
BASS: An R Package for Fitting and Performing

Sensitivity Analysis of Bayesian Adaptive Spline

Surfaces

Devin Francom

University of California Santa Cruz
Bruno Sansó

University of California Santa Cruz

Abstract

We present the R package BASS as a tool for nonparametric regression. The primary
focus of the package is fitting fully Bayesian adaptive spline surface (BASS) models and
performing global sensitivity analyses of these models. The BASS framework is similar to
that of Bayesian multivariate adaptive regression splines (BMARS) from Denison, Mallick,
and Smith (1998), but with many added features. The software is built to efficiently
handle significant amounts of data with many continuous or categorical predictors and
with functional response. Under our Bayesian framework, most priors are automatic but
these can be modified by the user to focus on parsimony and the avoidance of overfitting.
If directed to do so, the software uses parallel tempering to improve the reversible jump
Markov chain Monte Carlo (RJMCMC) methods used to perform inference. We discuss
the implementation of these features and present the performance of BASS in a number
of analyses of simulated and real data.

Keywords: splines, functional data analysis, sensitivity analysis, nonparametric regression.

1. Introduction

The purpose of the R (R Core Team 2016) package BASS (Francom 2016) is to provide an
easy-to-use implementation of Bayesian adaptive spline models for nonparametric regression.
It provides a combination of flexibility, scalability, interpretability and probabilistic accuracy
that can be difficult to find in other nonparametric regression software packages. The model
form is flexible enough to capture local features that may be present in the data. It is scalable
to moderately large datasets in both the number of predictors and the number of observations.
It performs automatic variable selection. It can build nonparametric functional regression
models and incorporate categorical predictors. The package can partition the variability of a
resultant model using a nonlinear ANOVA decomposition, providing valuable interpretation
to the predictors. The Bayesian approach allows for model estimates and predictions that
can be evaluated probabilistically. The package is protected under the GNU General Public
License, version 3 (GPL-3), and is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=BASS.

The BASS framework builds on multivariate adaptive regression splines (MARS) from Fried-
man (1991b). Well-developed software implementations of the MARS model are available in
the R packages earth, polspline and mda. The Bayesian version of MARS (BMARS) was first

https://CRAN.R-project.org/package=BASS

2 BASS: Bayesian Adaptive Spline Surfaces

developed in Denison et al. (1998). A MATLAB implementation of BMARS is available from
the software website accompanying Denison, Holmes, Mallick, and Smith (2002).

Our implementation is more similar to the BMARS implementation, though with some sub-
stantial changes to methodology as described in Francom, Sansó, Kupresanin, and Johan-
nesson (2016). The primary motivation for developing this software was building surrogate
models (or emulators) for complex and computationally expensive simulators (or computer
models). In particular, we wanted to build a fast and accurate surrogate model to use for
uncertainty quantification in the presence of a large number of simulations and where each
simulation had functional output. Attributing the variance in the response of the surrogate to
different combinations of predictors, a practice known as sensitivity analysis, is a valuable tool
for determining which predictors and interactions are important. One of the major benefits of
polynomial spline surrogate models is that sensitivity analysis can be done analytically. The
BASS package has this functionality for scalar and functional response models.

There are a number of other R packages that use splines, such as crs, gss, mgcv and R2BayesX,
the latter two of which include possible Bayesian inference methods. These packages allow
(or require) the user to specify which variables are allowed to interact in what way, as well as
which variables are allowed to have nonlinear main effects. The crs package is more similar
to the packages that fit MARS models in that it can learn the structure of the model from
the data. These packages report a single best model. BASS reports an ensemble of models
(posterior draws from the model space) that can be used to make probabilistic predictions.
In this way, it is more similar to Bayesian nonparametric regression packages like BayesTree

and tgp.

We introduce the package as follows. In Section 2, we describe the modeling framework,
including our methods for posterior sampling, modeling functional responses, and incorpo-
rating categorical inputs. In Section 3, we describe the sensitivity analysis methods. Then,
in Section 4, we walk through six examples of how to use the package. These are done with
knitr in order to be reproducible by the reader. Finally, in Section 5, we present a summary
of the package capabilities.

2. Bayesian adaptive spline surfaces

The BASS model, like the MARS and BMARS models, uses data to learn a set of data
dependent basis functions that are tensor products of polynomial splines. The number of
basis functions as well as the knots and variables used in each basis are chosen adaptively.
The BMARS approach uses reversible jump Markov chain Monte Carlo (RJMCMC) (Green
1995) to sample the posterior. The BASS adaptation of BMARS includes the improvements of
Nott, Kuk, and Duc (2005) for more efficient posterior sampling as well as parallel tempering
for better posterior exploration. BASS also efficiently handles functional responses and allows
for categorical variables. We discuss each of these aspects below. First, we introduce the BASS
model and priors.

Let yi denote the dependent variable and xi denote a vector of p independent variables, with
i = 1, . . . , n. Without loss of generality, let each independent variable be scaled to be between

Devin Francom, Bruno Sansó 3

zero and one. We model yi as

yi = f(xi) + ǫi, ǫi ∼ N(0, σ2) (1)

f(x) = a0 +
M
∑

m=1

amBm(x) (2)

Bm(x) =

Km
∏

k=1

gkm[skm(xvkm − tkm)]α+ (3)

where skm ∈ {−1, 1} is referred to as a sign, tkm ∈ [0, 1] is a knot, vkm selects a variable, Km

is the degree of interaction and gkm = [(skm + 1)/2− skmtkm]α is a constant that makes the
basis function have a maximum of one. The function [·]+ is defined as max(0, ·). The power
α determines the degree of the polynomial splines. We allow for no repeats in v1m, . . . , vKmm,
meaning that a variable can be used only once in a basis function. M is the number of basis
functions, and a is the M + 1 vector of basis coefficients (including the intercept). The only
difference between this setup and that of MARS and BMARS is the inclusion of the constant
gkm in each element of the tensor product. This normalizes the basis functions so that the
basis coefficients a1, . . . , aM are on the same scale, making computations more stable.

In the course of fitting this model, we seek to estimate θ = {σ2,M,a,K, s, t,v} where K

is the M -vector of interaction degrees, s is the vector of signs {{skm}Km

k=1
}Mm=1, t the vector

of knots and v the vector of variables used (with t and v defined similar to s). Under the
Bayesian formulation, we specify a prior distribution for θ.

First, consider the priors for the σ2 and a. Let B be the n× (M +1) matrix of basis functions
(including the intercept). Then we use Zellner’s g-prior (Liang, Paulo, Molina, Clyde, and
Berger 2008) for a with

a|σ2, τ,B ∼ N(0, σ2(B⊤B)−1/τ) (4)

σ2 ∼ InvGamma(g1, g2) (5)

τ ∼ Gamma(aτ , bτ) (6)

with default settings aτ = 1 and bτ = 1/n (shape and rate) to center the prior over the unit
information prior and g1 = g2 = 0 resulting in the non-informative prior p(σ2) ∝ 1/σ2. In
practice, the default settings are sufficient for most cases, though it can be helpful to encode
actual prior information into the prior for σ2.

Now, consider the prior for the number of basis functions, M . We use a Poisson prior for
M , truncated to be between 0 and Mmax. We give a Gamma hyperprior to the mean of the
Poisson, λ. If c is the Poisson mass that has been truncated, i.e., c = 1−

∑Mmax

m=0
e−λλm/m!,

then we have

p(M |λ) =
e−λλM

cM !
(7)

λ ∼ Gamma(h1, h2) (8)

where the default settings of h1 = h2 = 10 (shape and rate) in most cases induce a small
number of basis functions. In practice, these hyperparameters can be key in order to prevent
overfitting. More specifically, we increase h2 (by many orders of magnitude in some cases) to
bring the prior for λ very close to zero in an effort to thin out the tails of the Poisson and

4 BASS: Bayesian Adaptive Spline Surfaces

have fewer basis functions. We use Mmax to give an upper bound to the computational cost,
rather than to prevent overfitting. This strategy results in better fitting models since setting
Mmax too small often results in posterior sampling from only one mode.

