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Abstract

Dyadic data on pairs of objects, such as relational or social network data, often exhibit strong

statistical dependencies. Certain types of second-order dependencies, such as degree heterogene-

ity and reciprocity, can be well-represented with additive random effects models. Higher-order

dependencies, such as transitivity and stochastic equivalence, can often be represented with

multiplicative effects. The amen package for the R statistical computing environment provides

estimation and inference for a class of additive and multiplicative random effects models for

ordinal, continuous, binary and other types of dyadic data. The package also provides methods

for missing, censored and fixed-rank nomination data, as well as longitudinal dyadic data. This

tutorial illustrates the amen package via example statistical analyses of several of these different

data types.

Keywords: Bayesian estimation, dyadic data, latent factor model, MCMC, random effects, re-

gression, relational data, social network.
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1 The Gaussian AME model

A pair of objects, individuals or nodes is called a dyad, and a variable that is measured or observed

on multiple dyads is called a dyadic variable. Data on such a variable may be referred to as dyadic

data, relational data, or network data (particularly if the variable is binary). Dyadic data for

a population of n objects, individuals or nodes may be represented as a sociomatrix, an n × n

square matrix Y with an undefined diagonal. The i, jth entry of Y, denoted yi,j , gives the value

of the variable for dyad {i, j} from the perspective of node i, or in the direction from i to j. For

example, in a dataset describing friendship relations, yi,j might represent a quantification of how

much person i likes person j. A running example in this section will be an analysis of international

trade data, where yi,j is the (log) dollar-value of exports from country i to country j. These data

can be obtained from the IR90s dataset included in the amen package. Specifically, we will analyze

trade data between the 30 countries having the highest GDPs:

#### ---- obtain trade data from top 30 countries in terms of GDP

data(IR90s)

gdp<-IR90s$nodevars[,2]

topgdp<-which(gdp>=sort(gdp,decreasing=TRUE)[30] )

2



Y<-log( IR90s$dyadvars[topgdp,topgdp,2] + 1 )

Y[1:5,1:5]

ARG AUL BEL BNG BRA

ARG NA 0.05826891 0.2468601 0.03922071 1.76473080

AUL 0.0861777 NA 0.3784364 0.10436002 0.21511138

BEL 0.2700271 0.35065687 NA 0.01980263 0.39877612

BNG 0.0000000 0.01980263 0.1222176 NA 0.01980263

BRA 1.6937791 0.23901690 0.6205765 0.03922071 NA

1.1 The social relations model

Dyadic data often exhibit certain types of statistical dependencies. For example, it is often the

case that observations in a given row of the sociomatrix are similar to or correlated with each

other. This should not be too surprising, as these observations all share a common “sender,” or

row index. If a sender i1 is more “sociable” than sender i2, we would expect the values in row i1

to be larger than those in row i2, on average. In this way, heterogeneity of the nodes in terms of

their “sociability” corresponds to a large variance of the row means of the sociomatrix. Similarly,

nodal heterogeneity in “popularity” corresponds to a large variance in the column means.

A classical approach to evaluating across-row and across-column heterogeneity in a data matrix

is the ANOVA decomposition. A model-based version of the ANOVA decomposition posits that the

variability of the yi,j ’s around some overall mean is well-represented by additive row and column

effects:

yi,j = µ+ ai + bj + εi,j .

In this model, heterogeneity among the parameters {ai : i = 1, . . . , n} and {bj : j = 1, . . . , n}

corresponds to observed heterogeneity in the row means and column means of the sociomatrix, re-

spectively. If the εi,j ’s are assumed to be i.i.d. from a mean-zero normal distribution, the hypothesis

of no row heterogeneity (all ai’s equal to zero) or no column heterogeneity (all bj ’s equal to zero)

can be evaluated with normal-theory F -tests. For the trade data, this can be done in R as follows:

#### ---- ANOVA for trade data
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Rowcountry<-matrix(rownames(Y),nrow(Y),ncol(Y))

Colcountry<-t(Rowcountry)

anova(lm( c(Y) ~ c(Rowcountry) + c(Colcountry) ) )

Analysis of Variance Table

Response: c(Y)

Df Sum Sq Mean Sq F value Pr(>F)

c(Rowcountry) 29 202.48 6.9819 29.524 < 2.2e-16 ***

c(Colcountry) 29 206.32 7.1144 30.084 < 2.2e-16 ***

Residuals 811 191.79 0.2365

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results indicate a large degree of heterogeneity of the countries as both exporters and

importers - much more than would be expected if the “true” ai’s were all zero, or the “true” bj ’s

were all zero (and the εi,j ’s were i.i.d.). Based on this result, the next steps in a data analysis

might include comparisons of the row means or of the column means, that is, comparisons of the

countries in terms of their total or average imports and exports. This can equivalently be done via

comparisons among estimates of the row and column effects:

#### ---- comparison of countries in terms of row and column means

rmean<-rowMeans(Y,na.rm=TRUE) ; cmean<-colMeans(Y,na.rm=TRUE)

muhat<-mean(Y,na.rm=TRUE)

ahat<-rmean-muhat

bhat<-cmean-muhat

# additive "exporter" effects

head( sort(ahat,decreasing=TRUE) )

USA JPN UKG FRN ITA CHN

1.4801300 1.0478834 0.6140597 0.5919777 0.4839285 0.4468015

# additive "importer" effects

head( sort(bhat,decreasing=TRUE) )

USA JPN UKG FRN ITA NTH

1.5628243 0.8433793 0.6683700 0.5849702 0.4712668 0.3628532
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We note that these simple estimates here are very close to, but not exactly the same as, the

least squares/maximum likelihood estimates (this is because of the undefined diagonal in the so-

ciomatrix).

While straightforward to implement, this classical ANOVA analysis ignores a fundamental char-

acteristic of dyadic data: Each node appears in the dataset as both a sender and a receiver of

relations, or equivalently, the row and column labels of the data matrix refer to the same set of

objects. In the context of the ANOVA model, this means that each node i has two additive effects:

a row effect ai and a column effect bi. Often it is of interest to evaluate the extent to which these

effects are correlated, for example, to evaluate if sociable nodes in the network are also popular.

Additionally, each (unordered) pair of nodes i, j has two outcomes, yi,j and yj,i. It is often the case

that yi,j and yj,i are correlated, as these two observations come from the same dyad.

Correlations between the additive effects can be evaluated empirically simply by computing the

sample covariance of the row means and column means, or alternatively, the âi’s and b̂i’s. Dyadic

correlation can be evaluated by computing the correlation between the matrix of residuals from the

ANOVA model and its transpose:

#### ---- covariance and correlation between row and column effects

cov( cbind(ahat,bhat) )

ahat bhat

ahat 0.2407563 0.2290788

bhat 0.2290788 0.2289489

cor( ahat, bhat)

[1] 0.9757237

#### ---- an estimate of dyadic covariance and correlation

R <- Y - ( muhat + outer(ahat,bhat,"+") )

cov( cbind( c(R),c(t(R)) ), use="complete")

[,1] [,2]

[1,] 0.2212591 0.1900891

[2,] 0.1900891 0.2212591

cor( c(R),c(t(R)), use="complete")
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Figure 1: Scatterplot of country-level average imports versus exports.

[1] 0.8591242

As shown by these calculations and in Figure 1, country-level export and import volumes are

highly correlated, as are the export and import volumes within country pairs. A seminal model

for analyzing such within-node and within-dyad dependence is the social relations model, or SRM

(Warner et al., 1979), a type of ANOVA decomposition that describes variability among the entries

of the sociomatrix Y in terms of within-row, within-column and within-dyad variability. A normal

random-effects version of the SRM has been studied by Wong (1982) and Li and Loken (2002),

among others, and takes the following form:

yi,j = µ+ ai + bj + εi,j (1)

{(a1, b1), . . . , (an, bn)} ∼ i.i.d. N(0,Σab)

{(εi,j , εj,i) : i 6= j} ∼ i.i.d. N(0,Σe),

where

Σab =

σ2a σab

σab σ2b

 and Σε = σ2ε

1 ρ

ρ 1

 .

