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Abstract

In molecular biology, advances in high-throughput technologies have made it possible
to study complex multivariate phenotypes and their simultaneous associations with high-
dimensional genomic and other omics data, a problem that can be studied with high-
dimensional multi-response regression, where the response variables are potentially highly
correlated.

To this purpose, we recently introduced several multivariate Bayesian variable and
covariance selection models, e.g., Bayesian estimation methods for sparse seemingly un-
related regression for variable and covariance selection. Several variable selection priors
have been implemented in this context, in particular the hotspot detection prior for latent
variable inclusion indicators, which results in sparse variable selection for associations be-
tween predictors and multiple phenotypes. Here, we also propose an alternative, which
uses a Markov random field (MRF) prior for incorporating prior knowledge about the
dependence structure of the inclusion indicators. Inference of Bayesian seemingly unre-
lated regression (SUR) by Markov chain Monte Carlo methods is made computationally
feasible by factorisation of the covariance matrix amongst the response variables.

In this paper we present BayesSUR, an R package, which allows the user to easily
specify and run a range of different Bayesian SUR models, which have been implemented in
C++ for computational efficiency. The R package allows the specification of the models in
a modular way, where the user chooses the priors for variable selection and for covariance
selection separately. We demonstrate the performance of sparse SUR models with the
hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing
eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for
typical applications.

Keywords: Seemingly unrelated regression, Bayesian multivariate regression, structured co-
variance matrix, Markov random field prior, multi-omics data.

1. Introduction
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With the development of high-throughput technologies in molecular biology, the large-scale
molecular characterisation of biological samples has become common-place, for example by
genome-wide measurement of gene expression, single nucleotide polymorphisms (SNP) or
CpG methylation status. Other complex phenotypes, for example, pharmacological profiling
from large-scale cancer drug screens, are also measured in order to guide personlized cancer
therapies (Garnett, Edelman, Heidorn, Greenman, Dastur, Lau, Greninger, Thompson, Luo,
Soares, Liu, and others 2012; Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim,
Wilson, Lehar, Kryukov, Sonkin, and others 2012; Gray and Mills 2015). The analysis of joint
associations between multiple correlated phenotypes and high-dimensional molecular features
becomes challenging.

When multiple phenotypes and high-dimensional genomic information are jointly analyzed,
the Bayesian framework allows to specify in a flexible manner the complex relationships be-
tween the highly structured data sets. Much work has been done in this area in recent years.
Our software package BayesSUR gathers together several models that we have proposed for
high-dimensional regression of multiple responses, allowing for different priors for variable se-
lection in the regression models and for different assumptions about the dependence structure
between responses.

Bayesian variable selection uses latent indicator variables to explicitly add or remove covari-
ates in each regression during the model search. Here, as we consider simultaneously many
predictors and several responses, we have a matrix of variable selection indicators. Differ-
ent variable selection priors have been proposed in the literature. For example, Jia and Xu
(2007) mapped multiple phenotypes to genetic markers (i.e., eQTL) using the spike-and-slab
prior and hyper predictor-effect prior. Liquet, Mengersen, Pettitt, and Sutton (2017) incor-
porated group structures of multiple predictors via a (multivariate) spike-and-slab prior. The
corresponding R package MBSGS is available on CRAN (https://cran.r-project.org/

packages=MBSGS). Bottolo, Petretto, Blankenberg, Cambien, Cook, Tiret, and Richardson
(2011) and Lewin, Saadi, Peters, Moreno-Moral, Lee, Smith, Petretto, Bottolo, and Richard-
son (2015) further proposed the hotspot prior for variable selection in multivariate regres-
sion, in which the probability of association between the predictor and response is decom-
posed multiplicatively into predictor and response random effects. This prior is implemented
in a multivariate Bayesian hierarchical regression setup in the software R2HESS, available
from https://www.mrc-bsu.cam.ac.uk/software/. Lee, Tadesse, Baccarelli, Schwartz, and
Coull (2017) used the Markov random field (MRF) prior to encourage joint selection of the
same variable across several correlated response variables. Their C-based R package mBvs is
available on CRAN (https://CRAN.R-project.org/package=mBvs).