The priors for K, s, t and v are uniform over a constrained space as described in Francom
et al. (2016). The constraint in this prior makes sure basis functions have more than b non-
zero values. Note that a basis function, as shown in Equation 3, is likely to have many zeros
in it depending on how close the knot is to the edge of the space. If a knot is too close to
the edge of the space, there might only be a few non-zero values in the basis function. A
basis function with only a few non-zero values corresponds to very local fitting and usually
results in edge effects. If we calculate the number of non-zero points in basis function m to
be bm, this prior requires that bm > b. This is the BASS equivalent of specifying a minimum
number of points in each partition in recursive partitioning. In addition to specifying b, we
also specify Kmax, the maximum degree of interaction for each basis function.

Table 1 shows the parameters used in the bass function that we have discussed thus far, and
what their mathematical symbols are.

Symbol Kmax b h1 h2 g1 g2 α Mmax aτ bτ
bass input maxInt npart h1 h2 g1 g2 degree maxBasis a.tau b.tau

Table 1: Translation from mathematical symbols to parameters used in bass function.

2.1. Efficient posterior sampling

Posterior sampling is complicated by the fact that the model is transdimensional (since M
is unknown). Our RJMCMC scheme allows us to add, delete, or change a basis function
consistent with the approach of Nott et al. (2005). That is, instead of proposing to add a
completely random new basis function in a reversible jump step, we use a proposal generating
distribution that favors the variables and degrees of interaction already included in the model.
For example, say there were five basis functions already in the model, each with degree of
interaction two. Say the maximum degree of interaction was three. Then if we were proposing
a new basis function we would sample the degree of interaction from {1, 2, 3} with weights
{w1, w1 + 5, w1}, thus favoring two way interactions since we have seen more of them. If
the nominal weight w1 is large compared to the number of basis functions, this distribution
looks more uniform. The value w2 is the equivalent nominal weight for sampling variables
to be included in a candidate basis function. Both w1 and w2 default to five. If there are a
large number of unimportant variables in the data, a small value of w2 (relative to M) helps
to make posterior sampling more efficient by not proposing basis functions that include the
unimportant variables.

We extend the framework of Nott et al. (2005) to allow for more than two-way interactions.
This ends up being non-trivial, since the RJMCMC acceptance ratio requires us to calculate
the probability of sampling the proposed basis function. The difficulty comes when we try
to calculate the probability of sampling the particular variables, as this requires calculating
the probability of a weighted sample without replacement (weighted since we do not sample
variables uniformly, without replacement since variables cannot be used more than once in
the same basis function). This is equivalent to sampling from the multivariate Wallenius’

Devin Francom, Bruno Sansó 5

noncentral hypergeometric distribution. To determine the probability of such a sample, we use
a function from the R package BiasedUrn (Fog 2015). Since the CRAN version of BiasedUrn

allows for only 32 possible variables, we include a slightly altered version of the function in
BASS to quickly evaluate the approximate density function of the multivariate Wallenius’
noncentral hypergeometric distribution.

The computation behind posterior sampling becomes much more efficient when we recognize
that each RJMCMC iteration only allows slight changes to our set of basis functions. Thus,
quantities like B⊤B, Ba and B⊤y can easily be updated rather than recalculated, as shown
in Francom et al. (2016).

We perform NMCMC RJMCMC iterations and discard the first Nburn, after which every Nthin

iterations is kept. This results in (NMCMC − Nburn)/Nthin posterior samples. Table 2 shows
the parameters to the bass function discussed in this section, as well as their mathematical
symbols.

Symbol w1 w2 NMCMC Nburn Nthin

bass input w1 w2 nmcmc nburn thin

Table 2: Translation from mathematical symbols to parameters used to specify nominal
weights of proposal distributions and number of RJMCMC iterations in the bass function.

2.2. Parallel tempering

Posterior sampling with RJMCMC is prone to mixing problems (problems exploring all of
the parameter space). In our case, this is because only slight changes to the basis functions
can be made in each iteration. Thus, once we start sampling from one mode of the posterior,
it can be hard to move to another mode if it requires changing many of the basis functions
(Gramacy, Samworth, and King 2010).

We are able to achieve better mixing by using parallel tempering. This requires the specifi-
cation of a temperature ladder, 1 = t1 < t2 < · · · < tT < ∞. For each temperature in the
temperature ladder, a RJMCMC chain samples the posterior raised to the inverse temper-
ature (i.e., if π(θ|y) is the posterior of interest, we sample from π(θ|y)1/ti). The chains at
neighboring temperatures are allowed to swap states according to a Metropolis-Hastings ac-
ceptance ratio (see Francom et al. (2016) and references therein). Only samples in the lowest
temperature chain (t1) are used for inference. The high temperature chains mix over many
posterior modes, allowing diverse models to be propagated to the low temperature chain. We
allow the chains to run without swapping for Nst iterations at the beginning of the run to
allow them to get close to their stationary distributions.

Specifying a temperature ladder can be difficult. Temperatures need to be close enough to
each other to allow for frequent swaps (with acceptance rates between 20 and 60% (Altekar,
Dwarkadas, Huelsenbeck, and Ronquist 2004)), and the highest temperature (tT) needs to
be high enough to be able to explore all the modes. Future versions of this package may
make some attempt at automatically specifying and altering a temperature ladder. Further,
a message passing interface (MPI) approach to handling the multiple chains could result in
substantial speedup, and may be implemented in future versions of the package.

6 BASS: Bayesian Adaptive Spline Surfaces

Table 3 shows the translation from parameters used for parallel tempering in the bass function
to symbols we have used in this section.

Symbol (t1, . . . , tT) Nst

bass input temp.ladder start.temper

Table 3: Translation from mathematical symbols to parameters used for parallel tempering
in the bass function.

2.3. Functional response

We handle Functional responses as though the variable indexing the functional response,
like time or location, is one of the independent variables. When the functional response is
output onto the same functional variable grid for all samples, this results in more efficient
calculations involving basis functions because of the Khatri-Rao product structure (Francom
et al. 2016). For example, this software is well suited to fit a model where the data are such
that a combination of independent variables results in a time-series and the grid of times (say,
r1, . . . , rq) is the same for each combination.

If there are multiple functional variables, we must specify a maximum degree of interaction
for them, KF

max. For instance, if the functional output was a spatiotemporal field (a function
of three variables) and we specify a maximum degree of functional interaction of two, we
would not allow for interactions between both spatial dimensions and time. We would specify
the grid of spatial locations and time points as a matrix with three columns rather than a
vector like we did in the time series example above. We can also specify a value bF , possibly
different from b, that indicates the number of non-zero values required in the functional part
of basis functions. When functional responses are included, the values of b and bF should be
relative to the sample size and the size of the functional grid, respectively.

Table 4 shows parameters necessary to model functional responses in the bass function. The
response y should be specified as a matrix when the response is functional.

Symbol (r1, . . . , rq) KF
max bF

bass input xx.func maxInt.func npart.func

Table 4: Translation from mathematical symbols to parameters used in the bass function
when modeling functional data.

2.4. Categorical inputs

We include categorical variables by allowing for basis functions to include indicators for cate-
gorical variables being in certain categories. Our approach is the Bayesian version of Friedman
(1991a) and is described in Francom, Sansó, Bulaevskaya, and Lucas (2017). If a set of in-
dependent variables is separated into continuous variables x and categorical variables c, then

Devin Francom, Bruno Sansó 7

the mth basis function equivalent of Equation 3 can be written as

Bm(x, c) =

Km
∏

k=1

gkm[skm(xvkm − tkm)]α+

Kc
m

∏

l=1

1
(

cvc
lm

∈ Clm

)

(9)

where Kc
m is the degree of interaction for the categorical predictors, 1(·) is the indicator

function, vclm indexes the categorical variables and Clm is a subset of the categories for variables
cvc

lm
. We now allow for Km or Kc

m to be zero, and specify a Kc
max (maxInt.cat in the bass

function).

