured as follows. We briefly describe both the ACE algorithm and its
implementation in acebayes in Section 2. Section 3 presents common utility functions em-

4 acebayes: Bayesian Design via Approximate Coordinate Exchange

ployed in Bayesian design, and discusses their computational approximation. In Section 4 we
demonstrate the use of various functions in the acebayes package to find optimal Bayesian
designs for common generalised linear and nonlinear models, and bespoke model selection and
prediction problems. We conclude in Section 5 with a short discussion.

2. Approximate coordinate exchange and acebayes

In this section we give a brief description of the ACE algorithm. Full details of the method-
ology can be found in Overstall and Woods (2017).

The algorithm has two phases, both of which are provided in full in Appendix A. In Phase I a
smooth, and computationally inexpensive, emulator for the approximation Ũ(d) in Equation 4
is maximised as a function of each design coordinate xij in turn, conditional on the values of
the other nk − 1 coordinates. In essence, the optimisation problem is solved via a sequence
of computer experiments (see Santner et al. 2003).

For a stochastic approximation to the expected utility (e.g., Monte Carlo integration), the
coordinate value that maximises each emulator is accepted with probability obtained from
a Bayesian test of equality of the approximations under the proposed and current designs.
For a deterministic approximation (e.g., quadrature), the design proposed by the emulator is
accepted if the value of Ũ(d) for the proposed design is larger than for the current design.

As Phase I tends to produce clusters of design points, Phase II of the algorithm can be applied
to attempt to amalgamate these clusters through use of a point exchange algorithm with a
candidate set formed from the points in the final Phase I design.

2.1. ACE algorithm

Phase I of the algorithm (Appendix A.1) uses cyclic ascent to maximise approximation Ũ(d) to
the expected utility. A one-dimensional emulator of Ũ(d) is built for each coordinate xij (i =
1, . . . , n; j = 1, . . . , k) in turn as the mean of the posterior predictive distribution conditioned
on a small number of evaluations of Ũ(d) and assuming a Gaussian process (GP) prior (see
Rasmussen and Williams 2006, ch. 2). For the ijth coordinate, an emulator is constructed by
(i) selecting a one-dimensional space-filling design, x1ij , . . . , x

Q
ij , with Q points; (ii) constructing

the Q designs dqij , with the qth design having ith run xqi = (xi1, . . . , xij−1, x
q
ij , xij+1, . . . , xik)

>

and all other runs equal to those from the current design; (iii) evaluating Ũ(dqij) for q =

1, . . . , Q; and (iv) fitting a GP regression model to the“data”{xqij , Ũ(dqij)}
Q
q=1 and constructing

an emulator Ûij(x) as the mean of the posterior predictive distribution. Maximisation of
Ûij(x) to obtain x?ij is via evaluation of the emulator for a large discrete grid of values of xij
to produce design d?ij with ith row (x?i)

> = (xi1, . . . , xij−1, x
?
ij , xij+1, . . . , xik). Overstall and

Woods (2017) found this approach to maximising Ûij(x) to be robust to multi-modal emulators
and computationally efficient due to the negligible computational expense of evaluating the
predictive mean.

If Ũ(d) is a Monte Carlo approximation, it is subject to two sources of potential errors:
Monte Carlo error and emulator inadequacy. To separate these components and reduce the
impact of a poor emulator, d?ij is only accepted as the next design in the algorithm with
probability p? obtained from a Bayesian hypothesis test, independent of the GP emulator
(see Step 2d in Appendix A.1). Here p? is calculated as the posterior probability that the

Antony M. Overstall, David C. Woods, Maria Adamou 5

expected utility for the proposed design d?ij is greater than that for the current design, given
independent Monte Carlo samples of the utility under each design and assuming normally
distributed utility values. For cases where this latter assumption is violated, Overstall et al.
(2018) developed an alternative procedure derived from a one-sided test of a difference in
proportions appropriate for use with, for example, a 0-1 utility function (see Equation 8 in
Section 3.1). Larger Monte Carlo sample sizes are typically used for these tests than for the
construction of the emulator, to increase the precision of approximation Ũ(d). Both tests are
implemented in acebayes.

For a deterministic Ũ(d), design d?ij is accepted if its approximate expected utility, evaluated
independently of the emulator, is greater than that of the current design.

Phase I can produce clusters of design points where, for example, design points xi and xi′

are separated by only a small Euclidean distance for some i, i′ = 1, . . . , n. Often, the design
can be improved by consolidating such points into a single repeated design point (see also
Gotwalt et al. 2009). Phase II of ACE (Appendix A.2) performs this consolidation step using
a point exchange algorithm (e.g., Atkinson et al. 2007, ch. 12) with a candidate set given
by the final design from Phase I. For Monte Carlo approximations to the expected utility,
comparison of the approximate expected utility between two designs is again made on the
basis of a Bayesian hypothesis test (see Step 6 of Appendix A.2).

In both phases, convergence is assessed informally using trace plots of the evaluations of
approximate expected utility at each iteration. See Section 4.2 for an example of such a plot
produced by acebayes.

Similar to all coordinate exchange algorithms (e.g., Goos and Jones 2011, pg. 36), ACE can
be sensitive to the starting design. For this reason, it should be repeated from C different
starting designs.

2.2. acebayes implementation of ACE

The main functions in the acebayes package are ace and pace, which implement both phases
of the ACE algorithm and have mandatory and optional arguments as given in Tables 1 and 2,
respectively. The ace function implements the ACE algorithm from a single starting design,
whereas pace repeats ACE from C different starting designs. The argument utility gives
the user complete flexibility to specify the design problem including the choice of statistical
model, prior distribution, experimental aim and any necessary approximation to the utility
function (see Section 3).

Much of the acebayes codebase is written in C++ and makes use of packages Rcpp (Eddelbuet-
tel and Francois 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014). Space-filling
designs to build the one-dimensional GP emulators are found using the R package lhs (Carnell
2016) which generates Latin hypercube samples.

To demonstrate the use of the ace and pace functions we use a simple Poisson response model
for estimating a single parameter γ = (θ). Consider an experiment, where the ith run involves
specifying the k = 1 variable xi ∈ [−1, 1] and measuring the count response yi. Assume the
following model

yi ∼ Poisson(µi),

independently, for i = 1, . . . , n, with µi = exp(xiθ). We assume a priori that θ ∼ N (0, 1). We

6 acebayes: Bayesian Design via Approximate Coordinate Exchange

Argument Description

utility A function with two arguments: d and B.
For a Monte Carlo approximation (deterministic = FALSE), it should
return a vector of length B where each element gives an evaluation of the
(approximate) utility function ũ(γb,yb,d) for design d for each pair (γb,yb)
generated from the joint distribution of γ and y for b = 1, . . . , B.
For a deterministic approximation (deterministic = TRUE), it should
return a scalar giving the approximate value of the expected utility for
design d. In this latter case, the argument B can be a list containing tuning
parameters for the deterministic approximation. If B is not required, the
utility function must still accept the argument, e.g., using the ... notation.

start.d For ace: an n× k matrix specifying the starting design for Phase I (see
Step 1 in Appendix A.1).
For pace: a list of C different starting designs.

Table 1: Mandatory arguments to the ace and pace functions.

find a design that maximises the expectation of the following utility function

u(θ,y,d) = u(θ,d) = I(θ; d) ,

where

I(θ; d) =

n∑
i=1

x2i exp (θxi)

is the Fisher information and d = (x1, . . . , xn)>. As u does not depend on y, the expected
utility reduces to

U(d) =

∫
u(θ,d)π(θ) dθ , (5)

where π(θ) is the density of the standard normal distribution. It is straightforward to show
that

U(d) =
n∑
i=1

x2i exp
(
x2i /2

)
,

and the optimal design is d∗ = (±1, . . . ,±1)>. However to demonstrate the use of the ace

and pace functions, we employ a Monte Carlo approximation to U(d) in Equation 5. This
approximation is implemented in the R function below which takes two arguments: an n× 1
matrix d and the Monte Carlo sample size B. It returns a vector of length B, where each
element is an evaluation of u(θ,d) for a value of θ generated from the prior distribution.