Note that conditional on the row effects {a1, . . . , an}, the mean in the ith row of Y is given by

µ + ai, and the variability of these row-specific means is given by σ2a. In this way, the row effects
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represent across-row heterogeneity in the sociomatrix, and σ2a is a single-number summary of this

heterogeneity. Similarly, the column effects {b1, . . . , bn} represent heterogeneity in the column

means, and σ2b summarizes this heterogeneity. The covariance σab describes the linear association

between these row and column effects, or equivalently, the association between the row means and

column means of the sociomatrix. Additional variability across dyads is described by σ2ε , and within

dyad correlation (beyond that described by σab) is captured by ρ. More precisely, straightforward

calculations show that under this random effects model,

Var[yi,j ] = σ2a + 2σab + σ2b + σ2ε (across-dyad variance) (2)

Cov[yi,j , yi,k] = σ2a (within-row covariance)

Cov[yi,j , yk,j ] = σ2b (within-column covariance)

Cov[yi,j , yj,k] = σab (row-column covariance)

Cov[yi,j , yj,i] = 2σab + ρσ2e (row-column covariance plus reciprocity) ,

with all other covariances between elements of Y being zero. We refer to this covariance model as

the social relations covariance model.

The amen package provides model fitting and evaluation tools for the SRM via the default values

of the ame command:

fit_SRM<-ame(Y)

Running this command initiates an iterative Markov chain Monte Carlo (MCMC) algorithm that

provides Bayesian inference for the parameters in the SRM model. The progress of the algorithm

is displayed via a sequence of plots, the last of which is shown in Figure 2. The top row gives

traceplots of the parameter values simulated from their posterior distribution, including covariance

parameters on the left and regression parameters on the right. The covariance parameters include

Σab, ρ, and σ2, and are stored as the list component VC in the fitted object. The only regression

parameter for this SRM model is the intercept µ, which is included by default for the Gaussian

SRM. The intercept, and any other regression parameters are stored as BETA in the fitted object. We

can compare these estimates obtained from amen to the estimates from the ANOVA-style approach

as follows:

muhat # empirical overall mean

[1] 0.680044
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mean(fit_SRM$BETA) # model-based estimate

[1] 0.6616449

cov( cbind(ahat,bhat) ) # empirical row/column mean covariance

ahat bhat

ahat 0.2407563 0.2290788

bhat 0.2290788 0.2289489

apply(fit_SRM$VC[,1:3],2,mean) # model-based estimate

va cab vb

0.2811301 0.2368096 0.2728049

cor( c(R), c(t(R)) , use="complete") # empirical residual dyadic correlation

[1] 0.8591242

mean(fit_SRM$VC[,4]) # model-based estimate

[1] 0.857584

Posterior mean estimates of the row and column effects can be accessed from fit SRM$APM

and fit SRM$BPM, respectively. These estimates are plotted in Figure 3, against the corresponding

ANOVA estimates.

The second two rows of Figure 2 give posterior predictive goodness of fit summaries for four

network statistics: (1) the empirical standard deviation of the row means; (2) the empirical stan-

dard deviation of the column means; (3) the empirical within-dyad correlation; (4) a normalized

measure of triadic dependence. Details on how these are computed can be obtained by examining

the gofstats function of the amen package. The blue histograms in the figure represent values

of gofstats(Ysim), where Ysim is simulated from the posterior predictive distribution. These

histograms should be compared to the observed statistics gofstats(Y), which for these data are

0.491, 0.478, 0.939 and 0.204, given by vertical red lines in the figure. Generally speaking, large

discrepancies between the posterior predictive distributions (histograms) and the observed statistics

(red lines) suggest model lack of fit. For these data, the model does well at representing the data

with respect to the first three statistics, but shows a discrepancy with regard to the triadic depen-
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Figure 3: Bayes versus least squares parameter estimates.

dence statistic. This is not too surprising, as the SRM only captures second-order dependencies

(variances and covariances).

1.2 Social relations regression modeling

Often we wish to quantify the association between a particular dyadic variable and some other

dyadic or nodal variables. Useful for such situations is a type of linear mixed effects model we refer

to as the social relations regression model (SRRM), which combines a linear regression model with

the covariance structure of the SRM as follows:

yi,j = βTd xd,i,j + βTr xr,i + βTc xc,j + ai + bj + εi,j , (3)

where xd,i,j is a vector of characteristics of dyad {i, j}, xr,i is a vector of characteristics of node i

as a sender, and xc,j is a vector of characteristics of node j as a receiver. We refer to xd,i,j , xr,i and

xc,i as dyadic, row and column covariates, respectively. In many applications the row and column

characteristics are the same so that xr,i = xc,i = xi, in which case they are simply referred to as

nodal covariates. However, it can sometimes be useful to distinguish xr,i from xc,i: In the context

of friendships among students, for example, it is conceivable that some characteristic of a person

(such as athletic or academic success) may affect their popularity (how much they are liked by

others), but not their sociability (how much they like others).
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We illustrate parameter estimation for the SRRM by fitting the model to the trade data.

Nodal covariates include (log) population, (log) GDP, and polity, a measure of democracy. Dyadic

covariates include the number the number of conflicts, (log) geographic distance between countries,

the number of shared IGO memberships, and a polity interaction (the product of the nodal polity

scores).

#### ---- nodal covariates

dimnames(IR90s$nodevars)[[2]]

[1] "pop" "gdp" "polity"

Xn<-IR90s$nodevars[topgdp,]

Xn[,1:2]<-log(Xn[,1:2])

#### ---- dyadic covariates

dimnames(IR90s$dyadvars)[[3]]

[1] "conflicts" "exports" "distance" "shared_igos" "polity_int"

Xd<-IR90s$dyadvars[topgdp,topgdp,c(1,3,4,5)]

Xd[,,3]<-log(Xd[,,3])

Note that dyadic covariates are stored in an n× n× pd array, where n is the number of nodes and

pd is the number of dyadic covariates.

The SRRM can be fit by specifying the covariates in the ame function:

fit_srrm<-ame(Y,Xd=Xd,Xr=Xn,Xc=Xn)

Posterior mean estimates, standard deviations, nominal z-scores and p-values may be obtained with

the summary command:

summary(fit_srrm)

Regression coefficients:

pmean psd z-stat p-val

intercept -6.407 1.255 -5.104 0.000

pop.row -0.330 0.132 -2.502 0.012

gdp.row 0.567 0.151 3.764 0.000

polity.row -0.015 0.020 -0.788 0.431
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pop.col -0.302 0.126 -2.388 0.017

gdp.col 0.537 0.147 3.647 0.000

polity.col -0.006 0.019 -0.309 0.757

conflicts.dyad 0.076 0.042 1.822 0.068

distance.dyad -0.041 0.007 -6.129 0.000

shared_igos.dyad 0.885 0.185 4.772 0.000

polity_int.dyad -0.001 0.001 -1.668 0.095

Variance parameters:

pmean psd

va 0.264 0.104

cab 0.213 0.097

vb 0.250 0.098

rho 0.785 0.019

ve 0.157 0.010

The column z-stat is obtained by dividing the posterior means by their posterior standard

deviations, and each p-val is the the probability that a standard normal random variable exceeds

the corresponding z-stat in absolute value. Based on these calculations, there appears to be

strong evidence for associations between countries’ export and import levels with both population

and GDP. Additionally, there is evidence that geographic proximity and the number of shared IGOs

are both positively associated with trade between country pairs.