The priors we use for the degree of interaction, variables used and categories used are, in
combination with the priors we used above, the same constrained uniform. Thus, basis
function (Bm(x1, c1), . . . , Bm(xn, cn)) is required to have at least b non-zero values.

3. Sensitivity analysis

Global sensitivity analysis for nonlinear models using the Sobol’ decomposition (Sobol’ 2001)
is well developed, but often requires large numbers of evaluations of the models for Monte
Carlo approximation of integrals (Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli,
Saisana, and Tarantola 2008). The benefit of polynomial spline models is that Monte Carlo
approximation is unnecessary because the integrals can be calculated analytically.

The method decomposes a function f(x) into main effects, two way interactions, and so on,
up to p way interactions so that

f(x) = f0 +

p
∑

i=1

fi(xi) +

p
∑

i=1

∑

j>i

fij(xi, xj) + · · ·+ f1···p(x1, . . . , xp). (10)

Each term in the sum above is constructed so that it is orthogonal to all the other terms.
This can be done by calculating

f0 =

∫

f(x)dx (11)

fi(xi) =

∫

f(x)dx−i − f0 (12)

fij(xi, xj) =

∫

f(x)dx−ij − fi(xi)− fj(xj)− f0 (13)

etc., for all the terms in Equation 10. Note that if we assume x is uniformly distributed,
these are conditional expectations (except f0 is unconditional). The conditional expectations
are centered at zero the way we have constructed them. Since the terms in Equation 10 are
orthogonal,

E(f2(x)) = f2
0 +

p
∑

i=1

E
(

f2
i (xi)

)

+

p
∑

i=1

∑

j>i

E
(

f2
ij(xi, xj)

)

+ · · ·+ E
(

f2
1···p(x1, . . . , xp)

)

. (14)

Using the fact that V ar(f(x)) = E(f2(x)) − f2
0 and that E(fi1···is(xi1···is)) = 0 for all terms

except f0,

V ar(f(x)) =

p
∑

i=1

V ar(fi(xi)) +

p
∑

i=1

∑

j>i

V ar(fij(xi, xj)) + · · ·+ V ar(f1···p(x1, . . . , xp)). (15)

8 BASS: Bayesian Adaptive Spline Surfaces

This is a decomposition of the variance of the model into variance due to each main effect,
each two way interaction (after accounting for the associated main effects), etc. All of these
integrals are analytical in our case, with solutions given in Francom et al. (2016). Sensitivity
indices for main effects and interactions are then defined as proportions of the total variance.
Total sensitivity for a particular variable can then be gauged by adding the main effect and
all interactions associated with that variable and comparing to the total sensitivity indices
for other variables.

We can obtain this variance decomposition for each posterior sample to get posterior dis-
tributions of sensitivity indices. This can be time consuming, so the sobol function has an
argument mcmc.use to specify which RJMCMC iterations should be used. Calculations of the
integrals above can be vectorized when basis functions are the same and only basis function
coefficients change. This is the case for many of the RJMCMC iterations, and the sobol

function automatically determines this and accounts for it. (As a side note, this is also the
case for the predict function).

3.1. Functional response

There are a few ways to think about sensitivity analysis for models with functional response.
One way is to get the sensitivity indices for the functional variables in the same way we get
the sensitivity indices for the rest of the variables. This results in a total variance decom-
position. Another approach is to obtain functional sensitivity indices, which would tell us
how important a variable or interaction is as we change the functional variable. This can be
done by following the procedure just mentioned, but simply not integrating over the func-
tional variable. Hence, all of the expectations above would be conditional on the functional
variable. These approaches are explored in Francom et al. (2016).

By default, the sobol function gets sensitivity indices for the functional variables the same way
it does for the other variables. Setting func.var = 1 gets the sensitivity indices as functions
of the first (possibly only) functional variable (if there are multiple functional variables, this
refers to the first column of the matrix xx.func passed to the bass function).

3.2. Categorical inputs

Under our categorical input extension, the necessary expectations to obtain the Sobol’ de-
composition are still analytical, as described in Francom et al. (2017). For the categorical
variables, we replace the integrals with sums over categories.

4. Examples

We now demonstrate the capabilities of the package on a few examples. For each example,
we start by setting the seed (set.seed(0)) so that readers can replicate the results. First we
load the package

R> library("BASS")

which we use for all the examples.

Devin Francom, Bruno Sansó 9

4.1. Curve fitting

We first demonstrate how the package can be used for curve fitting. We generate y ∼
N(f(x), 1) where x ∈ [−5, 5] and

f(x) =

{

−0.1x3 + 2 sin(πx2)(x− 4)2 0 < x < 4

−0.1x3 otherwise
(16)

for 1000 samples of x. The data are shown in Figure 3.

We generate the data with the following code.

R> set.seed(0)

R> f <- function(x) {

+ -.1 * x^3 + 2 * as.numeric((x < 4) * (x > 0)) * sin(pi * x^2) * (x - 4)^2

+ }

R> sigma <- 1

R> n <- 1000

R> x <- runif(n, -5, 5)

R> y <- rnorm(n, f(x), sigma)

We then call the bass function to fit a BASS model using the default settings.

R> mod<-bass(x, y)

MCMC Start #-- Mar 16 13:28:08 --# nbasis: 0

MCMC iteration 1000 #-- Mar 16 13:28:10 --# nbasis: 33

MCMC iteration 2000 #-- Mar 16 13:28:12 --# nbasis: 33

MCMC iteration 3000 #-- Mar 16 13:28:14 --# nbasis: 32

MCMC iteration 4000 #-- Mar 16 13:28:16 --# nbasis: 34

MCMC iteration 5000 #-- Mar 16 13:28:18 --# nbasis: 31

MCMC iteration 6000 #-- Mar 16 13:28:20 --# nbasis: 39

MCMC iteration 7000 #-- Mar 16 13:28:22 --# nbasis: 31

MCMC iteration 8000 #-- Mar 16 13:28:24 --# nbasis: 33

MCMC iteration 9000 #-- Mar 16 13:28:26 --# nbasis: 38

MCMC iteration 10000 #-- Mar 16 13:28:28 --# nbasis: 36

The result is an object that can be used for prediction and sensitivity analysis. By default,
the bass function prints progress after each 1000 MCMC iterations, along with the number
of basis functions. To diagnose the fit of the model, we call the plot function.

R> plot(mod)

This generates the four plots shown in Figure 1. The top left and right plots show trace plots
(after burn-in and excluding thinned samples) of the number of basis functions (M) and the
error variance (σ2). The bottom left plot shows the response values plotted against the the
posterior mean predictions (with equal tail posterior probability intervals as specified by the
quants parameter). The bottom right plot shows a histogram of the posterior mean residuals
along with the assumed Gaussian distribution centered at zero and with variance taken to be
the posterior mean of σ2. This is for checking the Normality assumption.

Next, we can generate posterior predictions at new inputs, which we generate as x.test.

10 BASS: Bayesian Adaptive Spline Surfaces

0 200 400 600 800 1000

33
35

37
39

MCMC iteration (post−burn)

nu
m

be
r

of
 b

as
is

 fu
nc

tio
ns

0 200 400 600 800 1000

0.
95

1.
05

1.
15

MCMC iteration (post−burn)

er
ro

r
va

ria
nc

e

−10 0 10 20

−
20

0
10

20

Training Fit

observed

po
st

er
io

r
pr

ed
ic

tiv
e

in
te

rv
al

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●● ●
●

●●

●
●

●

●

●

●●
●
● ●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●●

●
●●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

● ●●

●

●

●
●

●

●

●
●
●

●

●●

● ●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●

● ●

● ●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●●

●

●

●

●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

● ●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

● ●
●

●●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●● ●●
●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●●●

●

●●
●

●

●
●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●●
●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●●

●

●

●

●●

●

●

●●
●

●

●

●●

●
●●

● ●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●● ●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

Posterior mean residuals

residuals

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1: Diagnostic plots for BASS model fitting.