R> utilfisher <- function(d, B) {

+ theta <- rnorm(B)

+ ui <- matrix(rep(d[, 1] ^ 2, B), ncol = B) * exp(outer(d[, 1], theta))

+ apply(ui, 2, sum)

+ }

Antony M. Overstall, David C. Woods, Maria Adamou 7

Argument Description

B For a Monte Carlo approximation (deterministic = FALSE), a vector
of length two specifying the size of the Monte Carlo samples generated
from the joint distribution of unknown quantities and unobserved
responses, to use when approximating the expected utility via
Equation 4. The first element specifies the sample size to use in the
comparison procedures (see Steps 2d and 6 in Appendices A.1 and A.2,
respectively). The second element specifies the sample size to use for
the evaluations of Monte Carlo integration that are used to fit the
Gaussian process emulator (see Step 2b in Appendix A.1). If missing
when deterministic = FALSE, the default value is c(20000,1000).
For a deterministic approximation (deterministic = TRUE), B may be
a list of length two containing any necessary tuning parameters for the
utility calculations for the comparison and emulation steps.

Q The number, Q, of evaluations of the approximation to the expected
utility function (1) used to construct the GP emulator. The default is Q
= 20.

N1 The number, N1, of iterations of Phase I. The default is N1 = 20.

N2 The number, N2, of iterations of Phase II. The default is N2 = 100.

lower Lower limits on the design space. It can be a scalar (all elements have
the same lower limit) or an n× k matrix so that all elements can have
unique lower limits. The default is lower = -1.

upper Upper limits on the design space; see lower. The default is upper = 1.

limits A function that can be used to define complex constraints on the design
space. The default is limits = NULL, i.e., there are no constraints.

progress For ace only. A Boolean indicating whether progress of the ACE
algorithm is printed. The default is progress = FALSE.

binary A Boolean indicating whether the Bayesian two sample t-test (FALSE;
the default) or the test of proportions (TRUE) is carried out.

deterministic A logical argument indicating use of a Monte Carlo (FALSE, default) or
deterministic (TRUE) approximation to the expected utility.

mc.cores For pace only. The number of cores to use, i.e. at most how many child
processes will be run simultaneously. The default is mc.cores = 1.

n.assess For pace only. If deterministic = TRUE, the approximate expected
utility for the C final designs will be calculated as the mean of
n.assess approximations to the expected utility for each design.

Table 2: Optional arguments to the ace and pace functions.

8 acebayes: Bayesian Design via Approximate Coordinate Exchange

We now call the function ace to demonstrate finding a design with n = 12 runs from a single
starting design. The first mandatory argument utility is set to be the function defined
above. The second mandatory argument start.d specifies the starting design; note that
although k = 1, the starting design still needs to be an R matrix object. Here we use a
matrix of n zeros. We keep all other arguments as their default values and set a seed for
reproducibility.

R> set.seed(1)

R> n <- 12

R> start.d <- matrix(0, nrow = n, ncol = 1)

R> ex22a <- ace(utility = utilfisher, start.d = start.d)

Printing the resulting "ace" object summarises the inputs and the computing resources re-
quired.

R> ex22a

User-defined model & utility

Number of runs = 12

Number of factors = 1

Number of Phase I iterations = 20

Number of Phase II iterations = 100

Computer time = 00:00:36

An "ace" object is a list which includes the final designs from Phase 1 (phase1.d) and Phase
2 (phase2.d) of the algorithm. If N1 = 0 (i.e., there are no Phase I iterations), then phase1.d

will be equal to the argument start.d. Correspondingly, if N2 = 0 (i.e., there are no Phase
II iterations), then phase2.d will be equal to phase1.d.

Consider now repeating the above implementation of ACE from C = 10 different randomly
generated starting designs, where each element in the design is generated uniformly from
[−1, 1]. The starting designs are organised into a list and we then call the function pace with
the same utility argument as the call to ace above.

R> C <- 10

R> start.d <- list()

R> for(i in 1:C){

+ start.d[[i]] <- matrix(runif(n = n, min = -1, max = 1), ncol = 1)

+ }

R>

R> ex22b <- pace(utility = utilfisher, start.d = start.d)

Printing the resulting "pace" object summarises the inputs and the computing resources
required.

Antony M. Overstall, David C. Woods, Maria Adamou 9

R> ex22b

User-defined model & utility

Number of repetitions = 10

Number of runs = 12

Number of factors = 1

Number of Phase I iterations = 20

Number of Phase II iterations = 100

Computer time = 00:06:11

A "pace" object is a list which includes the Phase II design from each repetition (final.d)
and, from those, the design (d) found with the largest approximate expected utility. The S3

method assess can be used to compare two designs. It takes two mandatory arguments:
d1 and d2, specifying the two designs to be compared. The argument d1 should be either a
"ace" or "pace" object and the two designs will be compared on the basis of the expected
utility used for d1. The argument d2 should either be a "ace", "pace" or "matrix" object.
We use assess to compare the single starting design of n zeros, to the final designs from a
single repetition of ACE and from C repetitions. In cases like this, where the approximation
to the expected utility is non-deterministic, assess will calculate n.assess approximations
to the expected utility where n.assess is an optional argument. We set n.assess to be 100.
The function assess will return an "assess" object. For a non-deterministic approximation
to the expected utility, when printed, an "assess" object will show the mean and standard
deviation of the n.assess evaluations of the approximate expected utility for each design.

R> assess(d1 = ex22a, d2 = matrix(rep(0, n), ncol = 1), n.assess = 100)

Mean (sd) approximate expected utility of d1 = 19.78256 (0.1546731)

Mean (sd) approximate expected utility of d2 = 0 (0)

R> assess(d1 = ex22b, d2 = matrix(rep(0, n), ncol = 1), n.assess = 100)

Mean (sd) approximate expected utility of d1 = 19.78025 (0.1106841)

Mean (sd) approximate expected utility of d2 = 0 (0)

We can clearly see the improvement in approximate expected utility from the design of n zeros
and the designs found by ACE. It appears that, in this case, the C repetitions of ACE have
not led to any improvement in the design performance. The apparent decrease in approximate
expected utility is due to Monte Carlo error. This can be seen by plotting the "assess" object
providing side-by-side boxplots of the n.assess evaluations of the approximate expected
utility for each design.

R> assess22 <- assess(d1 = ex22a, d2 = ex22b, n.assess = 100)

R> plot(assess22)

10 acebayes: Bayesian Design via Approximate Coordinate Exchange

d1 d2

19
.4

19
.6

19
.8

20
.0

20
.2

Object

A
pp

ro
xi

m
at

e
ex

pe
ct

ed
 u

til
ity

Figure 1: Boxplots of the evaluations of the approximate expected utility for the designs
found from one (extttd1) and C = 10 (extttd2) repetitions of ACE.

Antony M. Overstall, David C. Woods, Maria Adamou 11

The resulting plot is shown in Figure 1 from which we can see that the performance of the
designs are very close. This can be confirmed by inspecting the two designs and noting that
they both consist only of values x± 1, i.e. both are optimal.

R> t(ex22a$phase2.d)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1

R> t(ex22b$d)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1

3. Utility functions and approximations

Prior to application of the ACE algorithm, a relevant, and perhaps pragmatic, choice of
utility function must be made that encapsulates the aim of the experiment. In Section 4,
we illustrate use of functions from acebayes by finding efficient designs under three common
utility functions.

3.1. Common utility functions

1. Shannon information gain (SIG; Lindley 1956):

uSIG(γ,y,d) = log π(γ|y,d)− log π(γ|d) (6)

= log π(y|γ,d)− log π(y|d) .

A SIG-optimal design that maximises the expectation of uSIG equivalently maximises
the expected Kullback-Liebler divergence between the prior and posterior distributions
(Chaloner and Verdinelli 1995).

2. Negative squared error loss (NSEL; e.g., Chaloner 1984):

uNSEL(γ,y,d) = − [γ − E(γ|y,d)]> [γ − E(γ|y,d)] . (7)

A NSEL-optimal design that maximises the expectation of uNSEL equivalently min-
imises the expected trace of the posterior variance matrix. Note that the use of this
utility is not appropriate for nominal or ordinal γ (for example, if γ holds binary model
indicator variables).

3. 0-1 utility (e.g., Felsenstein 1992):

u01(γ,y,d) =

p∏
l=1

I (Ml(y,d)− δl < γl < Ml(y,d) + δl) , (8)

where Ml(y,d) = arg maxγlπ(γl|y,d) is the marginal posterior mode of γl, I(A) is the
indicator function for event A, and δl ≥ 0 is a specified tolerance. This utility is only
non-zero if the posterior mode is “close” to γl for all l = 1, . . . , p. Setting δl = 0 is
generally only appropriate for discrete γl.