For high-dimensional predictors and multivariate responses, the space of models is very large.
To overcome the infeasibility of the enumerated model space for the MCMC samplers in
the high dimensional situation, Bottolo and Richardson (2010) proposed an Evolutionary
Stochastic Search (ESS) algorithm based on Evolutionary Monte Carlo. This sampler has
been extended in a number of situations. And efficient implementation of ESS for multivari-
ate Bayesian hierarchical regression is provided with the C++-based R package R2GUESS

(https://CRAN.R-project.org/package=R2GUESS) (Liquet, Bottolo, Campanella, Richard-
son, and Chadeau-Hyam 2016). Richardson, Bottolo, and Rosenthal (2011) proposed a new
model and computationally efficient hierarchical evolutionary stochastic search algorithm
(HESS) for multi-response regression which assumes independence between residuals across
responses and is implemented in the R2HESS package. Petretto, Bottolo, Langley, Heinig,

https://cran.r-project.org/packages=MBSGS
https://cran.r-project.org/packages=MBSGS
https://www.mrc-bsu.cam.ac.uk/software/
https://CRAN.R-project.org/package=mBvs
 https://CRAN.R-project.org/package=R2GUESS
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Mcdermott-Roe, Sarwar, Pravenec, Hubner, Aitman, Cook, and Richardson (2010) used the
inverse Wishart prior on the covariance matrix of residuals in order to do simultaneous anal-
ysis of multiple response variables allowing for correlations in response residuals, for more
moderate sized data sets.

In order to analyse larger numbers of response variables, yet retain the ability to estimate de-
pendence structures between them, sparsity can be introduced into the residual covariances,
as well as into the regression model selection. Holmes, Denison, and Mallick (2002) adapted
seemingly unrelated regression (SUR) to the Bayesian framework and used a Markov chain
Monte Carlo (MCMC) algorithm for the analytically intractable posterior inference. The
hyper-inverse Wishart prior has been used to learn a sparser graph structure for the covari-
ance matrix of high-dimensional variables (Carvalho, Massam, and West 2007; Wang 2010;
Bhadra and Mallick 2013), thus performing covariance selection. However, these approaches
are not computationally feasible if the number of input variables is very large. Banterle,
Bottolo, Richardson, Ala-Korpela, Jarvelin, and Lewin (2018) recently developed a Bayesian
variable selection model which employs the hotspot prior for variable selection, learns a struc-
tured covariance matrix and implements the ESS algorithm in the SUR framework to further
improve computational efficiency.

The BayesSUR package implements many of these possible choices for high-dimensional multi-
response regressions by allowing the user to choose among three different prior structures for
the residual covariance matrix and among three priors for the joint distribution of the variable
selection indicators. It employs ESS as a basic variable selection algorithm.

2. Models specification

The BayesSUR package fits a Bayesian seemingly unrelated regression model with a number
of options for variable selection, and where the covariance matrix structure is allowed to be
diagonal, dense or sparse. It encompasses three classes of Bayesian multi-response linear re-
gression models: Hierarchical Related Regressions (HRR, Richardson et al. (2011)), dense and
Sparse Seemingly Unrelated Regressions (dSUR and SSUR, Banterle et al. (2018)), and the
newly introduced Structured Seemingly Unrelated Regression, which makes use of a Markov
random field (MRF) prior.

The regression model is written as

Y = XB + U, (1)

vec(U) ∼ N (0, C ⊗ In)

where Y is a n × s matrix of outcome variables with s × s covariance matrix C, X is a n × p

matrix of predictors for all outcomes and B is a p × s matrix of regression coefficients.

We use a binary latent indicator matrix Γ = {γjk} to perform variable selection. A spike-
and-slab prior is used to find a sparse relevant subset of predictors that explain the variability
of Y: conditional on γjk = 0 (j = 1, · · · , p and k = 1, · · · , s) we set βjk = 0 and conditional
on γjk = 1 non-zero regression coefficients follow a diffuse Normal:

βγ |γ ∼ N
(
0, W −1

γ

)
. (2)

where β = vec(B), γ = vec(Γ), βγ consists of the non-zero regression coefficients only, and
Wγ is the sub-matrix of W formed by the corresponding non-zero coefficients.
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The precision matrix W is generally decomposed into a shrinkage coefficient and a matrix
that governs the covariance structure of the regression coefficients. Here we use W = λ−1

Isp,
meaning that all the regression coefficients are a priori independent, with an inverse gamma
hyperprior on the shrinkage coefficient λ, i.e., λ ∼ IGamma(aλ, bλ). The binary latent indi-
cator matrix Γ has three possible options for priors: the independent hierarchical Bernoulli
prior, the hotspot prior and the MRF prior. The covariance matrix C also has three possi-
ble options for priors: the independent inverse gamma prior, the inverse Wishart prior and
hyper-inverse Wishart prior. Thus, we consider nine possible models (Table 1) across all
combinations of three priors for C and three priors for Γ.