R> n.test <- 1000

R> x.test <- sort(runif(n.test, -5, 5))

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- Mar 16 13:28:29 --# Models: 164

Predict #-- Mar 16 13:28:29 --# Model: 100

By default, the predict function generates posterior predictive distributions for all of the
inputs. We can use a subset of posterior samples by specifying the parameter mcmc.use.
For instance, mcmc.use = 1 will use the first posterior sample (after burn-in and excluding
thinned samples), and will thus be faster. Rather than iterating through the MCMC samples
to generate predictions, we instead iterate through “models.” The model changes when the
basis functions change, which means that we can build the basis functions once and per-
form vectorized operations for predictions for all the MCMC iterations with the same basis
functions.

The object resulting from the predict function is a matrix with rows corresponding to MCMC
samples and columns corresponding to settings of x.test. Thus, the posterior mean predic-
tions are obtained by taking the column means. We plot the posterior predictive means
against the true values of f(x) as shown in Figure 2.

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Devin Francom, Bruno Sansó 11

●●●
●●●●
●●●●

●●
●●●●●

●●●●●
●

●●●●
●●

●
●●●●

●●
●

●
●●

●●●●
●●

●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●
●●

●●●●●

●●
●

●●●

●●
●●●●●●

●
●●

●●
●●●●●●●●●●●●●●●●●

●
●●●

●●
●

●●●

●●

●●●

●●●
●●

●
●

●●●●●●●●●●●
●●

●●●●●●
●●●

●●●
●

●
●

●●●●

●●●●●●
●●
●●●●

●●

●●●●
●

●●
● ●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●

●●●●
●●●●

●●●
●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

−10 0 10 20

−
10

0
10

20

fx.test

co
lM

ea
ns

(p
re

d)

Figure 2: BASS prediction on test data.

Note that the predictive distributions in the columns of pred are for f(x). To obtain pre-
dictive distributions for data, we would need to include Gaussian error with variance σ2

(demonstrated in Section 4.5). Posterior samples of σ2 are given in mod$s2.

In the curve fitting case, we can plot predicted curves. Below, we plot 10 posterior predictive
samples along with the true curve (Figure 3). We also show knot locations (in the rug along
the x-axis) for one of the posterior samples.

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)

R> matplot(x.test, t(pred[seq(100, 1000, 100),]), type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))

R> legend('topright', legend = c('true curve', 'posterior predictive draws'),

+ col = c(2:3), lty = c(2, 1), lwd = c(3, 1), bty = 'n')

If we are interested in using fewer knots (fewer basis functions), we can change the prior for
the number of basis functions to be more restrictive. For instance, setting h2=100

R> mod <- bass(x, y, h2 = 100)

R> pred <- predict(mod, x.test)

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)

R> matplot(x.test, t(pred[seq(100, 1000, 100),]), type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))

R> legend('topright', legend = c('true curve', 'posterior predictive draws'),

+ col = c(2:3), lty = c(2, 1), lwd = c(3, 1), bty = 'n')

results in knots as shown along the x-axis of Figure 4. This results in fewer knots, but perhaps
slight underfitting in the part of the curve around x = 3. The h2 parameter can be used to
prevent overfitting, but the setting is not intuitive. Thus, this parameter may require tuning
(perhaps by cross-validation).

12 BASS: Bayesian Adaptive Spline Surfaces

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
10

0
10

20

x

y

true curve
posterior predictive draws

Figure 3: True curve with posterior predictive draws.

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
10

0
10

20

x

y

true curve
posterior predictive draws

Figure 4: True curve with posterior predictive draws and more restrictive prior on the number
of basis functions.

Devin Francom, Bruno Sansó 13

Two final issues to discuss with this example are why we use linear splines (the default degree
= 1) and how to tell if we have achieved convergence before taking MCMC samples as posterior
samples. We use linear splines almost exclusively when using this package because of their
stability and ability to capture nonlinear curves and surfaces. Using a higher degree, such
as degree = 3, results in smoother models but suffers from stability problems and is more
difficult to fit. We suggest settings of degree other than degree = 1 be used with care, always
with scrutiny of prediction performance. Convergence is best assessed by examining the trace
plots shown in Figure 1. Especially if the trace plot for σ2 shows any sort of non-cyclical
pattern, the sampler should be run for longer. As a side note, a new sampler can be started
from where the old sampler left off by using the curr.list parameter. For instance, we can
run mod2 <- bass(x, y, curr.list = mod$curr.list) to start a new sampler from where
mod left off.

4.2. Friedman function

For our next example, we will test the package on the Friedman function (Friedman 1991b).
This function will have 10 inputs, five of which contribute nothing. The other five are used
to generate

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (17)

We generate 200 input samples uniformly from a unit hypercube, calculate f(x) for each and
add standard Normal error to obtain data to model.

R> set.seed(0)

R> f <- function(x) {

+ 10 * sin(pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1

R> n.vars <- 10

R> n <- 200

R> x <- matrix(runif(n * n.vars), n, n.vars)

R> y <- rnorm(n, f(x), sigma)

Here we will show how we can change the length of the MCMC chain and use parallel tem-
pering. We run the RJMCMC chain for 40000 iterations, discarding the first 30000 as burn-in
and thinning by keeping every tenth sample. We supply a temperature ladder with smallest
value one (the “cold chain”, or true posterior) and largest value 8.15 (the “hottest” chain)
using geometric spacing. Thus, ti = (1 + ∆t)

i−1 where ∆t is a spacing parameter we set at
0.3. We use nine chains. By default, chains at neighboring temperatures will be allowed to
swap after the first 1000 iterations.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .27)^(1:9 - 1), verbose = F)

We can generate posterior predictive samples just as we did in the curve fitting example.

14 BASS: Bayesian Adaptive Spline Surfaces

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

5 10 15 20 25

0
5

10
15

20
25

fx.test

co
lM

ea
ns

(p
re

d)

Figure 5: BASS prediction on test data - Friedman function.

R> n.test <- 1000

R> x.test <- matrix(runif(n.test * n.vars), n.test)

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- Mar 16 13:31:13 --# Models: 876

Predict #-- Mar 16 13:31:13 --# Model: 100

Predict #-- Mar 16 13:31:13 --# Model: 200

Predict #-- Mar 16 13:31:13 --# Model: 300

Predict #-- Mar 16 13:31:14 --# Model: 400

Predict #-- Mar 16 13:31:14 --# Model: 500

Predict #-- Mar 16 13:31:14 --# Model: 600

Predict #-- Mar 16 13:31:14 --# Model: 700

Predict #-- Mar 16 13:31:14 --# Model: 800

Plotting these samples against true values of f(x) shows that we have a good fit (Figure 5).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Now that we are considering a function of many variables, we may be interested in sensitivity
analysis. To get the Sobol’ decompostion for each posterior sample, we use the sobol function.

R> sens <- sobol(mod, verbose = F)

Note that when verbose = T, this function prints after every 10 models (as with the predict
function, vectorizing around models rather than MCMC iterations saves a large amount of
time). Depending on the number of basis functions and the number of models, this function
can take significant amounts of time. If that is the case, using a smaller set of MCMC
iterations by specifying mcmc.use may be useful.