12 acebayes: Bayesian Design via Approximate Coordinate Exchange

3.2. Approximating utility functions

Most utility functions, including those in Section 3.1, require approximation of posterior
quantities, for example the marginal likelihood, π(y|d), or posterior mean, E (γ|y,d). Such
quantities are analytically intractable for most models. Here we review those methods imple-
mented in acebayes to produce approximate utilities ũ(γ,y,d).

Overstall and Woods (2017) used Monte Carlo approximations, with a sample {γb}
B̃
b=1 from

π(γ|d), to approximate uSIG and uNSEL (in Equations 6 and 7, respectively) to enable design
selection for parameter estimation, i.e., with γ = θ, for a single model. When combined with a
Monte Carlo approximation to the expected utility with sample size B, the resulting nested
Monte Carlo (or double-loop Monte Carlo) approximation to U(d) occurs bias of order
B̃−1 (see Ryan 2003). Hence, large values of both B and B̃ are required to achieve suitable
precision for design comparison and neglible bias, resulting in computationally expensive
utility approximations.

Although the use of the one-dimensional emulators Ûij(x) helps to alleviate the computa-
tional cost associated with a nested Monte Carlo approximation, the adoption of alternative,
cheaper, utility approximations can further increase the range and size of design problems
that can be addressed. Several classes of analytical approximations have been proposed using
normal approximations to the posterior distribution. Overstall et al. (2018) applied ACE
with a normal approximation to the posterior distribution with mean equal to the posterior
mode and variance-covariance matrix equal to the inverse of the expected Fisher information,
I(θ; d), minus the second derivative of the log prior density, both evaluated at the posterior
mode. Such an approximation can lead to analytically tractable, if still potentially biased,
normal-based approximations ũ(γ,y,d); for example, via a Laplace approximation to the
marginal likelihood (see also Long et al. 2013).

Simpler approximations to some utilities can be obtained by using I(θ; d)−1 as an approxi-
mation to the posterior variance-covariance matrix (e.g., Chaloner and Verdinelli 1995). For
example, for estimation of γ = θ, approximations to the SIG and NSEL utility functions are
given by

ũSIGD(θ,y,d) = log |I(θ; d)| , (9)

ũNSELA(θ,y,d) = −tr
{
I(θ; d)−1

}
. (10)

Designs that maximise the expectation of ũSIGD and ũNSELA with respect to the prior dis-
tribution of θ are referred to as pseudo-Bayesian D- and A-optimal, respectively.

3.3. Approximating the expected utility

The acebayes package uses expected utility approximations of the form given in Equation 4.
For the nested Monte Carlo and normal-based approximations, U(d) is approximated by the
sample mean of ũ(γb,yb,d) for a sample {γb,yb}

B
b=1 from π(γ,y|d). Default values of B

(and B̃ for nested Monte Carlo) are B = 1000 for constructing the one dimensional emulators
Ûij(x) and B = 20, 000 when calculating the probability of accepting the proposed design
(see Section 2.1).

For pseudo-Bayesian D- and A-optimal design, where the approximations given by Equa-
tions 9 and 10 do not depend on y, the p-dimensional integrals with respect to γ = θ can be
approximated using quadrature methods. The acebayes package implements a radial-spherical

Antony M. Overstall, David C. Woods, Maria Adamou 13

integration rule (Monahan and Genz 1997), with γb and ωb in Equation 4 being abscissas and
(non-constant) weights, respectively. The value of B is typically of the order of several hun-
dred, making this approach much less computationally intensive than either nested Monte
Carlo or normal-based methods. Both multivariate normal and independent uniform prior
densities are implemented for use with quadrature approximations in acebayes. See Got-
walt et al. (2009) for more details on using this quadrature scheme to find pseudo-Bayesian
D-optimal designs.

4. Examples

In this section, we demonstrate the use of the acebayes package to find Bayesian optimal
designs for four examples. Despite ACE being able to find efficient designs for larger and
more complex problems than existing methods in the literature, it still requires significant
computational resources. Hence we have chosen examples that illustrate the main features of
the methodology and package but that do not require excessive computer time to complete.
It should be clear how the examples can be extended to address more complex or realistic
scenarios. In particular, the main arguments to the functions ace and pace are essentially
identical. Therefore, to minimise the computer time taken to reproduce the examples, we only
demonstrate the pace functionality in Section 4.1 (in addition to that already demonstrated
in Section 2.2).

A particular feature of this section is demonstration of the functions paceglm and pacenlm,
which simplify the process of finding Bayesian optimal designs for generalised linear models
and nonlinear models, respectively. The ace function allows designs to be sought for very
general problems. This flexibility comes at the price that non-expert users may feel uncom-
fortable with the level of additional coding required to use the function. To remove this
potential barrier to the use of the package, paceglm and pacenlm provide wrappers to ace

that implement the ACE algorithm for these common model types. In both cases, the func-
tions allow designs to be found for parameter estimation under a single model for a range
of (approximated) utility functions and there are also corresponding functions, paceglm and
pacenlm, which implement repetitions of ACE for generalised linear models and nonlinear
models, respectively. Both (p)aceglm and (p)acenlm make use of the familiar formula and
family R arguments and objects. In Sections 4.1 and 4.2 we demonstrate, in detail, the use
of these two functions.

In each case, unless otherwise stated, we use a randomly generated Latin hypercube space-
filling design (see Santner et al. 2003, ch. 5) as the starting design for the ACE algorithm.
These designs are generated using the randomLHS function in the lhs package (Carnell 2016).
Each element of the starting design is scaled to lie in the stated design space. Additionally,
before we generate such a design, we set a random seed for full reproducibility of the results
in this section.

4.1. Compartmental non-linear model

In this example, we demonstrate using acenlm to generate a pseudo-Bayesian D-optimal
design for a compartmental model commonly used in pharmacokinetics (PK). The acenlm

function can find optimal designs for models of the form

yi ∼ N
(
µ(θ; xi), σ

2
)
, (11)

14 acebayes: Bayesian Design via Approximate Coordinate Exchange

where y1, . . . , yn are assumed independently distributed and the user specifies a non-linear
function, µ(θ; xi), of parameters θ, and prior distributions for both θ and σ2 > 0, the
unknown response variance.

A PK experiment typically involves introducing a fixed amount of drug to the body at time
zero and measuring at times t1, . . . , tn the amount of drug remaining in the body. Hence
the design consists of the n sampling times, i.e., xi = (ti), k = 1 and d = (t1, . . . , tn)>.
Here we assume a sampling interval such that ti ∈ [0, 24] hours. We illustrate acenlm on the
compartmental model

µ(θ; ti) = θ3 [exp (−θ1ti)− exp (−θ2ti)] ,

with p = 3 unknown parameters θ = (θ1, θ2, θ3)
>.

For non-linear models of the form of Equation 11, the Fisher information for θ is

I(θ; d) =
1

σ2

n∑
i=1

∂µ(θ; ti)

∂θ

∂µ(θ; ti)

∂θ>
.

Following Gotwalt et al. (2009), we find designs with n = 18 sampling times and assume that
elements of θ have the following independent prior distributions:

θ1 ∼ U [0.01884, 0.9884] , θ2 ∼ U [0.298, 8.298] , (12)

with θ3 having a prior point mass at 21.8.

To find a pseudo-Bayesian D-optimal design using acenlm, we first specify one starting design
having a the single column named "t" and with elements scaled to the sampling interval [0, 24].

R> set.seed(1)

R> n <- 18

R> k <- 1

R> p <- 3

R> start.d <- randomLHS(n = n, k = k) * 24

R> colnames(start.d) <- c("t")

We use quadrature to approximate the expected utility, and hence define the prior below as
a list containing a single matrix support, where the rows specify the lower and upper limits of
the uniform prior distribution for each parameter, respectively; see Equation 12. For use with
the acenlm function, the columns of this matrix should be named. As I(θ; d) only depends
linearly on 1/σ2, the relative performance of designs under pseudo-Bayesian criteria do not
depend on the unknown σ2. Hence it is not required to specify a prior distribution for σ2.