It is instructive to compare these results to those that would be obtained under an ordinary

linear regression model that assumes i.i.d. residual standard error. Such a model can be fit in the

amen package by opting to fit a model with no row variance, column variance or dyadic correlation:

fit_rm<-ame(Y,Xd=Xd,Xr=Xn,Xc=Xn,rvar=FALSE,cvar=FALSE,dcor=FALSE)

summary(fit_rm)

Regression coefficients:

pmean psd z-stat p-val

intercept -4.417 0.170 -25.947 0.000

pop.row -0.318 0.022 -14.621 0.000
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gdp.row 0.664 0.024 27.417 0.000

polity.row -0.007 0.005 -1.335 0.182

pop.col -0.280 0.023 -12.328 0.000

gdp.col 0.622 0.024 25.590 0.000

polity.col 0.002 0.005 0.509 0.611

conflicts.dyad 0.238 0.057 4.152 0.000

distance.dyad -0.053 0.004 -14.407 0.000

shared_igos.dyad -0.021 0.028 -0.739 0.460

polity_int.dyad 0.000 0.001 0.280 0.780

Variance parameters:

pmean psd

va 0.000 0.000

cab 0.000 0.000

vb 0.000 0.000

rho 0.000 0.000

ve 0.229 0.011

The parameter standard deviations (i.e., standard errors) under this i.i.d. model are almost all

smaller than those under the SRM fit. The explanation for this is that the i.i.d. model wrongly

assumes independent observations, and thus overrepresents the precision of the parameter estimates.

The inappropriateness of the i.i.d. model can be seen via the posterior predictive goodness of fit

plots given in Figure 4. The plots show, in particular, that the data exhibit much more dyadic

correlation than can be explained by the i.i.d. model. In contrast, the SRRM does not show such

a discrepancy with regard to this statistic. However, both models fail to represent the amount of

triadic dependence in the data, as shown in the fourth goodness of fit plot.

1.3 Transitivity and stochastic equivalence via multiplicative effects

It is often observed that the similarity of two nodes i and j in terms of their individual characteristics

xi and xj is associated with the value of the relationship yi,j between them. For example, suppose for

each node i that xi is the indicator that person i is a member of a particular group or organization.

Then xixj is the indicator that i and j are co-members of this organization, and this fact may have

some effect on their relationship yi,j . A positive effect of xixj on yi,j is referred to as homophily,

and a negative effect as anti-homophily. Measuring homophily on an observed characteristic can be
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Figure 4: Posterior predictive distributions of goodness of fit statistics for the ordinary regression

model (pink) and the SRRM (blue).

done within the context of the SRRM by creating a dyadic covariate xd,i,j from a nodal covariate xi

through multiplication (xd,i,j = xixj) or some other operation. Homophily on nodal characteristics

can lead to certain types of patterns often seen in network and dyadic data, sometimes referred to

as transitivity, balance and clustering (Hoff, 2005, 2009). For example, in a binary network where

people prefer to form ties to others who are similar to them, there tend to be a lot of “transitive

triples,” that is, triples of indices i, j, k having a link between each pair. One explanation of this

is that links from i to j and from i to k occur because i is similar to both j and to k. If this is

the case, then j and k must also be somewhat similar, and so there is a high probability of a link

between j and k, which would form a triangle of ties among nodes i, j and k. Multiple linked

triangles result in visual “clusters” in graphs of social networks.

More generally, in the case of multiple sender and receiver covariates, we are interested in how a

person with characteristics xr,i relates to a person with characteristics xc,j . This can be evaluated

in the SRRM by including a set of regression terms equivalent to xTr,iBxc,i. Although this term is

multiplicative in the covariates, it is linear in the parameters, as

xTr,iBxc,i =
∑
k

∑
l

bk,lxr,i,kxc,j,l

and so the matrix of parameters may be estimated within the context of a linear regression model
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Figure 5: Comparison of two SRRMs in terms of the triadic dependence statistic: with nodal

interaction effects (blue) and without (green).

simply by including all products of the elements of xr,i and xc,j as dyadic covariates. In practice, if

xr,i and xc,j are of the same length (for example, if they are the same), then it is common to take

B to be a diagonal matrix, in which case

xTr,iBxc,i = b1xr,i,1xc,j,1 + · · ·+ bpxr,i,pxc,j,p.

Such terms in the regression model can often account for network patterns such as transitivity and

clustering, as described above. They can also account for another type of network pattern, known as

stochastic equivalence, where it is observed that a group of nodes all relate to the other nodes (and

each other) in a similar way. If such groups are related to the observed nodal covariates, then often

the stochastic equivalence in the data may be estimated and represented by these multiplicative

regression terms.

This can be seen to a limited degree in the trade data: Note that the number of shared IGOs

and the polity interaction can both be viewed as dyadic covariates obtained by multiplication of

nodal covariates. We can fit an SRRM without these effects as follows:

fit_srrm0<-ame(Y,Xd[,,1:2],Xn,Xn)

A comparison of the resulting posterior predictive distribution of the transitivity statistic to

that under the full SRRM (which included the multiplicative effects) is given in Figure 5. The
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figure shows that, while both models do not fully represent the triadic dependence in the data,

the model that includes the nodal interactions does slightly better. This raises the possibility that

there may exist other nodal attributes, not given in the dataset, whose multiplicative interaction

might help further describe the triadic dependence observed in the data. In such cases, it can be

useful to include latent nodal characteristics into the regression model, resulting in the following:

yi,j = βTd xd,i,j + βTr xr,i + βTc xc,j + ai + bj + uTi vj + εi,j . (4)

Here, ui is a vector of latent, unobserved factors or characteristics that describe node i’s behavior

as a sender, and similarly vj describes node j’s behavior as a receiver. In this model, the mean

of yi,j depends on how “similar” ui and vj are (i.e., the extent to which the vectors point in the

same direction) as well as the magnitudes of the vectors. Note also that basic results from matrix

algebra indicate that any type of network pattern that could be described by a regression term of

the form xTr,iBxc,j can also be described by the multiplicative effects term uTi vj .

We call a model of the form (4) an additive and multiplicative effects model, or AME model

for network and dyadic data. An AME model essentially combines two models for matrix-valued

data: an additive main effects, multiplicative interaction (AMMI) model (Gollob, 1968; Bradu and

Gabriel, 1974) - a class of models developed in the psychometric and agronomy literature; and the

SRM covariance model that recognizes the dyadic aspect of the data. An AME model, like other

latent factor models, requires the specification of the dimension of the latent factors. In the amen

package, this can be set with the option R in the ame command. The letter R here stands for “rank”:

If U and V are n×R matrices of the latent factors, then UVT has rank R. For example, a rank-2

AME model may be fit as follows:

fit_ame2<-ame(Y,Xd,Xn,Xn,R=2)

The diagnostic plots for this model are given in Figure 6. Note that unlike all previous models

considered, this model provides an adequate fit in terms of the triadic dependence statistic. The

regression parameter estimates and their standard errors lead to more or less similar conclusions

as those from the SRRM, except that the number of shared IGOs no longer has a large effect after

controlling for the triadic dependence with the latent factors.

summary(fit_ame2)

Regression coefficients:

pmean psd z-stat p-val
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Figure 6: Diagnostic plots for the rank-2 AME model.
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intercept -4.022 0.764 -5.263 0.000

pop.row -0.277 0.069 -3.987 0.000

gdp.row 0.568 0.092 6.187 0.000

polity.row 0.000 0.010 -0.022 0.982

pop.col -0.235 0.071 -3.290 0.001

gdp.col 0.525 0.099 5.315 0.000

polity.col 0.009 0.010 0.826 0.409

conflicts.dyad 0.018 0.036 0.513 0.608

distance.dyad -0.039 0.004 -9.890 0.000

shared_igos.dyad 0.059 0.070 0.841 0.400

polity_int.dyad -0.001 0.000 -2.273 0.023

Variance parameters:

pmean psd

va 0.072 0.022

cab 0.028 0.016

vb 0.070 0.021

rho 0.605 0.036

ve 0.063 0.004

In some cases it is of interest to examine the estimated latent factors and compare them across

nodes. Some ways to do this include clustering the latent factors or simply plotting them. The

function circplot in the amen package provides a circle plot that can describe the estimated latent

factors of a rank-2 model. A circle plot for the trade data is shown graphically in Figure 7. Such

a figure can help identify groups of nodes that are similar to each other in terms of exporting

and importing behavior, after controlling for regression and additive row and column effects. For

example, the plot identifies the high trade volume between countries on the Pacific rim.