Devin Francom, Bruno Sansó 15

1 2 3 4 5 6 7 8 9 10 1x
2

1x
3

1x
4

1x
5

1x
6

1x
7

1x
8

1x
9

1x
10 2x

3
2x

4
2x

5
2x

6
2x

7
2x

8
2x

9
2x

10 3x
4

3x
5

3x
6

3x
7

3x
8

3x
9

3x
10 4x

5
4x

6
4x

7
4x

8
4x

9
4x

10 5x
6

5x
7

5x
8

5x
9

5x
10 6x

7
6x

8
6x

9
6x

10 7x
8

7x
9

7x
10 8x

9
8x

10
9x

10
1x

2x
3

1x
2x

5
1x

2x
6

1x
2x

10
1x

3x
4

1x
3x

5
1x

3x
7

1x
3x

9
1x

4x
5

1x
4x

7
1x

4x
9

1x
5x

6
1x

5x
7

1x
5x

9
1x

5x
10

1x
6x

9
1x

6x
10

1x
7x

8
1x

7x
9

1x
7x

10
1x

8x
9

1x
8x

10
1x

9x
10

2x
3x

4
2x

3x
5

2x
3x

6
2x

3x
7

2x
3x

10
2x

4x
6

2x
4x

7
2x

4x
8

2x
4x

9
2x

4x
10

2x
5x

6
2x

5x
7

2x
5x

10
2x

6x
7

2x
6x

8
2x

6x
9

2x
6x

10
2x

7x
9

2x
7x

10
2x

8x
9

2x
8x

10
2x

9x
10

3x
4x

5
3x

4x
6

3x
4x

7
3x

5x
6

3x
5x

7
3x

5x
9

3x
6x

7
3x

6x
8

3x
6x

9
3x

6x
10

3x
7x

8
3x

7x
10

3x
8x

9
3x

9x
10

4x
5x

7
4x

5x
8

4x
5x

9
4x

5x
10

4x
6x

7
4x

6x
8

4x
6x

9
4x

6x
10

4x
7x

8
4x

8x
9

4x
8x

10
4x

9x
10

5x
6x

10
5x

7x
8

5x
7x

9
5x

8x
9

5x
8x

10
5x

9x
10

6x
7x

8
6x

7x
10

6x
9x

10
8x

9x
10

0.0

0.1

0.2

0.3

0.4

Sensitivity
pr

op
or

tio
n

va
ria

nc
e

1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

Total Sensitivity

Figure 6: BASS sensitivity analysis - Friedman function.

1 2 3 4 5

1x
2

0.1

0.2

0.3

0.4

pr
op

or
tio

n
va

ria
nc

e

Figure 7: Most important main effects and interactions - Friedman function.

The default plotting for this kind of object (Figure 6) shows boxplots of variance explained
for each main effect and interaction that shows up in the BASS model. It also shows boxplots
of the total sensitivity indices.

R> plot(sens, cex.axis = .5)

If there are a large number of main effects or interactions that explain very small percentages
of variation, we can show only the effects that are most significant. For instance, we could
show only the effects that, on average, explain at least 1% of the variance (Figure 7).

R> boxplot(sens$S[, colMeans(sens$S) > .01], las = 2,

+ ylab = 'proportion variance', range = 0)

As expected, we see that almost all of the variance is from the first five variables and the only
strong interaction is between the first two variables.

16 BASS: Bayesian Adaptive Spline Surfaces

Figure 8: Parallel tempering diagnostics - swap trace plot.

As a final note for this example, we discuss tempering diagnostics. We would like for neigh-
boring chains to have swap acceptance rate of somewhere around 23%. Running bass with
verbose = T prints these acceptance rates every 1000 iterations. At the completion of the
sampling, we can investigate acceptance rates by dividing the swap counts by the number of
swap proposals, as follows.

R> mod$count.swap/mod$count.swap.prop

[1] 0.3621554 0.3793670 0.3779575 0.2840164 0.2185430 0.3181351 0.2764826

[8] 0.2377282

Since we have specified nine temperatures, there are eight possible swaps, hence the eight
numbers. If, for example, we wanted to increase the first acceptance rate, we would move the
second temperature closer to the first.

Further analysis of swaping can be done by looking at swap trace plots.

R> matplot(mod$temp.val, type = 'l', ylab = 'temperature index')

Figure 8 shows the swap trace plot where y-axis values are temperature indices (1 is the
true posterior and 9 is the posterior raised to the smallest power), the x-axis shows MCMC
iteration and the colored lines represent the different chains. We want to see these chains
mixing throughout, as we do here.

Determining whether the smallest value of the temperature ladder is small enough to allow
for good mixing can be difficult. In this example, we could run the model with temp.ladder

= 8.15 and look at mixing diagnostics. One could also look at predicted versus observed
plots at the different temperatures for the last MCMC iteration by executing the following
code, the output of which is shown in Figure .

R> par(mfrow=c(3,3))

R> temp.ind <- sapply(mod$curr.list, function(x) x$temp.ind)

Devin Francom, Bruno Sansó 17

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

0 5 10 20

0
10

20

1

yhat

y
●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
● ●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

● ● ●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

5 10 15 20 25

0
10

20

1.27

yhat

y

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

●● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

0 5 10 20

0
10

20

1.61

yhat

y

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

● ●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

5 10 15 20 25

0
10

20

2.05

yhat

y

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

●● ●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

5 10 15 20 25

0
10

20

2.6

yhat

y
●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●●

●

●

●
●

●

● ●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●
● ●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

0 5 10 20

0
10

20

3.3

yhat

y
●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

● ●

●

●

●
●

●

● ●
●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●
● ●

● ● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

0 5 10 15 20 25

0
10

20

4.2

yhat

y

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●
●

● ●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●
●●

● ● ●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

0 5 10 20

0
10

20

5.33

yhat

y

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

● ●

●

●

●
●

●

● ●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
●●

● ●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

0 5 10 20

0
10

20

6.77

yhat

y

Figure 9: Predicted versus observed for the last MCMC iteration of the nine chains at different
temperatures. The temperatures are shown above each plot.

R> for(i in 1:length(mod$temp.ladder)) {

+ ind <- which(temp.ind == i)

+ yhat <- mod$curr.list[[ind]]$des.basis %*% mod$curr.list[[ind]]$beta

+ plot(yhat, y, main = round(mod$temp.ladder[i], 2))

+ abline(a = 0, b = 1, col = 2)

+ }

Note that the curr.list object is a list with number of elements equal to the number of
temperatures. This list contains the MCMC state for each chain. Since we swap temperatures
rather than entire states, the chains are not in order according to temperature. We note that
using the default prior for σ2 with a temperature ladder with relatively large values can lead
to instabilities when estimating σ2. In cases where that is clearly the case, the prior for σ2

will be automatically changed and a warning will be generated.

To demonstrate what is different when we use tempering, consider the equivalent BASS model
fit without tempering.

R> mod.noTemp <- bass(x, y, nmcmc = 40000, nburn = 30000,

+ thin = 10, verbose = F)

We compare the root mean square prediction error (RMSE) for the two models, as well as the

18 BASS: Bayesian Adaptive Spline Surfaces

empirical coverage of 95% probability intervals. First, the RMSE for the model fit without
tempering

R> pred.noTemp <- predict(mod.noTemp, x.test)

R> sqrt(mean((colMeans(pred.noTemp) - fx.test)^2))

[1] 0.5303968

and the empirical coverage

R> quants.noTemp <- apply(pred.noTemp, 2, quantile, probs = c(.025, .975))

R> mean((quants.noTemp[1,] < fx.test) & (quants.noTemp[2,] > fx.test))

[1] 0.923

demonstrate that the fit is quite good. When we use parallel tempering, the RMSE

R> sqrt(mean((colMeans(pred) - fx.test)^2))

[1] 0.4769708

and the empirical coverage

R> quants <- apply(pred, 2, quantile, probs = c(.025, .975))

R> mean((quants[1,] < fx.test) & (quants[2,] > fx.test))

[1] 0.949

are better, though not by an extreme amount. Under different seeds, we tend to see higher
coverage when we use tempering and lower coverage when we do not. We also tend to get
better models in terms of RMSE when we use tempering. Other benefits of tempering will be
shown in later examples. Because the computational burden is currently linear in the number
of temperatures, using fewer temperatures is better. Thus, for many purposes, the model
without tempering may be good enough.