R> a1 <- c(0.01884, 0.298)

R> a2 <- c(0.09884, 8.298)

R> prior <- list(support = cbind(rbind(a1, a2), c(21.8, 21.8)))

R> colnames(prior[[1]]) <- c("theta1", "theta2", "theta3")

The acenlm function takes three mandatory arguments. The argument formula gives a
symbolic description of the non-linear model (in this example, ~ theta3 * (exp(- theta1

Antony M. Overstall, David C. Woods, Maria Adamou 15

* t) - exp(- theta2 * t))). The argument start.d specifies the starting design, an n×k
matrix with columns named as per the terms in the formula argument; and prior specifies
the prior distribution for θ, with the input for this argument depending on the chosen method

(see below). In addition, we set the lower and upper limits of each element of the design space
to be 0 and 24 respectively.

R> ex411 <- acenlm(formula = ~ theta3 * (exp(- theta1 * t) -

+ exp(- theta2 * t)), start.d = start.d, prior = prior, lower = 0,

+ upper = 24)

We compare the Phase I and II designs using the S3 method assess (as introduced in Sec-
tion 2.2). In cases of a deterministic approximation to the expected utility, assess will
calculate one approximation to the expected utility for each of d1 and d2. Furthermore, when
d1 is as a result of a call to acenlm or aceglm with the criterion argument being "D" or
"A", then assess will also calculate the pseudo-Bayesian relative D- or A-efficiency. The
pseudo-Bayesian relative D-efficiency of design d1 relative to design d2, defined as

Deff(d1,d2) = 100× exp {[UD(d1)− UD(d2)] /p} ,

provides a quantitative comparison of two designs. Here,

UD(d) =

∫
log |I(θ; d)|π(θ) dθ .

Similar relative efficiency exists for pseudo-Bayesian A-optimal designs. Comparing the two
designs as follows

R> assess(d1 = ex411, d2 = ex411$phase1.d)

Approximate expected utility of d1 = 15.79695

Approximate expected utility of d2 = 15.70753

Approximate relative D-efficiency = 103.0255%

we see that Phase II led to a small increase in the expected utility. We can also compare the
two designs in terms of the number of unique sampling times.

R> length(unique(ex411$phase1.d))

[1] 18

R> length(unique(ex411$phase2.d))

[1] 13

Therefore Phase II consolidated the design into 13 unique sampling times.

It is quite common in PK, and similar, experiments for there to be constraints on the minimum
time between successive measurements. For such experiments, the ordered sampling times,
t(1), . . . , t(n), should satisfy the following constraint:

min
i=1,...,n−1

|t(i) − t(i+1)| > c . (13)

16 acebayes: Bayesian Design via Approximate Coordinate Exchange

See Ryan et al. (2014) and Overstall and Woods (2017) for examples with similar constraints
on the design for the compartmental model.

We can include such constraints in Phase I of the ACE algorithm using the limits argument.
In Phase I, the candidate design is chosen by replacing the current coordinate (i.e., xij ,
i = 1, . . . , n; j = 1, . . . , k) by the value that maximises the predictive mean of the Gaussian
process emulator. As discussed in Section 2.1, this maximisation is achieved by choosing the
point with largest predicted mean from a grid of points, typically on an interval defined by
the arguments lower and upper. We can also specify the argument limits as a function to
incorporate (multivariate and dynamic) constraints on the design coordinates. The function
should have three arguments: d, i and j. Here d specifies the design, and i and j define the
current coordinate by specifying the row and column of d. The function should return a grid
of points (in the form of a vector) from which the point with the largest predicted mean will
be chosen.

The code below defines a limits function to incorporate the constraint given by Equation 13,
with c = 0.25 (i.e., 15 minute intervals between sampling). A grid of 10,000 points from lower

= 0 to upper = 24 is created. We then remove all points from this grid that are within 15
minutes of the sampling times in the current design excluding the ith point. Note that here
the function does not depend on j as the design involves only k = 1 factor.

R> limits <- function(d, i, j) {

+ grid<-seq(from = 0, to = 24, length.out = 10000)

+ for(s in as.vector(d)[-i]) {

+ grid <- grid[(grid < (s - 0.25)) | (grid > (s + 0.25))]

+ }

+ grid

+ }

We find a design satisfying the constraint by including the specification of the limits argu-
ment in the acenlm function and setting the number of Phase II iterations to N2 = 0 (as we
do not want to consolidate clusters into repeated sampling times; see the constraint given by
Equation 13).

R> ex412a <- acenlm(formula = ~ theta3 * (exp(- theta1 * t) -

+ exp(- theta2 * t)), start.d = start.d, prior = prior, lower = 0,

+ upper = 24, limits = limits, N2 = 0)

As described in Section 2.1, we should actually repeat ACE from C different starting designs.
This can be achieved using the pacenlm function which takes the same arguments as acenlm.
The only exception is that the argument start.d should be a list where each element is an
n× k matrix. Below we specify such a list with C = 20.

R> C <- 20

R> start.d <- list()

R> for(i in 1:C){

+ start.d[[i]] <- randomLHS(n = n, k = k) * 24

+ colnames(start.d[[i]]) <- c("t")

Antony M. Overstall, David C. Woods, Maria Adamou 17

+ }

R> ex412b <- pacenlm(formula = ~ theta3 * (exp(- theta1 * t) -

+ exp(- theta2 * t)), start.d = start.d, prior = prior, lower = 0,

+ upper = 24, limits = limits, N2 = 0)

We compare approximations to the expected utility for the design found from one repetition
of ACE against the design found under C = 20 repetitions.

R> assess(d1 = ex412a, d2 = ex412b)

Approximate expected utility of d1 = 15.34813

Approximate expected utility of d2 = 15.36289

Approximate relative D-efficiency = 99.50932%

we see that the design found under one repetition (ex412a$phase2.d) is about 99.5% D-
efficient compared to the design found under C = 20 repetitions. This demonstrates the
advantage of repeating ACE from different starting designs to minimise sensitivity to the
starting design.

4.2. Logistic regression

In this section we consider a logistic regression model from Overstall and Woods (2017) to
demonstrate the use of the aceglm function. We find designs that maximise the expected
NSEL utility for estimation of parameters γ = θ using two different approximations to the
utility function: 1) approximation given by Equation 10, resulting in a pseudo-Bayesian A-
optimal design; and 2) the normal-based approximation of Overstall et al. (2018).

A binary response is assumed to depend on k = 4 variables through the model

yi ∼ Bernoulli(ρi) ,

for i = 1, . . . , n with ρi = 1/[1 + exp(−ηi)],

ηi = θ0 +
4∑
j=1

θjxij ,

and θ = (θ0, θ1, θ2, θ2, θ4)
> being the p = 5 unknown parameters that require estimation. We

find designs with n = 6 runs, xi = (xi1, . . . , xi4)
>, assuming −1 ≤ xij ≤ 1 (i = 1, . . . , 6; j =

1, . . . , 4). The dimension of the design space is nk = 24.

Independent uniform prior distributions for each element of θ are assumed,

θ0 ∼ U[−3, 3] , θ1 ∼ U[4, 10] , θ2 ∼ U[5, 11] ,
θ3 ∼ U[−6, 0] , θ4 ∼ U[−2.5, 3.5] .

(14)

The aceglm function has four mandatory arguments. The arguments formula and family

are the well-known arguments we would supply to the glm function in the stats package
(R Core Team 2017) and are used to define the logistic regression model, i.e., formula = ~

x1 + x2 + x3 + x4 and family = binomial. The argument start.d specifies the starting

18 acebayes: Bayesian Design via Approximate Coordinate Exchange

design, an n× k matrix with columns named as per the terms in the formula argument; and
prior specifies the prior distribution for θ, with the input for this argument depending on
the chosen method (see below). Initially, we specify values for n, p and k, and generate the
starting design.

R> set.seed(1)

R> n <- 6

R> p <- 5

R> k <- 4

R> start.d <- randomLHS(n = n, k = k) * 2 - 1

R> colnames(start.d) <- c("x1", "x2", "x3", "x4")

Pseudo-Bayesian A-optimal design

We start by finding a pseudo-Bayesian A-optimal design by specifying criterion = "A".
Note that the default value is criterion = "D" which would result in a pseudo-Bayesian
D-optimal design using the approximation given in Equation 9. To approximate the expected
utility we use the radial-spherical quadrature rule discussed in Section 3.3. This can be spec-
ified by setting the method argument in aceglm to "quadrature", which is the default for
pseudo-Bayesian criteria (i.e., criterion being "A", "D" or "E"). Under this method, to spec-
ify the uniform prior distribution given by Equation 14, we define a list with a single matrix
argument support with the first row specifying the lower limits for the prior for each parame-
ter, and the second row specifying the upper limits. The other optional arguments to aceglm

are shared with ace (see Table 2). The exception is the argument deterministic, which is
not required for aceglm and acenlm as the method argument specifies if the approximation to
the expected utility is deterministic. We leave these optional arguments set to default values
but demonstrate their use in later examples.