2 AME models for ordinal data

Often we wish to analyze a dyadic outcome variable that is not well-represented by a normal model.

In some cases, such as with the trade data, the variable of interest can be transformed so that the

Gaussian AME model is reasonable. In other cases, such as with binary, ordinal, discrete or sparse

relations, no such transformation is available. Examples of such data include measures of friendship

that are binary (not friends/friends) or ordinal (dislike/neutral/like), discrete counts of conflictual
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Figure 7: Circle plot of estimated latent factors. Directions of ûi’s and v̂i’s are given in red and

blue, respectively, with the plotting size being a function of the magnitudes of the vectors. Dashed

lines between countries indicate greater than expected trade based on the regression terms and

additive effects.
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events between countries, or the amount of time two people spend on the phone with each other

(which might be zero for most pairs in a population).

In this section we describe extensions of the Gaussian AME model to accommodate ordinal

dyadic data, where in what follows, ordinal means any outcome for which the possible values can

be put in some meaningful order. This includes discrete outcomes (such as binary indicators or

counts), ordered qualitative outcomes (such as low/medium/high, i.e. the “traditional” definition of

ordinal), and even continuous outcomes. The extensions are based on latent variable representations

of probit and ordinal probit regression models.

2.1 Example: Analysis of a binary outcome

The simplest type of ordinal dyadic variable is a binary indicator of some type of relationship

between i and j, so that yi,j = 0 or 1 depending on whether the relationship is absent or present,

respectively. Such dyadic data, particularly data indicating social interactions or friendships, are

often collectively called a social network. For example, the amen dataset lazegalaw includes a

social network of friendship ties between 71 members of a law firm, along with data on two other

dyadic variables and several nodal variables. The friendship data are displayed as a graph in Figure

8, where the nodes are colored according to each lawyer’s office location.

data(lazegalaw)

Y<-lazegalaw$Y[,,2]

Xd<-lazegalaw$Y[,,-2]

Xn<-lazegalaw$X

dimnames(Xd)[[3]]

[1] "advice" "cowork"

dimnames(Xn)[[2]]

[1] "status" "female" "office" "seniority" "age" "practice"

[7] "school"

netplot(lazegalaw$Y[,,2],ncol=Xn[,3])
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Figure 8: Graph of the friendship network between 71 lawyers. Node colors represent at which of

the three offices each lawyer works.
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We first consider fitting a probit SRM model to these binary data, without including any

explanatory covariates. This model can be written as

zi,j = µ+ ai + bj + εi,j (5)

yi,j = 1(zi,j > 0), (6)

where the distributions of the random effects ai, bj , and εi,j follow the Gaussian SRM covariance

model as described previously. This model expresses the observed binary variable yi,j as the indica-

tor that some continuous latent variable zi,j exceeds zero. Assuming the SRM for the sociomatrix

Z = {zi,j} of latent variables yields a model for the observed binary data that allows for within-

row, within-column and within-dyad dependence. This model can be fit with the ame command by

specifying that the variable type is binary:

fit_SRM<-ame(Y,model="bin")

It is instructive to compare the fit of this model to that provided by a reduced model that lacks

the SRM terms:

fit_SRG<-ame(Y,model="bin",rvar=FALSE,cvar=FALSE,dcor=FALSE)

This is a probit model that contains only an intercept, and so is equivalent to the simple random

graph model (SRG). The fits of these two models in terms of the four goodness of fit statistics

computed by gofstats are compared in Figure 9. As might be expected, the SRG fails in terms of

all four statistics. In contrast, the SRM model provides a good fit in terms of the three statistics

that represent second-order dependence. Both models fail in terms of representing third-order

dependence.

A common empirical description of row and column heterogeneity in network data are the row

and column sums, typically referred to as the outdegrees and indegrees. Based on the form of the

model in (5), we might expect that the outdegrees and indegrees would be positively associated

with the estimates of the ai’s and bj ’s respectively. For example, the larger ai is, the larger the

entries of zi,j for each j, thereby making more of the yi,j ’s equal to one rather than zero. This

relationship between the degrees and the parameter estimates is illustrated in Figure 10. The

figure does indeed show a strong positive association between these quantities, but note that the

relationship is not strictly monotonic. The reason for this can be explained by the fact that it is

both the ai parameters and the bj parameters that are used to describe nodal heterogeneity. For
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sd.rowmean
0.04 0.06 0.08 0.10 0.12

sd.colmean
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dyad.dep
−0.05 0.00 0.05 0.10 0.15 0.20 0.25

triad.dep
−0.010 0.000 0.005 0.010 0.015 0.020

Figure 9: Comparison of the SRM (blue) and the SRG (green) for the Lazega law friendship

network.

example, suppose two nodes have the same outdegree, but the first links to several nodes that have

low indegrees, whereas a second node links to the same number of nodes but ones having high

indegrees. The first node will have an ai estimate that is higher than that of the second, because

the bj ’s of the nodes that the first links to will be lower than those of the nodes that the second

links to.

We next consider a probit SRRM that includes the SRM terms and linear regression effects for

some nodal and dyadic covariates. This model is formulated as in the SRM probit model, except

that zi,j follows an SRRM rather than an SRM.

Xno<-Xn[,c(1,2,4,5,6)]

fit_SRRM<-ame(Y, Xd=Xd, Xr=Xno, Xc=Xno, model="bin")

summary(fit_SRRM)

Regression coefficients:

pmean psd z-stat p-val

intercept 0.882 0.659 1.338 0.181

status.row -0.174 0.175 -0.992 0.321
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Figure 10: Estimated row and column effects versus outdegrees and indegrees.

female.row 0.007 0.143 0.051 0.959

seniority.row -0.008 0.012 -0.675 0.500

age.row -0.016 0.009 -1.722 0.085

practice.row -0.227 0.109 -2.089 0.037

status.col -0.168 0.145 -1.154 0.248

female.col -0.027 0.123 -0.219 0.827

seniority.col 0.012 0.011 1.056 0.291

age.col -0.008 0.008 -1.064 0.287

practice.col -0.286 0.110 -2.602 0.009

advice.dyad -0.080 0.075 -1.069 0.285

cowork.dyad 1.281 0.063 20.313 0.000

Variance parameters:

pmean psd

va 0.170 0.037

cab 0.012 0.025

vb 0.134 0.032

rho 0.110 0.048

ve 1.000 0.000

There is not much evidence for effects of the nodal characteristics, at least in terms of effects
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sd.rowmean
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sd.colmean
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Figure 11: Checks of the fit of the rank-3 AME model to the Lazega law friendship network.

that appear linearly in the SRRM. Additionally, goodness-of-fit plots indicate lack of fit in terms

of triadic dependence, as with the SRM model. Thus, we consider instead a model with the “non-

significant” regressors removed, and include a rank-3 multiplicative effect.

fit_AME<-ame(Y, Xd=Xd[,,2], R=3, model="bin")

The goodness-of-fit plots in Figure 11 indicate no strong discrepancy between this model and

the data in terms of these statistics. Inference then proceeds by examining the estimates of regres-

sion effects, random effects and covariance parameters. Interpretation of the multiplicative effects

can proceed by plotting them, looking for clusters, and identification of nodes with large effects.