4.3. Friedman function with a categorical variable

In this example, we use data generated from a function similar to the Friedman function in
the previous example but with a categorical variable included. The function, introduced in
Gramacy and Taddy (2010), has

f(x) =























10 sin(πx1x2) x11 = 1

20(x3 − 0.5)2 x11 = 2

10x4 + 5x5 x11 = 3

5x1 + 10x2 + 20(x3 − 0.5)2 + 10 sin(πx4x5) x11 = 4

(18)

as the mean function and standard Normal error. Again, x6, . . . , x10 are unimportant. We
generate 500 random uniform samples of the first 10 variables and randomly sample 500
values of the four categories of the 11th variable. The bass function treats input variables as
categorical only if they are coded as factors.

Devin Francom, Bruno Sansó 19

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●●●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●●

●

●
●

●

●

0 5 10 15 20 25

0
5

10
15

20
25

fx.test

co
lM

ea
ns

(p
re

d)

Figure 10: BASS prediction on test data - Friedman function with categorical predictor.

R> set.seed(0)

R> f <- function(x) {

+ as.numeric(x[, 11] == 1) * (10 * sin(pi * x[, 1] * x[, 2])) +

+ as.numeric(x[,11] == 2) * (20 * (x[, 3] - .5)^2) +

+ as.numeric(x[, 11] == 3) * (10 * x[, 4] + 5 * x[, 5]) +

+ as.numeric(x[, 11] == 4) * (10 * sin(pi * x[, 5] * x[, 4]) +

+ 20 * (x[, 3] - .5)^2 + 10 * x[, 2] + 5 * x[, 1])

+ }

R> sigma <- 1

R> n <- 500

R> x <- data.frame(matrix(runif(n * 10), n, 10),

+ as.factor(sample(1:4, size = n, replace = T)))

R> y <- rnorm(n, f(x), sigma)

We fit a model with tempering and use it for prediction, as in the previous example.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .2)^(1:6 - 1), verbose = F)

R> n.test <- 1000

R> x.test <- data.frame(matrix(runif(n.test * 10), n.test, 10),

+ as.factor(sample(1:4, size = n.test, replace = T)))

R> pred <- predict(mod, x.test)

Plotting posterior predictive samples against true values of f(x) shows that we have a good
fit (Figure 10).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Sensitivity analysis is performed in the same manner.

20 BASS: Bayesian Adaptive Spline Surfaces

1 2 3 4 5 11
1x

11
2x

11
3x

11
4x

11
5x

11
1x

2x
11

4x
5x

11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
op

or
tio

n
va

ria
nc

e

Figure 11: Most important main effects and interactions - Friedman function with categorical
predictor.

R> sens <- sobol(mod)

Plotting the posterior distributions of the most important (explaining more than 0.5% of the
variance) sensitivity indices in Figure 11, we see how important the categorical variable is as
well as which variables it interacts with.

R> boxplot(sens$S[, colMeans(sens$S) > .005], las = 2,

+ ylab = 'proportion variance', range = 0)

4.4. Friedman function with functional response

Next, we consider an extension of the Friedman function that is functional in one variable
Francom et al. (2016). We use

f(x) = 10 sin(2πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (19)

where we treat x1 as the functional variable. Note that we insert a two into the sin function
in order to increase the variability due to x1, making the problem more challenging. We
generate 500 combinations of x2, . . . , x10 from a uniform hypercube. We generate a grid of
values of x1 of length 50. This ends up being 500× 50 combinations of inputs, for which we
evaluate f and add standard Normal error. We keep the responses in a matrix of dimension
500×50 so that each row represents a curve. The inputs are kept separate in a 500×9 matrix
and a grid of length 50.

R> set.seed(0)

R> f<-function(x) {

+ 10 * sin(2 * pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1

Devin Francom, Bruno Sansó 21

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

x.func

t(
y)

Figure 12: 500 Functional responses. The goal is to fit a functional nonparametric regression
model and perform sensitivity analysis.

R> n <- 500

R> n.func <- 50

R> x.func <- seq(0, 1, length.out = n.func)

R> x <- matrix(runif(n * 9), n)

R> y <- matrix(f(cbind(rep(x.func, each = n),

+ kronecker(rep(1, n.func), x))),

+ ncol = n.func) + rnorm(n * n.func, 0, sigma)

The functional data can be plotted as follows and are shown in Figure 12.

R> matplot(x.func, t(y), type='l')

In order for the BASS package to handle functional responses, each curve needs to be evaluated
on the same grid. Thus, the responses must be able to be stored as a matrix without missing
values.

We fit the model by specifying our matrices x and y as well as the grid x.func.

R> mod <- bass(x, y, xx.func = x.func)

MCMC Start #-- Mar 16 13:36:35 --# nbasis: 0

MCMC iteration 1000 #-- Mar 16 13:36:37 --# nbasis: 110

MCMC iteration 2000 #-- Mar 16 13:36:41 --# nbasis: 176

MCMC iteration 3000 #-- Mar 16 13:36:46 --# nbasis: 173

MCMC iteration 4000 #-- Mar 16 13:36:50 --# nbasis: 115

MCMC iteration 5000 #-- Mar 16 13:36:52 --# nbasis: 74

MCMC iteration 6000 #-- Mar 16 13:36:53 --# nbasis: 60

MCMC iteration 7000 #-- Mar 16 13:36:55 --# nbasis: 60

MCMC iteration 8000 #-- Mar 16 13:36:56 --# nbasis: 62

MCMC iteration 9000 #-- Mar 16 13:36:57 --# nbasis: 71

MCMC iteration 10000 #-- Mar 16 13:37:04 --# nbasis: 62

22 BASS: Bayesian Adaptive Spline Surfaces

−5 0 5 10 15 20 25

−
5

0
5

10
20

fx.test

ap
pl

y(
pr

ed
, 2

:3
, m

ea
n)

Figure 13: BASS prediction performance - Friedman function with functional response.

Prediction is as simple as before. If we want to predict on a different functional grid, we can
specify that in the predict function with newdata.func.

R> n.test <- 100

R> x.test <- matrix(runif(n.test * 9), n.test)

R> pred <- predict(mod, x.test)

Following, we make a functional predicted versus observed plot, shown in Figure 13

R> fx.test<-matrix(f(cbind(rep(x.func, each = n.test),

+ kronecker(rep(1, n.func), x.test))), ncol=n.func)

R> matplot(fx.test, apply(pred, 2:3, mean), type = 'l')

R> abline(a = 0, b = 1, col = 2)

We will demonstrate the two methods of sensitivity analysis discussed in Section 3. First, we
can get the Sobol’ indices for the functional variable and its interactions just as we do the
other variables. This is the default.

R> sens <- sobol(mod, mcmc.use = 1:100)

Sobol Start #-- Mar 16 13:37:17 --# Models: 25

Sobol #-- Mar 16 13:37:31 --# Model: 10

Sobol #-- Mar 16 13:37:46 --# Model: 20

Total Sensitivity #-- Mar 16 13:37:53 --#

When we plot the variance decomposition, as shown in Figure 14, the functional variable is
labeled with the letter “a.” If we had multiple functional variables, they would be labeled with
different letters.

R> plot(sens, cex.axis = .5)

Devin Francom, Bruno Sansó 23

1 2 3 4 5 6 7 8 9 a
1x

2
1x

3
1x

4
1x

6
1x

8
1x

9
1x

a
2x

3
2x

4
2x

6
2x

7
2x

8
2x

9
2x

a
3x

4
3x

5
3x

6
3x

7
3x

8
3x

9
3x

a
4x

5
4x

8
4x

9
4x

a
5x

6
5x

8
5x

a
6x

7
6x

9
6x

a
7x

9
7x

a
8x

9
8x

a
9x

a
1x

2x
6

1x
2x

a
1x

3x
4

1x
4x

9
1x

4x
a

1x
6x

a
1x

8x
a

1x
9x

a
2x

3x
7

2x
4x

8
2x

4x
a

2x
6x

9
2x

6x
a

2x
8x

a
2x

9x
a

3x
4x

5
3x

4x
a

3x
5x

8
3x

5x
a

3x
6x

7
3x

7x
9

3x
7x

a
3x

8x
9

3x
8x

a
3x

9x
a

4x
5x

a
4x

8x
a

4x
9x

a
5x

6x
a

5x
8x

a
6x

9x
a

7x
9x

a
8x

9x
a

1x
2x

6x
a

1x
4x

9x
a

2x
4x

8x
a

2x
6x

9x
a

3x
4x

5x
a

3x
5x

8x
a

3x
7x

9x
a

3x
8x

9x
a

0.0

0.1

0.2

0.3

0.4

Sensitivity
pr

op
or

tio
n

va
ria

nc
e

1 2 3 4 5 6 7 8 9 a

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Total Sensitivity

Figure 14: Sensitivity analysis - Friedman function with functional response.