γjk ∼ Bernoulli γjk ∼ Hotspot γ ∼ MRF

C ∼ indep HRR-B HRR-H HRR-M
C ∼ IW dSUR-B dSUR-H dSUR-M
C ∼ HIWG SSUR-B SSUR-H SSUR-M

Table 1: Nine models across three priors of C by three priors of Γ

2.1. Hierarchical Related Regression (HRR)

The Hierarchical Related Regression model assumes that C is a diagonal matrix

C =




σ2
1 · · · 0

. . .

0 · · · σ2
s


 , (3)

which translates into conditional independence between the multiple response variables, so
the likelihood factorises across responses. An inverse gamma prior is specified for the residual
covariance, i.e., σ2

k ∼ IGamma(aσ2
k
, bσ2

k
) which, combined with the priors in (2) is conjugate

with the model in (1). We can thus sample the variable selection structure Γ marginally with
respect to C and B. For inference for this model, Richardson et al. (2011) implemented the
hierarchical evolutionary stochastic search algorithm (HESS).

2.1.1. HRR with independent Bernoulli prior

For a simple independent prior on the regression model selection, the binary latent indicators
follow a Bernoulli prior

γjk|ωjk ∼ Ber(ωj), j = 1, · · · , p, k = 1, · · · , s, (4)

with a further hierarchical Beta prior on ωj , i.e., ωj ∼ Beta(aω, bω), which quantifies the
probability for each predictor to be associated with any response variable.

2.1.2. HRR with hotspot prior

Richardson et al. (2011) and Bottolo et al. (2011) proposed decomposing the probability of
association parameter ωjk in (4) as ωjk = ok × πj , where ok accounts for the sparsity of each
response model and πj controls the propensity of each predictor to be associated with multiple
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responses simultaneously.

γjk|ωjk ∼ Ber(ωjk), j = 1, · · · , p, k = 1, · · · , s, (5)

ωjk = ok × πj ,

ok ∼ Beta(ao, bo),

πj ∼ Gamma(aπ, bπ).

2.1.3. HRR with MRF prior

To consider the relationship between different predictors and associate highly correlated re-
sponses with the same predictors, we set a Markov random field prior on the latent binary
vector γ

f(γ|d, e, G) ∝ exp{d1⊤γ + eγ⊤Gγ}, (6)

where G is an adjacency matrix containing prior information about similarities amongst the
binary model selection indicators γ = vec(Γ). The parameters d and e are treated as fixed in
the model, but the usual procedure for estimating MRF models is to run with a grid of values
for these parameters, in order to detect the phase transition boundary for e (Lee et al. 2017)
and to identify a sensible combination of d and e that corresponds to prior expectactions of
overall model sparsity and sparsity for the MRF graph.

2.2. Dense Seemingly Unrelated Regression (dSUR)

The HRR models in Section 2.1 assume residual independence between any two response
variables because of the diagonal matrix C in (3). It is possible to estimate a full covariance
matrix by specifying an inverse Wishart prior, i.e., C ∼ IW(v, τIs). To avoid estimating the
dense and large covariance matrix directly, Banterle et al. (2018) exploited a factorisation of
the dense covariance matrix to transform the parameter space (v, τ) of the inverse Wishart
distribution to space {σ2

k, ρkl|σ2
k : k = 1, · · · , s; l < k}, with priors

σ2
k ∼ IGamma

(
v − s + 2k − 1

2
,
τ

2

)
,

ρkl|σ2
k ∼ N

(
0,

σ2
k

τ

)
.

(7)

Here, we assume that τ ∼ Gamma(aτ , bτ ). Thus, model (1) is rewritten as

yk = Xβk +
∑

l<k

ulρkl + ǫk, k = 1, · · · , s,

ǫk ∼ N (0, σ2
kIn),

(8)

where ul = yl −Xβl and βl is the lth column of B, so again the likelihood is factorised across
responses.