Additionally, it can be useful to look for associations between the multiplicative effects and any

nodal characteristics available. For example, we can compute correlations between the multiplica-

tive effects (ui,vi) and any numerical or ordinal nodal characteristics xi. Associations between

multiplicative effects and categorical variables can be examined via plots.

U<-fit_AME$U

V<-fit_AME$V

round(cor(U, Xno),2)

status female seniority age practice
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Figure 12: Estimated latent factors plotted in terms of the nodal characteristics status (part-

ner=unfilled circle, associate=filled circle) and office (Boston=green, Hartford=blue, Provi-

dence=light blue).

[1,] -0.12 -0.02 -0.20 -0.25 0.00

[2,] -0.34 -0.04 0.24 0.26 0.62

[3,] -0.03 0.28 -0.01 0.12 0.20

round(cor(V, Xno),2)

status female seniority age practice

[1,] -0.81 -0.32 0.71 0.62 0.24

[2,] -0.04 0.15 -0.06 0.00 0.55

[3,] -0.06 0.14 0.26 0.31 0.20

These correlations, and the plots in Figure 12, indicate that these nodal characteristics do play a

role in network formation, although in a multiplicative rather than additive manner. If desired, one

could use these results to construct multiplicative functions of these nodal attributes for inclusion

into a SRRM, or possibly an AME model of lower rank.

2.2 Example: Analysis of an ordinal outcome

The probit AME model for binary data extends in a natural way to accommodate ordinal data

with more than two levels. As with binary data, we model the sociomatrix Y = {yi,j} as being a
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function of a latent sociomatrix Z that follows a Gaussian AME model. Specifically, our model is

zi,j = βTd xd,i,j + βTr xr,i + βTc xc,j + ai + bj + εi,j , (7)

yi,j = g(zi,j),

where g is some unknown non-decreasing function. The amen package takes a semiparametric

approach to this model, providing estimation and inference for the parameters in the model (7) for

Z, but treating the function g as a nuisance parameter. This is done using a variant of the extended

rank likelihood for ordinal data, described in Hoff (2007) and Hoff (2008b). While this approach

is somewhat limiting (as estimation of g is not specifically provided), it simplifies some aspects of

model specification and parameter estimation. In particular, the semiparametric approach allows

for modeling of more general types of ordinal variables yi,j , such as those that are continuous, or

those for which the number of levels is not pre-specified. However, we caution that the computation

time required by the MCMC algorithm used by amen is increasing in the number of levels of yi,j .

We illustrate this model fitting procedure with an analysis of dominance relations between 28

female bighorn sheep, available via the sheep dataset included with amen. The dyadic variable yi,j

records the number of times sheep i was observed dominating sheep j.

data(sheep)

Y<-sheep$dom

gofstats(Y)

sd.rowmean sd.colmean dyad.dep triad.dep

0.70037477 0.67209344 -0.19797403 -0.05826448

Note that the dyadic dependence and triadic dependence statistics are negative. This makes

sense in light of the nature of the variable: Heterogeneity among the sheep in terms of strength

or assertiveness would lead to powerful sheep dominating but not being dominated by others, thus

leading to negative reciprocity. Additionally, under this scenario, if sheep i dominated j, and j

dominated k, then it is unlikely that k would be able to dominate i. Such a scenario would lead to

negative triadic dependence.

Data on the ages of the sheep are also available. Plots of row and column means versus age are

given in Figure 13, and indicate some evidence of an age effect. Particularly, the number of times
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Figure 13: Plots of the sheep dominance data. From left to right, a histogram of the number of

dominance encounters, age versus row mean, and age versus column mean.

that a sheep is dominated is decreasing on average with age. We examine this effect more fully

with an ordinal probit regression, fitting a second-degree polynomial in the ages of the sheep:

x<-sheep$age - mean(sheep$age)

Xd<-outer(x,x)

Xn<-cbind(x,x^2) ; colnames(Xn)<-c("age","age2")

fit<-ame(Y, Xd, Xn, Xn, model="ord")

summary(fit)

Regression coefficients:

pmean psd z-stat p-val

age.row 0.158 0.051 3.101 0.002

age2.row -0.086 0.019 -4.454 0.000

age.col -0.241 0.039 -6.136 0.000

age2.col -0.008 0.015 -0.561 0.575

.dyad 0.043 0.008 5.370 0.000

Variance parameters:
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pmean psd

va 0.433 0.153

cab 0.039 0.073

vb 0.215 0.084

rho -0.399 0.091

ve 1.000 0.000

The results indicate evidence for a positive effect of age on dominance - older sheep are more

likely to dominate and less likely to be dominated. The dyadic effect reflects some residual effect

of homophily by age: A young sheep’s dominance encounters are typically with other young sheep,

and older sheep are more likely to be dominated by another older sheep than a younger sheep.

Also note that the summary of the model fit does not include an intercept. This is because

the intercept is not identifiable using the rank likelihood approach used to obtain the parameter

estimates. Specifically, an intercept term can be thought of as part of the transformation function

g, which is being treated as a nuisance parameter.

3 Censored and fixed rank nomination data

Data on human social networks are often obtained by asking members of a study population to

name a fixed number of people with whom they are friends, and possibly to rank these friends in

terms of their affinities to them. Such a survey method is called a fixed rank nomination (FRN)

scheme, and is commonly used in studies of institutions such as schools or businesses. For example,

the National Longitudinal Study of Adolescent Health (AddHealth, Harris et al. (2009)) asked

middle and high-school students to nominate and rank up to five members of the same sex as

friends, and five members of the opposite sex as friends.

Data obtained from FRN schemes are similar to ordinal data, in that the ranks of a person’s

friends may be viewed as an ordinal response. However, FRN data are also censored in a complicated

way. Consider a study where people were asked to name and rank up to and including their top

five friends. If person i nominates five people but doesn’t nominate person j, then yi,j is censored:

The data cannot tell us whether j is i’s sixth best friend, or whether j is not liked by i at all. On

the other hand, if person i nominates four people as friends but could have nominated five, then

person i’s data are not censored - the absence of a nomination by i of j indicates that i does not
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consider j a friend.

A likelihood-based approach to modeling FRN data was developed in Hoff et al. (2013). Similar

to the approach for ordinal dyadic data described above, this methodology treats the observed

ranked outcomes Y as a function of an underlying continuous sociomatrix Z of affinities that is

generated from an AME model. Letting m be the maximum number of nominations allowed, and

coding yi,j ∈ {m,m− 1, . . . , 1, 0} so that yi,j = m indicates that j is i’s most liked friend, the FRN

likelihood is derived from the following constraints that the observed ranks Y tell us about the

underlying dyadic variables Z:

yi,j > 0 ⇒ zi,j > 0 (8)

yi,j > yi,k ⇒ zi,j > zi,k (9)

yi,j = 0 and di < m ⇒ zi,j ≤ 0. (10)

Constraint (8) indicates that if i ranks j, then i has a positive relation with j (zi,j > 0), and

constraint (9) indicates that a higher rank corresponds to a more positive relation. Letting di ∈

{0, . . . ,m} be the number of people that i ranks, constraint (10) indicates that if i could have

made additional friendship nominations but chose not to nominate j, they then must not consider

j a friend. On the other hand, if yi,j = 0 but di = m then person i’s unranked relationships are

censored, and so zi,j could be positive even though yi,j = 0. In this case, all that is known about

zi,j is that it is less than zi,k for any person k that is ranked by i.

3.1 Example: Analysis of fixed rank nomination data

The amen package implements a Bayesian model fitting algorithm based on the FRN likelihood.

We illustrate its use with an analysis of data from the classic study on relationships between monks

described in Sampson (1969), in which each monk was asked to rank up to three other monks in

terms of a variety of relations.