The other approach to sensitivity analysis is to get a functional variance decomposition. This
is done by using the func.var parameter. If there is only one functional variable, we set
func.var = 1. Otherwise we set func.var to the column of xx.func we want to use for our
functional variance decomposition. This will be explained in more detail in a later example.

R> sens.func <- sobol(mod, mcmc.use = 1:100, func.var = 1)

Sobol Start #-- Mar 16 13:37:53 --# Models: 25

Sobol #-- Mar 16 13:38:04 --# Model: 10

Sobol #-- Mar 16 13:38:15 --# Model: 20

When we plot the variance decomposition, shown in Figure 15, we we get two plots.

R> plot(sens.func)

The left plot shows the posterior mean (using posterior samples specified with mcmc.use) of
the functional sensitivity indices in a functional pie chart. The right plot shows the variance
decomposition as a function of the functional variable. Thus, the top line in the right plot
is the total variance in y as a function of x1. The bottom line (black) is the total variance
explained by the main effect of x2 as a function of x1. The labels in the plot on the left are
the variable numbers (columns of x).

4.5. Air foil data

In this example, we consider a NASA data set, obtained from a series of aerodynamic and
acoustic tests of two and three-dimensional airfoil blade sections conducted in an anechoic
wind tunnel (Lichman 2013). The response is scaled sound pressure level, in decibels. There
are five inputs: (1) Frequency, in Hertzs; (2) angle of attack, in degrees; (3) chord length,
in meters; (4) free-stream velocity, in meters per second; and (5) suction side displacement
thickness, in meters. The data have 1503 combinations of these inputs, some of which are
collinear (variables 2 and 5 have correlation of 0.75).

24 BASS: Bayesian Adaptive Spline Surfaces

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

x

pr
op

or
tio

n
va

ria
nc

e

1

2

3

4
5678 91x21x3 1x41x61x81x92x32x42x62x72x8 2x93x43x53x63x73x83x94x54x8 4x95x65x86x7 6x97x98x9 1x2x61x3x4 1x4x92x3x72x4x8 2x6x93x4x53x5x83x6x7 3x7x93x8x9

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Variance Decomposition

x

va
ria

nc
e

Figure 15: Functional sensitivity analysis - Friedman function with functional response.

R> dd <- read.table('https://archive.ics.uci.edu/ml/

+ machine-learning-databases/00291/airfoil_self_noise.dat')

We set aside 200 input combinations to use for testing.

R> set.seed(0)

R> test <- sample(nrow(dd), size=150)

R> x <- dd[-test, 1:5]

R> y <- dd[-test, 6]

We fit a BASS model using tempering.

R> mod <- bass(x, y, nmcmc = 20000, nburn = 10000, thin = 10,

+ temp.ladder = 1.1^(0:5), verbose = F)

We can predict as we have before. However, this prediction is for the mean function.

R> x.test <- dd[test, 1:5]

R> y.test <- dd[test, 6]

R> pred <- predict(mod, x.test)

Now, if we are interested in predicting actual data rather than the mean function, we can
incorporate uncertainty from our estimate of σ2. The vector mult below is the multiplyer we
would use to get 95% prediction intervals.

R> mult <- 1.96 * sqrt(mod$s2)

R> q1 <- apply(pred - mult, 2, quantile, probs = .025)

R> q2 <- apply(pred + mult, 2, quantile, probs = .975)

R> mean((q1 < y.test) & (q2 > y.test))

[1] 0.9466667

Devin Francom, Bruno Sansó 25

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

110 120 130 140

10
5

11
5

12
5

13
5

y.test

co
lM

ea
ns

(p
re

d)

Figure 16: Prediction performance - air foil data.

1 2 3 4 5
1x

2
1x

3
1x

4
1x

5
2x

3
2x

4
2x

5
3x

4
3x

5
4x

5
1x

2x
3

1x
2x

4
1x

2x
5

1x
3x

4
1x

3x
5

1x
4x

5
2x

3x
4

2x
3x

5
2x

4x
5

3x
4x

5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sensitivity

pr
op

or
tio

n
va

ria
nc

e

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Total Sensitivity

Figure 17: Sobol decomposition - air foil data.

This puts our empirical coverage where we would expect it to be. We can plot our 95%
prediction intervals as follows, shown in Figure 16.

R> plot(y.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

R> segments(y.test, q1, y.test, q2, col = 'lightgrey')

Next, we can obtain and plot the Sobol’ decomposition, shown in Figure 17.

R> sens <- sobol(mod, verbose = F)

R> plot(sens)

The uncertainty in the sensitivity indices in Figure 17 is significant and helps us to understand
that there are many possible models for these data that use different variables and interactions.
The proper characterization of this uncertainty would be impossible if our RJMCMC chain

26 BASS: Bayesian Adaptive Spline Surfaces

was stuck in a mode. Hence, tempering is important in this problem. By exploring the
posterior modes, tempering allows us to find not just a model that predicts well, but all the
models that predict well.

4.6. Pollutant spill model

The final example we present is an emulation problem. The simulator is for modeling a
pollutant spill caused by a chemical accident, obtained from Surjanovic and Bingham (2017).
While fast to evaluate, this simulator provides a good testbed for BASS methods. The
simulator has four inputs: (1) Mass of pollutant spilled at each of two locations (range 7−13),
(2) diffusion rate in the channel (0.02− 0.12), (3) location of the second spill (0.01− 3), and
(4) time of the second spill (30.01− 30.295). The simulator outputs a function in space (one
dimension) and time that is the concentration of the pollutant.

We generate 10000 combinations of the four simulator inputs uniformly from within their
respective ranges.

R> set.seed(0)

R> n <- 10000

R> x <- cbind(runif(n, 7, 13), runif(n, .02, .12), runif(n, .01, 3),

+ runif(n, 30.01, 30.295))

We specify six points in space and 20 time points. The functional grid we will pass to the
bass function will thus have two columns, called x.func below.

R> s <- c(0, 0.5, 1, 1.5, 2, 2.5)

R> t <- seq(.3, 60, length.out = 20)

R> x.func <- expand.grid(t, s)

We use the environ function available from http://www.sfu.ca/~ssurjano/Code/environr.

html to generate realizations of the simulator. We will model the log of the simulator output.

R> out <- t(apply(x, 1, environ, s = s, t = t))

R> y <- log(out + .01)

With this amount of data, we are presented with an extremely large model space to search
through. In addition, since the data are smooth (no random noise), BASS models will tend
to allocate a very large number of basis functions to try to capture the smoothness. In order
to compensate for the large model space and the smoothness, we need to set an extreme prior
on the number of basis functions to have a managable model. We do this by increasing h2 by
many orders of magnitude. In this example, we set h2 = 1e250. This results in a prior for
the number of basis functions with very heavy weight near zero. Because of the large amount
of data, we still get hundreds of basis functions.

Using such an extreme prior makes our multimodal posterior more peaked, and more difficult
to explore. We may need hundreds of chains running at different temperatures in order to
get the temperatures close enough to eachother to allow for frequent swapping. Another
possibility that does not require picking a temperature ladder is to instead run multiple cold
chains (at the true posterior) and allow them to swap states. This is a version of parallel
hierarchical sampling introduced in Rigat and Mira (2012) that can be easily implemented
by setting temp.ladder = rep(1, n.chains).

http://www.sfu.ca/~ssurjano/Code/environr.html
http://www.sfu.ca/~ssurjano/Code/environr.html

Devin Francom, Bruno Sansó 27

Figure 18: BASS prediction performance - pollutant spill model.