R> a1 <- c(-3, 4, 5, -6, -2.5)

R> a2 <- c(3, 10, 11, 0, 3.5)

R> prior <- list(support = rbind(a1, a2))

R> ex411 <- aceglm(formula = ~ x1 + x2 + x3 + x4, family = binomial,

+ start.d = start.d, prior = prior, criterion = "A")

Normal-based approximation to the NSEL utility function

To apply the normal-based approximation to the NSEL utility function we let criterion =

"NSEL-Norm" in the aceglm function. This changes the default method argument to "MC"

implementing Monte Carlo. Under this method, we require an R function that generates a
sample from the prior distribution given by Equation 14.

R> prior <- function(B) {

+ theta <- matrix(0, nrow = B, ncol = p)

+ for(b in 1:B) {

+ theta[b,] <- runif(n = p, min = a1, max = a2)

+ }

Antony M. Overstall, David C. Woods, Maria Adamou 19

0 5 10 15 20

−
11

.5
−

11
.0

−
10

.5
−

10
.0

−
9.

5
−

9.
0

−
8.

5
−

8.
0

Phase I iteration

O
bs

er
va

tio
n

of
 e

xp
ec

te
d

ut
ili

ty

Phase I
Phase II

0 25.25 50.5 75.75 101
Phase II iteration

Figure 2: Convergence of phases I (lower x-axis) and II (upper x-axis) for the logistic regression
model under the normal-based approximation to the NSEL utility function.

+ theta

+ }

Again, we set all other optional arguments to their default values.

R> ex412 <- aceglm(formula = ~ x1 + x2 + x3 + x4, family = binomial,

+ start.d = start.d, prior = prior, criterion = "NSEL-Norm")

We can check the approximate convergence of the ACE algorithm using the S3 method
plot.ace.

R> plot(ex412)

This function produces a trace plot (see Figure 2) of the Monte Carlo approximation to the
expected utility (1) against iteration number for Phases I and II. In Phase I, the algorithm
makes very large initial improvements to the approximate expected utility, and appears to have
converged after six or seven iterations. Phase II does not appear to lead to any improvements
in the design, as also occurred when finding the pseudo-Bayesian A-optimal design, and this
can be confirmed by inspecting ex412$phase1.d and ex412$phase2.d (not shown) and noting
they are again identical up to reordering of rows.

We now compare the pseudo-Bayesian A-optimal design (ex411$phase2.d) to the design
found under the normal-based approximation to the NSEL utility (ex412$phase2.d).

20 acebayes: Bayesian Design via Approximate Coordinate Exchange

R> assess(d1 = ex412, d2 = ex411)

Mean (sd) approximate expected utility of d1 = -8.110576 (0.03266901)

Mean (sd) approximate expected utility of d2 = -9.995387 (0.03743736)

Notice how the optimal design under the normal-based approximation (ex412$phase2.d)
achieves a substantially larger expected NSEL utility than the pseudo-Bayesian A-optimal
designs. Overstall and Woods (2017) and Overstall et al. (2018) empirically investigated
how the difference between NSEL and A-optimal designs decreases as n, the number of runs,
increases, as the asymptotic approximation underpinning pseudo-Bayesian optimal designs
improves. Overstall et al. (2018) also found that, for this example, the difference between
designs found using ACE with nested Monte Carlo and normal-based approximations to the
expected NSEL utility were negligible, regardless of the value of n. However, designs under
the normal-based approximation typically took around one-third of the computational time
to find.

4.3. Model selection for chemical reactions

In this example, we demonstrate using the ace function for a problem that falls outside the
capabilities of aceglm and acenlm, and illustrate construction of a bespoke utility function.

This example is adapted from Box and Hill (1967) and concerns mechanistic modelling of
chemical reactions. We find designs with n runs where the ith run requires specifying the
reaction time, xi1 ∈ (0, 150), and temperature, xi2 ∈ (450, 600), at which to measure reaction
yield, yi (i = 1, . . . , n). Therefore each run of the design is a two-vector xi = (xi1, xi2)

>. The
following statistical model is posited:

yi ∼ N
(
µ(m,θ; xi), σ

2
)
,

where

µ(m,θ;xi) =

exp (−η(θ; xi)) for m = 0

[1 +mη(θ; xi)]
− 1

m for m = 1, 2, 3 .

Here

η(θ; xi) = θ1xi1 exp

(
− θ2
xi2

)
,

with unknown parameters θ = (θ1, θ2)
> and m ∈M = {0, 1, 2, 3} specifying the order of the

reaction, with m = 0, 1, 2, 3 corresponding to first-, second-, third- and fourth-order reactions,
respectively.

We create an R function to implement η(θ; xi) with arguments d, an n×k matrix, and theta,
a B × p matrix with bth row given by θb = (θ1b, θ2b)

>. It returns a B × n matrix with bith
element given by θ1bxi1 exp (−θ2bxi2). That is, it calculates the value of the function η for a
given design d for every row of a matrix of parameter values theta.

R> etafunc <- function(d, theta) {

+ outer(theta[, 1], d[, 1]) * exp(- outer(theta[, 2], 1 / d[, 2]))

+ }

Antony M. Overstall, David C. Woods, Maria Adamou 21

The aim of the experiment is to determine which order reaction is appropriate for the observed
responses, i.e., a choice from the set M = {0, 1, 2, 3}. That is, model selection with γ = (m)
in u(γ,y,d). Following Overstall et al. (2018), identical prior distributions are assumed for
the parameters under each model:

θ1 ∼ N
(
400, 252

)
, θ2 ∼ N

(
5000, 2502

)
. (15)

We fix the response standard deviation as σ = 0.1, double the value assumed by Box and Hill
(1967). We choose this larger value as use of too small a value of σ leads to the expected
utility becoming less dependent on the design, i.e., the expected utility surface is quite flat.
Equal prior probabilities are assumed for each model, i.e., π(m) = 1/4, for all m ∈M.

R> sig <- 0.1

R> prior <- function(B) {

+ theta1 <- rnorm(n = B, mean = 400, sd = 25)

+ theta2 <- rnorm(n = B, mean = 5000, sd = 250)

+ cbind(theta1, theta2)

+ }

We aim to find a design that maximises the expected 0-1 utility, i.e., the expectation of
u01 given by Equation 8, and set δ1 = δ = 0. For equal prior model probabilities, the
posterior modal model, M(y,d), will maximise the marginal likelihood given by π(y|m,d) =∫
π(y|m,d,θ)π(θ) dθ. As the marginal likelihood is not available in closed form for these

models, we use a Monte Carlo approximation implemented as a utility function which can
then be passed to the ace function to find an optimal design.

We approximate u01 by

ũ01(m,y,d) = I(m = M̃(y,d)) , (16)

where

M̃(y,d) = arg max π̃(y|m,d) ,

π̃(y|m,d) =
1

B̃

B̃∑
b=1

π(y|m, θ̃b,d) ,

with {θ̃b}B̃b=1 a sample from the prior distribution given by Equation 15, likelihood π(y|m,θ,d) =∏n
i=1 π(yi|m,θ,xi) and π(yi|m,θ,xi) being a normal density with mean µ(m,θ; xi) and vari-

ance σ2.

The expected 0-1 utility can then be approximated as

Ũ(d) =
1

B

B∑
b=1

ũ(mb,yb,d) ,

for a sample {mb,θb,yb}Bb=1 from the joint distribution of m, θ and y; such a sample can
be easily generated by sampling a model indicator from M with probabilities π(m), param-
eters from the prior distribution with density π(θ), and then responses from the conditional
distribution with density π(y|m,θ) (see the code below).