Y<-sampsonmonks[,,3]

apply(Y>0,1,sum,na.rm=T)

ROMUL BONAVEN AMBROSE BERTH PETER LOUIS VICTOR WINF JOHN

3 3 4 3 3 3 3 3 3

GREG HUGH BONI MARK ALBERT AMAND BASIL ELIAS SIMP

4 3 3 3 3 3 3 3 3
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Notice that two of the monks didn’t follow the survey instructions, and nominated more than

three other monks. We treat the maximum number of nominations for these two monks as four.

This can be done using the ame fitting function, and specifying the FRN likelihood and the number

of maximum nominations as follows:

odmax<-rep(3,nrow(Y))

odmax[ apply(Y>0,1,sum,na.rm=T)>3 ]<-4

fit<-ame(Y,R=2,model="frn",odmax=odmax)

summary(fit)

Regression coefficients:

pmean psd z-stat p-val

intercept 0.64 0.725 0.883 0.377

Variance parameters:

pmean psd

va 0.557 0.768

cab 0.006 0.152

vb 0.249 0.185

rho 0.761 0.164

ve 1.000 0.000

Goodness of fit plots for these data appear in Figure 14. Notice that the fit in terms of row

heterogeneity is very good. This is not too surprising: The simulated sociomatrices used to produce

this plot are generated to satisfy the outdegree constraint imposed by odmax, which greatly limits

the possible amount of outdegree heterogeneity.

3.2 Other approaches to censored or ranked data

Some dyadic survey designs ask participants to nominate up to a certain number of friends, but

not to rank them. Such dyadic data are binary, but censored in the same way as are data from

an FRN survey: Observing that yi,j = 0 indicates that i is not friends with j only if person i has

made less than the maximum number of nominations. A likelihood-based approach to analyzing
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Figure 14: Model fitting plots for Sampson’s monk data.
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such censored binary data is described in Hoff et al. (2013) and is also implemented in the amen

package using the model="cbin" option in the ame command.

In other situations the dyadic outcomes in each row are ordinal, but on completely different

scales. In such cases, we may wish to treat the heterogeneity of ties across rows in a semiparametric

way, and only estimate the parameters in the AME model based on the ranks of the outcomes within

each row. This can be done by using a likelihood for which the ordinal dyadic data Y only imposes

constraint (9) on the unobserved underlying variables Z. This “relative rank likelihood” is described

more fully in Hoff et al. (2013), and can be implemented in amen using the model="rrl" option in

the ame command.

4 Sampled or missing dyadic data

Some dyadic datasets are only partially observed, in that the value of yi,j is not observed for all pairs

i, j. This can happen unintentionally or by design. For example, to avoid the cost of measuring

yi,j for all n(n − 1) ordered pairs of nodes, some researchers use multi-stage link-tracing designs,

in which nodes are selected into the study in one stage of the design based on their links to nodes

included in previous stages.

Partially observed dyadic data on a given nodeset can be represented by a sociomatrix in which

the ordered pairs for which data are not observed are distinguished from pairs for which data are

observed. In R, this is done by filling each entry of the sociomatrix corresponding to a missing

value with an “NA”. Doing so distinguishes pairs i, j for which we do not know the dyadic value

(yi,j = NA) from those, for example, for which we know there is no link (yi,j = 0).

When some (non-diagonal) entries of the sociomatrix Y are missing, the MCMC approximation

algorithm used by amen proceeds by iteratively simulating model parameters along with values for

the missing values in a way that approximates their joint posterior distribution. Roughly speaking,

at each iteration of the MCMC algorithm, values for the missing values are simulated from their

probability distribution conditional on the observed data and the current values of the model

parameters. Such a procedure is appropriate if the missing values are missing at random, or more

specifically, if the study design is ignorable. A study design is ignorable if the probability of a missing

data value for a pair is independent of the model parameters and missing values, conditional on

the observed data values. Many types of link tracing designs, such as egocentric and snowball
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sampling, are ignorable (Thompson and Frank, 2000).

4.1 Example: Analysis of an egocentric sample

One popular and relatively inexpensive design for gathering dyadic data is with an egocentric

sample, in which nodes (or “egos”) are randomly sampled from a population and then asked about

their ties and the ties between their friends. For example, one type of egocentric study design

might ask participants “with whom are you friends” and “which of your friends are friends with

each other.” Data from such a design can be sufficient to estimate parameters in an AME model.

We illustrate this with an example analysis of the effect of sex (male/female) on friendships

among a small group of Dutch college students, available in amen from the dutchcollege dataset.

data(dutchcollege)

Y<-1*( dutchcollege$Y[,,7] > 1 ) # indicator of positive relationship at the last timepoint

Xn<-dutchcollege$X[,1] # nodal indicator of male sex

Xd<-1*(outer(Xn,Xn,"==")) # dyadic indicator of same sex

We will fit a simple SRRM to these data, and then compare the resulting parameter estimates

to those based on data obtained from the egocentric design described above. In our design, we

first randomly sample several nodes (egos), record their relationships to the other nodes, and then

record the relationships between alters having a common ego. R-code that generates such a design

is as follows:

n<-nrow(Y)

Ys<-matrix(NA,n,n) # sociomatrix for sampled data

egos<-sort(sample(n,5)) # ego sample

Ys[egos,]<-Y[egos,] # relations of egos are observed

for(i in egos)

{

ai<-which(Ys[i,]==1) # alters of i

Ys[ai,ai]<-Y[ai,ai] # relations between alters of i are observed
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}

mean(is.na(Ys))

[1] 0.7314453

This particular instance of the design results in a sociomatrix where about 73 percent of the

entries are missing (note that the diagonal is already “missing” by definition). Under this design,

data between alters and non-alters of an ego are missing, as are data between alters that do not

share an ego.

egos

[1] 6 10 12 17 26

Ys[1:10,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] NA NA NA NA NA NA NA NA NA NA

[2,] NA NA 0 NA NA NA 0 0 NA 1

[3,] NA 0 NA NA NA NA 1 0 NA NA

[4,] NA NA NA NA NA NA NA NA NA NA

[5,] NA NA NA NA NA NA NA NA NA NA

[6,] 0 0 0 0 0 NA 0 0 0 0

[7,] NA 0 1 NA NA NA NA 1 NA NA

[8,] NA 0 0 NA NA NA 0 NA NA 1

[9,] NA NA NA NA NA NA NA NA NA NA

[10,] 0 1 1 0 0 0 1 1 0 NA

We now fit an SRRM model to the complete data and the subsampled data, and compare

parameter estimates.

fit_pop<-ame(Y,Xd,Xn,Xn,model="bin") # fit based on full data (population)

fit_ess<-ame(Ys,Xd,Xn,Xn,model="bin") # fit based on egocentric subsample

apply(fit_pop$BETA,2,mean)

intercept .row .col .dyad

-1.8662999 0.3172635 0.3824924 0.7365514
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apply(fit_ess$BETA,2,mean)

intercept .row .col .dyad

-2.1561520 0.3172207 1.1966069 0.9929780

The estimates are similar, even though the second fit is from a dataset with 73 missing values.

The output of the ame fitting procedure also includes a posterior predictive mean for all entries

of the sociomatrix Y, including those entries for which the data are missing. This sociomatrix of

predicted values can be used for prediction or imputation of dyadic data from incomplete datasets.

In our example on modeling friendship relations from the dutchcollege dataset, we can use this

sociomatrix of predicted values to evaluate how well the parameter estimates obtained from the

sampled dataset compare to those obtained from the full dataset, in terms of prediction:

miss<-which(is.na(Ys))

mean( ( fit_pop$YPM[miss] - Y[miss] )^2, na.rm=TRUE )

[1] 0.09428416

mean( ( fit_ess$YPM[miss] - Y[miss] )^2, na.rm=TRUE )

[1] 0.1350285

The first and second numbers reflect “within-sample” and “out-of-sample” goodness of fit,

respectively. The small discrepancy between these numbers indicates that reasonable parameter

estimates for this model (in terms of out-of-sample predictive squared error) can be obtained from

this egocentric sample.