R> mod <- bass(x, y, xx.func = x.func, nmcmc = 110000, nburn = 100000,

+ thin = 10, h2 = 1e250, save.yhat = F, temp.ladder = rep(1, 10),

+ npart.func = 1, verbose = F, maxBasis = 175)

Note that we specify save.yhat = F. By default, the bass function saves in-sample predic-
tions for all MCMC samples (post burn-in and thinned). This can be a sigificant storage
burden when we have large amounts of functional data, as we do in this case. Changing the
save.yhat parameter can relieve this. If in-sample predictions are of interest, they can be
obtained after model fitting using the predict function.

As with the previous example, prediction here is for the mean function. Whatever error is
left over (in σ2) is inability of the BASS model to pick up high frequency signal.

R> n.test <- 1000

R> x.test <- cbind(runif(n.test, 7, 13),runif(n.test, .02, .12),

+ runif(n.test, .01, 3), runif(n.test, 30.01, 30.295))

R> y.test <- log(t(apply(x.test, 1, environ, s = s, t = t)) + .01)

R> pred <- predict(mod, x.test)

A plot of the predicted (mean function) versus observed data is shown in Figure 18.

R> plot(y.test, apply(pred, 2:3, mean))

R> abline(a = 0, b = 1, col = 2)

To see what the predictions look like in space and time, consider the plots shown in Figure
19. These show posterior draws (in grey) of the mean function for one setting of the four
inputs along with simulator output (in red).

R> pp <- pred[, 1,]

R> ylim <- range(y)

R> par(mfrow=c(2, 3))

R> for(i in 1:length(s)) {

28 BASS: Bayesian Adaptive Spline Surfaces

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 0

t

t(
pp

[,
in

d]
)

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 0.5

t

t(
pp

[,
in

d]
)

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 1

t

t(
pp

[,
in

d]
)

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 1.5

t

t(
pp

[,
in

d]
)

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 2

t

t(
pp

[,
in

d]
)

0 10 20 30 40 50 60

−
4

−
2

0
2

4

s = 2.5

t

t(
pp

[,
in

d]
)

Figure 19: BASS prediction in space and time - pollutant spill model.

+ ind <- length(t) * (i - 1) + 1:length(t)

+ matplot(t, t(pp[, ind]), type = 'l', col = 'lightgrey',

+ ylim = ylim, main = paste('s =', s[i]))

+ lines(t, y.test[1, ind], col = 2, lwd = 2, lty = 2)

+ }

We can use the sensitivity analysis methods above, but we can get Sobol’ indices as a function
of either space or time. Below, we show how to get them as a function of time. We limit the
models considered using mcmc.use to speed up computations. Since we have two functional
inputs, we have two letters that can be included in these sensitivity plots (functional inputs
are labeled with letters). Note that variable four is not included. This is because it did not
explain any variance.

R> sens.func1 <- sobol(mod, mcmc.use = 1,#seq(1, 1000, 100),

+ func.var = 1, xx.func.var = t, verbose = F)

R> plot(sens.func1)

Devin Francom, Bruno Sansó 29

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

x

pr
op

or
tio

n
va

ria
nc

e

1

2

3

b

1x2

1xb

2x3
2xb

3xb

1x2xb 2x3xb

0 10 20 30 40 50 60

0
2

4
6

8

Variance Decomposition

x

va
ria

nc
e

Figure 20: Sensitivity indices as a function of time - pollutant spill model.

5. Summary

Our proposed BASS framework provides a powerful general tool for nonparametric regression
settings. It can be used for modeling with many continuous and categorical inputs, large sam-
ple size and functional response. It provides posterior sensitivity analyses without integration
error. The MCMC approach to inference, especially using parallel tempering, yields posterior
samples that can be used for probabilistic prediction. The BASS package makes these features
accessible to users with minimal exposure. These capabilities have been demostrated with
a set of examples involving different dimensions, categorical variables, functional responses,
and large datasets.

References

Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004). “Parallel Metropolis Coupled
Markov Chain Monte Carlo for Bayesian Phylogenetic Inference.” Bioinformatics, 20(3),
407–415.

Denison DG, Holmes CC, Mallick BK, Smith AF (2002). Bayesian Methods for Nonlinear

Classification and Regression, volume 386. John Wiley & Sons.

Denison DG, Mallick BK, Smith AF (1998). “Bayesian MARS.” Statistics and Computing,
8(4), 337–346.

Fog A (2015). BiasedUrn: Biased Urn Model Distributions. R package version 1.07, URL
https://CRAN.R-project.org/package=BiasedUrn.

Francom D (2016). BASS: Bayesian Adaptive Spline Surfaces. R package version 0.1.1, URL
https://CRAN.R-project.org/package=BASS.

Francom D, Sansó B, Bulaevskaya V, Lucas D (2017). “Inferring Atmospheric Release Charac-
teristics in a Large Computer Experiment using Bayesian Adaptive Splines.” In preparation.

https://CRAN.R-project.org/package=BiasedUrn
https://CRAN.R-project.org/package=BASS

30 BASS: Bayesian Adaptive Spline Surfaces

Francom D, Sansó B, Kupresanin A, Johannesson G (2016). “Sensitivity Analysis and Emula-
tion for Functional Data using Bayesian Adaptive Splines.” To appear in Statistica Sinica,
URL https://www.soe.ucsc.edu/research/technical-reports.

Friedman JH (1991a). “Estimating Functions of Mixed Ordinal and Categorical Variables
Using Adaptive Splines.” Technical report, DTIC Document.

Friedman JH (1991b). “Multivariate Adaptive Regression Splines.” The Annals of Statistics,
pp. 1–67.

Gramacy R, Samworth R, King R (2010). “Importance Tempering.” Statistics and Computing,
20(1), 1–7.

Gramacy RB, Taddy M (2010). “Categorical Inputs, Sensitivity Analysis, Optimization and
Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Mod-
els.” Journal of Statistical Software, 33(6), 1–48.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82(4), 711–732.

Liang F, Paulo R, Molina G, Clyde MA, Berger JO (2008). “Mixtures of g Priors for Bayesian
Variable Selection.” Journal of the American Statistical Association, 103(481).

Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.ics.uci.

edu/ml.

Nott DJ, Kuk AY, Duc H (2005). “Efficient Sampling Schemes for Bayesian MARS Models
with Many Predictors.” Statistics and Computing, 15(2), 93–101.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rigat F, Mira A (2012). “Parallel Hierarchical Sampling: A General-Purpose Interacting
Markov Chains Monte Carlo Algorithm.” Computational Statistics & Data Analysis, 56(6),
1450–1467.

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola
S (2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons.

Sobol’ IM (2001). “Global Sensitivity Indices for Nonlinear Mathematical Models and Their
Monte Carlo Estimates.” Mathematics and Computers in Simulation, 55(1), 271–280.

Surjanovic S, Bingham D (2017). “Virtual Library of Simulation Experiments: Test Functions
and Datasets.” Retrieved January 5, 2017, from http://www.sfu.ca/~ssurjano.

Affiliation:

Devin Francom
Department of Applied Mathematics and Statistics
University of California Santa Cruz
Santa Cruz, CA 95064
E-mail: dfrancom@ucsc.edu

https://www.soe.ucsc.edu/research/technical-reports
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.R-project.org/
http://www.sfu.ca/~ssurjano
mailto:dfrancom@ucsc.edu

	Introduction
	Bayesian adaptive spline surfaces
	Efficient posterior sampling
	Parallel tempering
	Functional response
	Categorical inputs

	Sensitivity analysis
	Functional response
	Categorical inputs

	Examples
	Curve fitting
	Friedman function
	Friedman function with a categorical variable
	Friedman function with functional response
	Air foil data
	Pollutant spill model

	Summary