22 acebayes: Bayesian Design via Approximate Coordinate Exchange

We can now create an R function, util01, to implement this approximate utility. Note that
we set B̃ = 100. The function takes as arguments a design d and Monte Carlo sample size B.
The main work is done within the nested for loop; for each data set generated in the outer
loop, the posterior modal model is found by maximising a Monte Carlo approximation to the
marginal likelihood, which is calculated in the inner loop. It returns a vector of B evaluations
of the Monte Carlo approximated utility function ũ(m,y,d).

R> Btilde <- 100

R>

R> util01 <- function(d, B) {

+

+ theta <- prior(B)

+ mod <- sample(x = 0:3, size = B, replace = TRUE)

+

+ eta <- etafunc(d = d, theta = theta)

+ mu <- matrix(0, nrow = B, ncol = n)

+ mu[mod == 0,] <- exp(- eta[mod == 0,])

+ mu[mod == 1,] <- (1 + eta[mod == 1,]) ^ (- 1)

+ mu[mod == 2,] <- (1 + 2 * eta[mod == 2,]) ^ (- 1 / 2)

+ mu[mod == 3,] <- (1 + 3 * eta[mod == 3,]) ^ (- 1 / 3)

+

+ Y <- mu + sig * matrix(rnorm(B * n), nrow = B)

+

+ thetatilde <- prior(Btilde)

+ etatilde <- etafunc(d = d, theta = thetatilde)

+ mutilde0 <- exp(-etatilde)

+ mutilde1 <- (1 + etatilde) ^ (- 1)

+ mutilde2 <- (1 + 2 * etatilde) ^ (- 1 / 2)

+ mutilde3 <- (1 + 3 * etatilde) ^ (- 1 / 3)

+

+ modal <- rep(0, B)

+ for(b in 1:B) {

+ C <- matrix(0, nrow = Btilde, ncol = 4)

+ for(bt in 1:Btilde) {

+ C[bt, 1] <- sum(dnorm(x = Y[b,], mean = mutilde0[bt,],

+ sd = sig, log = TRUE))

+ C[bt, 2] <- sum(dnorm(x = Y[b,], mean = mutilde1[bt,],

+ sd = sig, log = TRUE))

+ C[bt, 3] <- sum(dnorm(x = Y[b,], mean = mutilde2[bt,],

+ sd = sig, log = TRUE))

+ C[bt, 4] <- sum(dnorm(x = Y[b,], mean = mutilde3[bt,],

+ sd = sig, log = TRUE))

+ }

+ logmarglik <- log(apply(exp(C), 2, mean))

+ modal[b] <- which.max(logmarglik) - 1

+ }

+ ifelse(modal == mod, 1, 0)

Antony M. Overstall, David C. Woods, Maria Adamou 23

+ }

We use the ace function along with util01 to find an optimal design. For illustration, we
search for a design with n = 20 runs and set the arguments B = c(1000, 100), Q = 15, N2
= 0 (to skip Phase II), and using the arguments lower and upper to set the bounds for each
factor (see Table 2). We specify a Bayesian hypothesis test of a difference in proportions by
setting binary = TRUE.

R> set.seed(1)

R> n <- 20

R> q <- 2

R> lower <- cbind(rep(0, n), rep(450, n))

R> upper <- cbind(rep(150, n), rep(600, n))

R> start.d <- randomLHS(n = n, k = q)*(upper - lower) + lower

R> ex43 <- ace(utility = util01, start.d = start.d, B = c(1000, 100), Q = 15,

+ N2 = 0, binary = TRUE, lower = lower, upper = upper)

We compare the approximations to the expected 0-1 utility for the starting design and the
final design from ACE as follows.

R> assess43 <- assess(d1 = ex43, d2 = start.d)

R> assess43

Mean (sd) approximate expected utility of d1 = 0.8789 (0.00611211)

Mean (sd) approximate expected utility of d2 = 0.80565 (0.0120973)

Assuming the data generating process is consistent with one of the models, the starting design
identifies the true model about 81% of the time. By using an optimal design we can increase
this to about 88%.

4.4. Optimal design for prediction

Prediction from a nonparametric regression model is a common aim of both spatial studies
and computer experiments, often using Gaussian process (GP) regression (or Kriging). For
example, optimal sensor placements, e.g., for pollution or environmental monitoring, may
be sought within a geographical region of interest to provide accurate predictions at unsam-
pled locations. See Diggle and Lophaven (2006), Zimmerman (2006) and Uciński and Patan
(2007). As the cost of maintaining large monitoring networks can be high, costs are often
also associated with the placement of each sensor. We demonstrate using acebayes to find an
optimal design for such a problem.

Here, a design consists of n locations xi = (xi1, xi2)
>, within a specified two-dimensional re-

gion, at each of which a response yi will be observed. The aim is to fit a Gaussian process model
to the resulting responses, y = (y1, . . . , yn)>, and to predict the n0 unobserved responses,
y0 = (y01, . . . , y0n0)>, where y0i is associated with pre-specified location x0i = (x0i1, x0i2)

>,

for i = 1, . . . , n0. Let ỹ =
(
y>,y>0

)>
denote the ñ × 1 vector of observed and unobserved

responses where ñ = n+ n0.

24 acebayes: Bayesian Design via Approximate Coordinate Exchange

The design problem is to specify the n × 2 matrix d (with ith row x>i) to best predict y0
where the meaning of “best” is controlled by the choice of utility function (see later).

A zero-mean Gaussian process model results in the assumption of multivariate normal distri-
bution for ỹ,

ỹ|σ2, φ, τ2 ∼ N
(
0, σ2Σ̃

)
, (17)

where σ2 > 0 is a scale parameter and

Σ̃ = C̃ + τ2Iñ. (18)

In Equation 18, Iñ is the ñ × ñ identity matrix, τ2 > 0 is the nugget, and C̃ is an ñ × ñ
correlation matrix partitioned as follows

C̃ =

(
C S
S> C0

)
. (19)

In Equation 19, C is an n× n matrix with rtth element

Crt = ρ(xr,xt, φ), for r, t = 1, . . . , n,

C0 is an n0 × n0 matrix with rtth element

C0rt = ρ(x0r,x0t, φ), for r, t = 1, . . . , n0,

S is an n× n0 matrix with rtth element

Srt = ρ(xr,x0t, φ), for r = 1, . . . , n and t = 1, . . . , n0,

and ρ is a known correlation function. In this example, we employ the squared exponen-
tial correlation function, ρ(xk,xl;φ) = exp{−φ

∑2
j=1(xkj − xlj)

2}, as implemented by the
following R function.

R> rho <- function(X1, X2, phi) {

+ k <- ncol(X1)

+ n1 <- nrow(X1)

+ n2 <- nrow(X2)

+ A <- matrix(0, nrow = n1, ncol = n2)

+ for(i in 1:k) {

+ A <- A - phi * (matrix(rep(X1[, i], n2), nrow =n1) -

+ matrix(rep(X2[, i], each = n1), nrow = n1)) ^ 2

+ }

+ exp(A)

+ }

We adopt a Bayesian approach with conjugate prior distribution assigned to the parameter
σ2:

σ−2 ∼ Gamma

(
a

2
,
b

2

)
,

where a = 3 and b = 1 are known shape and rate parameters, respectively. The correlation
parameter φ = 0.5 and nugget τ2 = 1× 10−5 are assumed known and fixed.

Antony M. Overstall, David C. Woods, Maria Adamou 25

R> phi <- 1

R> tau2 <- 0.00001

R> a <- 3

R> b <- 1

We assume that the two-dimensional region is such that 0 ≤ xij ≤ 1. The n0 pre-specified
locations x01, . . . ,x0n0 are given by the points on an evenly-spaced r × r grid where r = 10,
i.e., n0 = 100. We let d0 be the n0 × 2 matrix with ith row given by x>0i, for i = 1, . . . , n0.

R> k <- 2

R> r <- 10

R> n0 <- r ^ k

R> x0 <- seq(from = 0, to = 1, length.out = r)

R> d0 <- as.matrix(expand.grid(x0, x0))

We find optimal designs for prediction using a utility function adapted from Sansó and Müller
(1997) and Müller et al. (2004) which compromises between the accuracy of the posterior
predictive mean, E(y0|y), at the n0 new locations x01, . . . ,x0n0 against the cost of the n
placed sensors:

u(y0,y,d) =

n0∑
i=1

I(E(y0i|y)− δ < y0i < E(y0i|y) + δ)−
n∑
i=1

c(xi) , (20)

where δ > 0 controls the desired accuracy and c(xi) is the cost of taking an observation at
xi. In this example, the cost c(xi) depends on the location of the proposed sensor and is
given by c(xi) = x2i1 +x2i2, i.e., the squared Euclidean distance from the origin. The total cost
of the design is given by

∑n
i=1 c(xi). Under the model given by Equation 17, the posterior

predictive mean of y0 is given by

E(y0|y) = S>
(
C + τ2In

)−1
y , (21)

with ith element E(y0i|y), for i = 1, . . . , n0.