Finally, we consider the variability of the parameter estimates across egocentric samples with

a small simulation study: For each of 100 egocentric samples randomly generated as previously

described, we obtain parameter estimates for the probit SRRM,

zi,j = β0 + βrxi + βcxj + βdxi,j + εi,j

yi,j = 1(zi,j > 0),

where xi is a binary indicator that node i is male, and xi,j is the indicator that i and j are of the

same sex. The variability of the parameter estimates across egocentric samples is illustrated with

histograms in Figure 15. An illustrative exercise would be to see how increasing or decreasing the
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Figure 15: Variability of probit SRRM regression estimates across egocentric samples. Vertical blue

lines indicate the estimates obtained from the full (population) dataset.

amount of missing data in the samples (by increasing or decreasing the number of egos sampled)

would affect the concentration of the egocentric estimates around the population estimates.

5 Repeated measures data

Some types of dynamic dyadic datasets include repeated measurements of dyadic and nodal vari-

ables at discrete points in time. The amen package provides a rudimentary method of analyzing

such data, based on the following simple extension of the AME model to accommodate replicated

dyadic measurements: For (latent) sociomatrices Z1, . . . ,ZT , the model expresses zi,j,t, the (i, j)th

element of the tth sociomatrix, as

zi,j,t = βTd xd,i,j,t + βTr xr,i,j,t + βTc xc,i,j,t + ai + bj + uTi vj + εi,j,t. (11)

Across nodes, dyads and time points, this model extension further assumes the same covariance

model for the random effects {(ai, bi)} as before, allows for dyadic correlation between εi,j,t and εj,i,t
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Figure 16: Friendliness network of the Dutch college students, across seven time points.

as before, but assumes that εi,j,t’s from different dyads or different time points are independent.

In other words, the data under this model are treated as independent observations from a common

AME distribution.

At first glance it may seem that such a model is inappropriate for dynamic dyadic data, as

it doesn’t seem to allow for the possibility of dependence over time. However, certain types of

dependence can be incorporated into this model via the time-dependent regression terms. For

example, autoregressive dependence can be modeled by including lagged values of the sociomatrix

as predictors. Additionally, time-varying regression parameters can be included in the model by

constructing interactions.

5.1 Example: Analysis of a longitudinal binary outcome

We illustrate these possibilities with an analysis of data from the longitudinal study of friendship

relations among a small group of Dutch college students, available in amen via the dutchcollege

dataset. Our response yi,j,t is the indicator that person i reports being friendly (or having friendship)

with person j at time point t. The graphs of this variable for each of the seven different time points

in the dataset are given in Figure 16. The figure reflects the fact that the students were mostly

unknown to each other before the study period, and so not surprisingly, the densities of the graphs

increase over time.
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The data also include (static) information on the sex and smoking status of the students, as

well as which one of three programs each student was a member. We will examine the effects of

these nodal attributes on friendship in using a probit SRRM, where yi,j,t is modeled as the indicator

that the latent affinity zi,j,t exceeds zero, where zi,j,t follows model (11). Our analysis will include

the binary indicators of male sex and smoking status as row and column regressors, products of

these variables as dyadic regressors, and a dyadic binary indicator of whether or not members of a

dyad belong to the same program. Finally, we will also include lagged values yi,j,t−1 and yj,i,t−1 as

dyadic predictors of zi,j,t to reflect the possibility of temporal dependence among values within a

dyad. To summarize, our model for the zi,j,t’s is as follows:

zi,j,t =β0+

βr,1malei + βr,2smokei+

βc,1malej + βc,2smokej+

βd1yi,j,t−1 + βd2yj,i,t−1+

βd3maleimalej + βd4smokeismokej + βd5sameprogrami,j+

ai + bj + εi,j,t

The ame rep function in the amen package provides parameter estimation and inference for this

model using a similar syntax as the ame function, except now the nodal attributes Xrow and Xcol

are three-dimensional arrays, with dimensions corresponding to nodes, variables and time points,

respectively. Similarly, the dyadic regressor array Xdyad is now four-dimensional, with dimensions

corresponding to nodes, nodes, variables and time points. These arrays for this data analysis can

be set up as follows:

# outcome

Y<-1*( dutchcollege$Y >= 2 )[,,2:7]

n<-dim(Y)[1] ; t<-dim(Y)[3]

# nodal covariates

Xnode<-dutchcollege$X[,1:2] # sex and smoking status

Xnode<-array(Xnode,dim=c(n,ncol(Xnode),t))

dimnames(Xnode)[[2]]<-c("male","smoker")

# dyadic covariates

Xdyad<-array(dim=c(n,n,5,t))
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Xdyad[,,1,]<-1*( dutchcollege$Y >= 2 )[,,1:6] # lagged value

Xdyad[,,2,]<-array(apply(Xdyad[,,1,],3,t),dim=c(n,n,t)) # lagged reciprocal value

Xdyad[,,3,]<-tcrossprod(Xnode[,1,1]) # both male

Xdyad[,,4,]<-tcrossprod(Xnode[,2,1]) # both smokers

Xdyad[,,5,]<-outer( dutchcollege$X[,3],dutchcollege$X[,3],"==") # same program

dimnames(Xdyad)[[3]]<-c("Ylag","tYlag","bothmale","bothsmoke","sameprog")

The model can be fit using the same syntax as the ame command discussed previously, and

results can summarized before with the summary function:

fit_ar1<-ame_rep(Y,Xdyad,Xnode,Xnode,model="bin",plot=FALSE)

summary(fit_ar1)

Regression coefficients:

pmean psd z-stat p-val

intercept -1.612 0.170 -9.457 0.000

male.row -0.170 0.220 -0.772 0.440

smoker.row -0.458 0.182 -2.516 0.012

male.col -0.038 0.162 -0.236 0.813

smoker.col -0.236 0.145 -1.627 0.104

Ylag.dyad 1.201 0.063 19.146 0.000

tYlag.dyad 0.860 0.062 13.796 0.000

bothmale.dyad 0.740 0.145 5.090 0.000

bothsmoke.dyad 0.661 0.122 5.424 0.000

sameprog.dyad 0.432 0.063 6.880 0.000

Variance parameters:

pmean psd

va 0.223 0.073

cab 0.033 0.034

vb 0.119 0.038

rho 0.641 0.038

ve 1.000 0.000

The parameter estimates and standard deviations for βd,1 and βd,2 (Ylag.dyad and tYlag.dyad

in the output) indicate strong evidence of large temporal correlation. There also appears to be
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strong homophily effects in terms of sex, smoking status and program. The nodal effect parameters

indicate some evidence that smokers are a bit less social than non-smokers.