A Monte Carlo approximation to the expectation of u(y0,y,d) given by Equation 20 can be
constructed as

Ũ(d) =
1

B

B∑
b=1

u(y0b,yb,d) ,

with ỹb = (y>b ,y
>
0b)
> sampled from the marginal distribution of ỹ.

The function below implements this approximation, returning a vector of B evaluations of
u(y0,y,d). We have specified δ = 0.25.

R> delta <- 0.25

R>

R> utilpred <- function(d, B) {

+

+ n <- dim(d)[1]

+ C <- rho(d, d, phi)

26 acebayes: Bayesian Design via Approximate Coordinate Exchange

+ S <- rho(d, d0, phi)

+ C0 <- rho(d0, d0, phi)

+

+ sig2 <- 1 / rgamma(n = B, shape = 0.5 * a, rate = 0.5 * b)

+ Sigmatilde <- rbind(cbind(C, S), cbind(t(S), C0)) + tau2 * diag(n + n0)

+ cSigmatilde <- chol(Sigmatilde)

+ ytilde <- matrix(0, nrow = n + n0, ncol = B)

+ for(b in 1:B) {

+ ytilde[, b] <- sqrt(sig2[b]) * t(rnorm(n + n0) %*% cSigmatilde)

+ }

+

+ y <- ytilde[1:n,]

+ y0 <- ytilde[- (1:n),]

+

+ postpredmean <- t(S) %*% solve(C + tau2 * diag(n)) %*% y

+

+ accuracy <- rep(0,B)

+ for(b in 1:B) {

+ accuracy[b] <- sum(as.numeric(((postpredmean[, b] - delta) < y0[, b]) *

+ ((postpredmean[, b] + delta) > y0[,b])))

+ }

+

+ cost <- sum(apply(d^2, 1, sum))

+

+ accuracy - cost

+ }

We now illustrate the use of ace with these functions by finding a design with n = 10 sensors.

R> set.seed(1)

R> n <- 10

R> start.d <- randomLHS(n = n, k = k)

R> ex44 <- ace(utilpred, start.d, lower = 0, upper = 1)

We can compare the value of the objective function for the starting design and the optimal
design obtained from ACE.

R> assess(d1 = ex44, d2 = start.d)

Mean (sd) approximate expected utility of d1 = 95.86214 (0.02456676)

Mean (sd) approximate expected utility of d2 = 92.41169 (0.02434313)

We also compare the cost of each design.

R> sum(apply(start.d ^ 2, 1, sum))

[1] 6.653732

Antony M. Overstall, David C. Woods, Maria Adamou 27

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x 2

Figure 3: Bayesian optimal (•) and starting (4) designs for the prediction example.

R> sum(apply(ex44$phase2.d ^ 2, 1, sum))

[1] 3.081133

The difference in utility values between the Bayesian optimal design and the starting design
are mostly due to the much lower cost of the sensor placements in the optimal design. That is,
the optimal design has similar predictive accuracy as the starting design but at substantially
reduced cost. Figure 3 shows the very different distribution of the points in the optimal design
compared to the starting design, with the former having many more points in areas of low
cost near the origin.

5. Discussion

Bayesian optimal design is conceptually straightforward but often difficult, and computation-
ally expensive, to implement. The acebayes package provides a suite of functions that allow
optimal designs to be found for complex and realistic problems, with dimensionality at least
one order of magnitude greater than other current methods. The general purpose ace function
can be used to solve very general, and bespoke, design problems. The functions (p)aceglm

and (p)acenlm can find designs for common classes of statistical models.

Any set of examples can only be illustrative, and those in this paper are no different. To
aid exposition, we have deliberately kept the problems relatively simple and the designs
sought have been small. While acebayes allows much larger designs to be found than existing

28 acebayes: Bayesian Design via Approximate Coordinate Exchange

methods, for complex problems we would recommend coding the utility function in a low-
level programming language (e.g., C/C++) and running the code on a computational cluster.
The algorithm is heuristic, and so to overcome convergence to local optima, it should be run
multiple times from different starting designs, for example using parallel computing.

A. The approximate coordinate exchange algorithm

This appendix provides details on Phase I (Appendix A.1) and Phase II (Appendix A.2) of
the ACE algorithm.

A.1. Phase I

1. Choose an initial design d0 ∈ D and set the current design to be dC = d0.

2. For i = 1, . . . , n and j = 1, . . . , k, complete the following steps.

(a) Let dC(xqij) equal dC with ijth coordinate (entry) replaced by xqij , where x1ij , . . . , x
Q
ij

are the points from a one-dimensional space filling design in Dij , the design space
for the ijth element of d.

(b) For q = 1, . . . , Q, evaluate Ũ [dC(xqij)], the approximation to the expected utility,

e.g., Equation 4. Fit a Gaussian process emulator to “data”
{
xqij , Ũ [d(xqij)]

}Q
q=1

,

and set Ûij(x) to be the resulting predictive mean.

(c) Find

x?ij = arg maxx∈Dij
Ûij(x) ,

and set d? = dC(x?ij).

(d) For a stochastic (e.g., Monte Carlo) approximation Ũ , set dC = d? with probability
p∗ derived from a Bayesian hypothesis test. For a deterministic approximation (e.g.,
quadrature), set dC = d? if Ũ(d?) > Ũ(dC).

3. Repeat Step 2 N1 times.

A.2. Phase II

1. Set the current design, dC , to be the final design from Phase I of the ACE algorithm.

2. For i = 1, . . . , n, set

d
(1)
i =

[
(dC)>, (xCi)>

]>
,

where (xCi)> is the ith row of dC ; that is, form d
(1)
i by augmenting dC with a repeat of

the ith run.

3. Find i? = arg maxi=1,...,nŨ(d
(1)
i) and set d(2) = d

(1)
i? .

Antony M. Overstall, David C. Woods, Maria Adamou 29

4. For h = 1, . . . , n+ 1, set

d
(3)
h =

[
(x

(2)
1)>, . . . , (x

(2)
h−1)

>, (x
(2)
h+1)

>, . . . , (x
(2)
n+1)

>
]>

,

where (x
(2)
h)> is the hth row of d(2); that is, form d

(3)
h by removing the hth run.

5. Find h? = arg maxh=1,...,n+1Ũ(d
(3)
h) and set d∗ = d

(3)
h? .

6. For a stochastic (e.g., Monte Carlo) approximation Ũ , set dC = d? with probability
p∗ derived from a Bayesian hypothesis test. For a deterministic approximation (e.g.,
quadrature), set dC = d? if Ũ(d?) > Ũ(dC).

7. Repeat steps 2 to 6 N2 times.

References

Amzal B, Bois FY, Parent E, Robert CP (2006). “Bayesian-Optimal Design via Interacting
Particle Systems.” Journal of the American Statistical Association, 101, 773–785.

Atkinson AC, Donev AN, Tobias RD (2007). Optimum Experimental Designs, with SAS. 2nd
edition. Oxford University Press, Oxford.

Berger JO (1985). Statistical Decision Theory and Bayesian Analysis. 2nd edition. Springer-
Verlag, New York.

Box GEP, Hill WJ (1967). “Discrimination among Mechanistic Models.” Technometrics, 9,
57–71.

Box GEP, Hunter JS, Hunter WG (2005). Statistics for Experimenters: Design, Discovery
and Innovation. 2nd edition. John Wiley & Sons, Hoboken, New Jersey.

Bush S, Ruggiero K (2016). designGLMM: Finding Optimal Block Designs for a Gener-
alised Linear Mixed Model. R package version 0.1.0, URL https://CRAN.R-project.org/

package=designGLMM.

Carnell R (2016). lhs: Latin Hypercube Samples. R package version 0.14, URL https:

//CRAN.R-project.org/package=lhs.