Finally, we note that the time interval between the first four measurements was three weeks,

whereas the interval between the last three measurements was six weeks. As such, we may want

to consider whether or not the effects of the regressors might vary depending on the time lag

between measurements. Such a possibility can be evaluated simply by adding interaction terms to

the regressors. For example, to evaluate whether or not the effect of yi,j,t−1 on zi,j,t varies with

measurement interval, we can create a new dyadic covariate yi,j,t−1wt where wt is a binary indicator

that t is among the last three measurements. Adding such terms for all of our regressors can be

done as follows:

Wnode<-Xnode

Wnode[,,1:3]<-0

XWnode<-array( dim=dim(Xnode)+c(0,2,0))

XWnode[,1:2,]<-Xnode ; XWnode[,3:4,]<-Wnode

dimnames(XWnode)[[2]]<-c(dimnames(Xnode)[[2]],paste0(dimnames(Xnode)[[2]],".w"))

Wdyad<-Xdyad

Wdyad[,,,1:3]<-0

XWdyad<-array( dim=dim(Xdyad)+c(0,0,5,0) )

XWdyad[,,1:5,]<-Xdyad ; XWdyad[,,6:10,]<-Wdyad

dimnames(XWdyad)[[3]]<-c(dimnames(Xdyad)[[3]],paste0(dimnames(Xdyad)[[3]],".w"))

fit_ar1_vb<-ame_rep(Y,XWdyad,XWnode,XWnode,model="bin")

summary(fit_ar1_vb)

Regression coefficients:

pmean psd z-stat p-val

intercept -1.606 0.167 -9.625 0.000

male.row -0.313 0.238 -1.311 0.190

smoker.row -0.374 0.204 -1.833 0.067

male.w.row 0.240 0.141 1.696 0.090

smoker.w.row -0.156 0.137 -1.134 0.257
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male.col -0.068 0.171 -0.395 0.693

smoker.col -0.208 0.148 -1.402 0.161

male.w.col 0.036 0.133 0.268 0.788

smoker.w.col -0.048 0.120 -0.403 0.687

Ylag.dyad 1.400 0.101 13.797 0.000

tYlag.dyad 0.855 0.109 7.839 0.000

bothmale.dyad 1.009 0.209 4.831 0.000

bothsmoke.dyad 0.558 0.165 3.373 0.001

sameprog.dyad 0.334 0.080 4.169 0.000

Ylag.w.dyad -0.296 0.122 -2.432 0.015

tYlag.w.dyad -0.008 0.131 -0.059 0.953

bothmale.w.dyad -0.520 0.277 -1.875 0.061

bothsmoke.w.dyad 0.194 0.225 0.864 0.387

sameprog.w.dyad 0.187 0.097 1.924 0.054

Variance parameters:

pmean psd

va 0.224 0.075

cab 0.032 0.036

vb 0.116 0.038

rho 0.650 0.037

ve 1.000 0.000

These results do not indicate much evidence that the regression coefficients should vary by time

period, except possibly the effect on the lagged dyadic variable yi,j,t. The negative estimate of this

coefficient (corresponding to Ylag.w.dyad in the output) makes sense, as it indicates that the effect

of the lagged variable is decreased when the interval between times points is longer.

6 Symmetric data

It is sometimes the case that dyadic observations are symmetric or undirected by design, in that

there is only one value yi,j for the dyad {i, j}. Such observations can be represented by a symmetric

sociomatrix Y, so that yi,j = yj,i for all dyads {i, j}. In this case, a natural simplification of the
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AME model (4) is given by

yi,j = βTd xi,j + βTn (xi + xj) + ai + aj + uTi Λuj + εi,j , (12)

a1, . . . , an ∼ i.i.d. N(0, σ2a)

{εi,j} ∼ i.i.d. N(0, σ2e),

for i < j, with yj,i = yi,j by design. Most of the simplifications leading to this symmetric model

are easy to understand, with the possible exception of the change from uTi vj in the asymmetric

case to uTi Λuj here. In the former case, this representation can be justified by the singular value

decomposition theorem, which states that any n× n rank-R matrix M can be expressed as UVT ,

where U and V are n×R matrices. This means that mi,j , the i, jth entry of M can be expressed

as mi,j = uTi vj , where ui and vj are the ith and jth rows of U and V, respectively. In other words,

the uTi vj in the asymmetric AME model can represent any residual low-rank patterns M in the

sociomatrix Y that aren’t explained by the known regressors. Similarly, in the symmetric case the

term uTi Λuj in (12) can represent any residual low-rank patterns M in the symmetric sociomatrix

Y. This follows from the eigenvalue decomposition theorem, which states that any symmetric

rank-R matrix M can be expressed as UΛUT , or equivalently, the elements mi,j of M can be

expressed as mi,j = uTi Λuj . Furthermore, as with the asymmetric case, such a latent factor model

can represent patterns of transitivity and stochastic equivalence in network data (Hoff, 2008a).

6.1 Example: Analysis of a symmetric ordinal outcome

Symmetric versions of the normal, probit and other AME models discussed in the previous sections

can be fit by simply specifying the option symmetric=TRUE in the ame command. We illustrate the

use of this option with an analysis of Cold War cooperation and conflict data, available via the

coldwar dataset. These data include dyadic counts of military cooperation and conflict between

countries, geographic distances between countries, and country-level measures of GDP and polity.

These variables were recorded every five years from 1950 to 1985. For simplicity, we analyze a

time-averaged version of the dataset:

data(coldwar)

# response

Y<-sign( apply(coldwar$cc,c(1,2), mean ) )
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# nodal covariates

Xn<-cbind( apply( log(coldwar$gdp),1,mean ) , # log gdp

sign(apply(coldwar$polity ,1,mean ) ) ) # sign of polity

Xn[,1]<-Xn[,1]-mean(Xn[,1])

dimnames(Xn)[[2]]<-c("lgdp","polity")

# dyadic covariates

Xd<-array(dim=c(nrow(Y),nrow(Y),3))

Xd[,,1]<- tcrossprod(Xn[,1]) # gdp interaction

Xd[,,2]<- tcrossprod(Xn[,2]) # polity interaction

Xd[,,3]<-log(coldwar$distance) # log distance

dimnames(Xd)[[3]]<-c("igdp","ipol","ldist")

The response yi,j takes values in {−1, 0, 1}. As such, we view this as an ordinal outcome, to

which we fit an ordinal version of a rank-1 symmetric AME model using the ame command:

fit_cw_R1<-ame(Y,Xd,Xn,R=1,model="ord",symmetric=TRUE,burn=1000,nscan=100000,odens=100)

Note that for this symmetric model, the row regressors must be the same as the column regressors,

and so it is sufficient to specify these just once. We also note that for technical reasons, the mixing

of the MCMC algorithm for estimating the low-rank matrix UΛUT is slower than that for the

asymmetric matrix UVT . For this reason we lengthened the burn-in period for the Markov chain,

and increased the number of iterations to 100,000 from the default value of 10,000.

summary(fit_cw_R1)

Regression coefficients:

pmean psd z-stat p-val

lgdp.node -0.002 0.041 -0.058 0.954

polity.node 0.062 0.070 0.888 0.375

igdp.dyad -0.025 0.020 -1.276 0.202

ipol.dyad 0.133 0.060 2.211 0.027

ldist.dyad 0.365 0.054 6.745 0.000

Variance parameters:

pmean psd

va 0.149 0.046
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Figure 17: Diagnostic plots for the rank-1 AME model of the coldwar data.
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ve 1.000 0.000

fit_cw_R1$L # eigenvalue

[1] 63.61187

The results indicate no strong association between country-specific levels of zi,j with the nodal

attributes. At the dyadic level however, there appears to be homophily in terms of polity. Further-

more, the parameter for ldist.dyad suggests that large geographic distance is positively associated

with cooperation. However, a better interpretation might be that large distance is negatively as-

sociated with conflict, as most conflicts are regional. More refined hypotheses about conflict and

cooperation could be evaluated by fitting separate models for the conflict network (yi,j < 0) and

the cooperation network (yi,j > 0).

We now describe the estimate of the low-rank latent factor term UΛUT . This term describes

heterogeneity in the dataset that is not explained by the nodal or dyadic regressors, or the terms

in the social relations covariance model. As shown above, the estimated “eigenvalue” fit cw$L is

positive. Since yi,j is increasing in uTi Λuj (which is λuiuj in this rank-1 model) this means that

countries that cooperate should on average have estimated u-vectors pointing in the same direction,

and countries in conflict should have estimates pointing in opposite directions. A plot of the latent

factors in Figure 18 confirms this, showing that cooperative pairs (linked by green lines) essentially

all have u-values that are on the same side of the origin (the one exception involves Egypt, which

was cooperative with both the USA and USSR). Conflictual pairs (linked by red lines) are generally

on opposite sides of the origin.
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