Chaloner K (1984). “Optimal Bayesian Experimental Designs for Linear Models.” The Annals
of Statistics, 12, 283–300.

Chaloner K, Verdinelli I (1995). “Bayesian Experimental Design: A Review.” Statistical
Science, 10, 273–304.

Diggle P, Lophaven S (2006). “Bayesian Geostatistical Design.” Scandinavian Journal of
Statistics, 33, 53–64.

https://CRAN.R-project.org/package=designGLMM
https://CRAN.R-project.org/package=designGLMM
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs

30 acebayes: Bayesian Design via Approximate Coordinate Exchange

Drovandi CC, McGree JM, Pettitt AN (2013). “Sequential Monte Carlo for Bayesian Se-
quentially Designed Experiments for Discrete Data.” Computational Statistics and Data
Analysis, 57, 320–335.

Drovandi CC, McGree JM, Pettitt AN (2014). “A Sequential Monte Carlo Algorithm to
Incorporate Model Uncertainty in Bayesian Sequential Design.” Journal of Computational
and Graphical Statistics, 23, 3–24.

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40, 1–18.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063.

Felsenstein K (1992). “Optimal Bayesian Design for Discrimination Among Rival Models.”
Computational Statistics and Data Analysis, 14, 427–436.

Goos P, Jones B (2011). Optimal design of experiments: a case study approach. John Wiley
& Sons, Ltd.

Gotwalt CM, Jones BA, Steinberg DM (2009). “Fast Computation of Designs Robust to
Parameter Uncertainty for Nonlinear Settings.” Technometrics, 51, 88–95.

Harman R, Filova L (2016). OptimalDesign: Algorithms for D-, A-, and IV-
Optimal Designs. R package version 0.2, URL https://CRAN.R-project.org/package=

OptimalDesign.

Lange K (2013). Optimization. 2nd edition. Springer-Verlag, New York.

Lindley DV (1956). “On a Measure of the Information Provided by an Experiment.” The
Annals of Mathematical Statistics, 27, 986–1005.

Long Q, Scavino M, Tempone R, Wang S (2013). “Fast Estimation of Expected Information
Gains for Bayesian Experimental Designs Based on Laplace Approximations.” Computer
Methods in Applied Mechanics and Engineering, 259, 24–39.

Masoudi E, Holling H, Wong WK (2017a). “Application of Imperialist Competitive Algorithm
to Find Minimax and Standardized Maximin Optimal Designs.” Computational Statistics
and Data Analysis, 113, 330–345.

Masoudi E, Holling H, Wong WK (2017b). ICAOD: Imperialist Competitive Algorithm for
Optimal Designs. R package version 0.9.2, URL https://CRAN.R-project.org/package=

ICAOD.

Masoudi E, Sarmad M, Talebi H (2013). LDOD: Finding Locally D-optimal Designs for
some Nonlinear and Generalized Linear Models. R package version 1.0, URL https://

CRAN.R-project.org/package=LDOD.

Meyer RK, Nachtsheim CJ (1995). “The Coordinate-Exchange Algorithm for Constructing
Exact Optimal Experimental Designs.” Technometerics, 37, 60–69.

Monahan J, Genz A (1997). “Spherical-Radial Integration Rules for Bayesian Computation.”
Journal of the American Statistical Association, 92, 664–674.

https://CRAN.R-project.org/package=OptimalDesign
https://CRAN.R-project.org/package=OptimalDesign
https://CRAN.R-project.org/package=ICAOD
https://CRAN.R-project.org/package=ICAOD
https://CRAN.R-project.org/package=LDOD
https://CRAN.R-project.org/package=LDOD

Antony M. Overstall, David C. Woods, Maria Adamou 31

Müller P (1999). “Simulation-Based Optimal Design.” In JM Bernardo, JO Berger, AP Dawid,
AFM Smith (eds.), Bayesian Statistics 6, pp. 459–474. Oxford University Press, Oxford.

Müller P, Parmigiani G (1995). “Optimal Design via Curve Fitting of Monte Carlo Experi-
ments.” Journal of the American Statistical Association, 90, 1322–1330.

Müller P, Sansó B, De Iorio M (2004). “Optimal Bayesian Design by Inhomogeneous Markov
Chain Simulation.” Journal of the American Statistical Association, 99(467), 788–798.

Nyberg J, Ueckert S, Strömberg EA, Karlsson M, Hooker AC (2012). “PopED: An Extended,
Parallelized, Nonlinear Mixed Effects Models Optimal Design Tool.” Computer Methods
and Programs in Biomedicine, 108, 789–805.

Overstall A, McGree J, Drovandi C (2018). “An Approach for Finding Fully Bayesian Optimal
Designs using Normal-Based Approximations to Loss Functions.” Statistics and Computing,
28(2), 343–358.

Overstall AM, Woods DC (2017). “Bayesian Design of Experiments using Approximate Co-
ordinate Exchange.” Technometrics, 59, 458–470.

Overstall AM, Woods DC, Adamou M (2017). acebayes: Optimal Bayesian Experimental
Design using the ACE Algorithm. R package version 1.4.1, URL https://CRAN.r-project.

org/package=acebayes.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rasmussen CE, Williams CKI (2006). Gaussian Processes for Machine Learning. MIT Press,
Cambridge, MA, USA.

Ryan EG, Drovandi CC, McGree JM, Pettitt AN (2016). “A Review of Modern Computational
Algorithms for Bayesian Optimal Design.” International Statistical Review, 84, 128–154.

Ryan EG, Drovandi CC, Thompson MH, Pettitt AN (2014). “Towards Bayesian Experi-
mental Design for Nonlinear Models that Require a Large Number of Sampling Times.”
Computational Statistics and Data Analysis, 70, 45–60.

Ryan K (2003). “Estimating Expected Information Gains for Experimental Designs with
Application to the Random Fatigue-Limit Model.” Journal of Computational and Graphical
Statistics, 12, 585–603.

Sansó B, Müller P (1997). “Redesigning a Network of Rainfall Stations.” In C Gatsonis,
RE Kass, B Carlin, A Carriquiry, A Gelman, I Verdinelli, M West (eds.), Case Studies in
Bayesian Statistics IV, pp. 383–393. Springer-Verlag, New York.

Santner TJ, Williams BJ, Notz WI (2003). The Design and Analysis of Computer Experi-
ments. Springer-Verlag, New York.

Stigler SM (2016). The Seven Pillars of Statistical Wisdom. Harvard University Press, Cam-
bridge, Massachusetts.

Uciński D, Patan M (2007). “D-optimal Design of a Monitoring Network for Parameter
Estimation of Distributed Systems.” Journal of Global Optimisation, 39(2), 291–322.

https://CRAN.r-project.org/package=acebayes
https://CRAN.r-project.org/package=acebayes
https://www.R-project.org/

32 acebayes: Bayesian Design via Approximate Coordinate Exchange

Wheeler R (2014). AlgDesign: Algorithmic Experimental Design. R package version 1.1-7.3,
URL https://CRAN.R-project.org/package=AlgDesign.

Woods DC, Overstall AM, Adamou M, Waite TW (2017). “Bayesian Design of Experiments
for Generalised Linear Models and Dimensional Analysis with Industrial and Scientific
Application (with Discussion).” Quality Engineering, 29, 91–118.

Zimmerman D (2006). “Optimal Network Design for Spatial Prediction, Covariance Parameter
Estimation and Empirical Prediction.” Environmetrics, 17, 635–652.

Affiliation:

Antony M. Overstall, David C. Woods and Maria Adamou
Southampton Statistical Sciences Research Institute
University of Southampton
Southampton, SO17 1BJ, UK
E-mail: {A.M.Overstall,D.Woods,M.Adamou}@southampton.ac.uk

https://CRAN.R-project.org/package=AlgDesign
mailto:\protect \T1\textbraceleft A.M.Overstall,D.Woods,M.Adamou\protect \T1\textbraceright @southampton.ac.uk

	Introduction
	ACE
	ACE algorithm
	acebayes implementation of ACE

	Utilities and approximations
	Common utility functions
	Approximating utility functions
	Approximating the expected utility

	Examples
	Compartmental non-linear model
	Logistic regression
	Pseudo-Bayesian A-optimal design
	Normal-based approximation to the NSEL utility function

	Model selection for chemical reactions
	Prediction

	Discussion
	The approximate coordinate exchange algorithm
	Phase I
	Phase II