Similarly to the HRR model, employing either the simple independence prior (4), the hotspot
prior (5) or the MRF prior (6) for the indicator matrix Γ results in different sparsity specifi-
cations for the regressions in the dSUR model. The marginal likelihood integrating out B is
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no longer available for this model, so joint sampling of B, Γ and C is required. However, the
reparametrisation of the model (8) enables a fast computation using the MCMC algorithm.

2.3. Sparse Seemingly Unrelated Regression (SSUR)

Another approach to model the covariance matrix C is to specify a hyper-inverse Wishart
prior, which means the multiple response variables have an underlying graph G encoding the
conditional dependence structure between responses. In this setup, a sparse graph corre-
sponds to a sparse precision matrix C−1. From a computational point of view, it is infeasible
to specify a hyper-inverse Wishart prior directly on C−1 in high dimensions (Carvalho et al.

2007; Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Uhler, Lenkoski, and Richards
2018; Deshpande, Ročková, and George 2019). However, Banterle et al. (2018) used a trans-
formation of C to factorise the likelihood as in equation (8). The hyper-inverse Wishart
distribution, i.e., C ∼ HIWG(v, τIs), becomes in the transformed variables

σ2
qj ∼ IGamma

(
v − s + t + |Sq|

2
,
τ

2

)
, q = 1, · · · , Q, t = 1, · · · , |Rq|

ρqt ∼ N
(

0,
σ2

rt

τ

) (10)

where Q is the number of prime components in the decomposable graph G, and Sq and Rq are
the separators and residual components of G, respectively. |Sq| and |Rq| denote the number
of variables in these components. For more technical details, please refer to Banterle et al.

(2018).

As prior for the graph we use an independent Bernoulli prior with probility η on each edge
Ekk′ of the graph as in

P(Ekk′ ∈ G) = η,

η ∼ Beta(aη, bη).
(11)

The three priors on βγ , i.e., independence (4), hotspot (5) and MRF (6) priors can also be
used in the SSUR model.

2.4. MCMC sampler and posterior inference

To sample from the posterior distribution, we use the Evolutionary Stochastic Search algo-
rithm (Bottolo and Richardson 2010; Bottolo et al. 2011; Lewin et al. 2015), which uses a
particular form of Evolutionary Monte Carlo (EMC) introduced by Liang and Wong (2000).
Multiple tempered Markov Chains are run in parallel and both exchange and crossover moves
are allowed between the chains to improve mixing between potentially different modes in the
posterior. Note that we run multiple chains at the same temperature instead of a ladder of
different temperatures as was proposed in the original implementations of the (H)ESS sampler
in (Bottolo and Richardson 2010; Bottolo et al. 2011; Lewin et al. 2015).

The main chain samples from the un-tempered posterior distribution, which is used for all
inference. For each response variable, we use a Gibbs sampler to update the regression coeffi-
cients vector, βk (k = 1, · · · , s), based on the posterior conditional corresponding to the spe-
cific model presented in Section 2.2-2.3. After L MCMC iterations, we obtain B(1), · · · , B(L)

and the estimate of the posterior mean is
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B̂ =
1

L − b

L∑

t=b+1

B(t),

where b is the number of burn-in iterations. Posterior full-conditionals are also available to
update σ2

k (k = 1, · · · , s) and ρkl|σ2
k (k = 1, · · · , s , l < k) for the dSUR and SSUR models. In

the HRR models in Section 2.1, the regression coefficients and residual covariances have been
integrated out and therefore the MCMC output cannot be used directly for posterior inference.
However, for B, the posterior distribution conditional on Γ can be derived analytically for
the HRR models and is provided in the BayesSUR package.

At MCMC iteration t we also update each binary latent vector γk (k = 1, · · · , s) via a
Metropolis-Hastings sampler, jointly proposing an update for the corresponding βk. After L

iterations, using the binary matrices Γ(1), · · · , Γ(L), the marginal posterior inclusion proba-
bilities (mPIP) of the predictors are estimated by

Γ̂ =
1

L − b

L∑

t=b+1

Γ(t).

In the SSUR models, another important parameter is G in the hyper-inverse Wishart prior
for the covariance matrix C. It is updated by the junction tree sampler (Green and Thomas
2013; Banterle et al. 2018) jointly with the corresponding proposal for σ2

k, ρk, (k = 1, · · · , s).
At each MCMC iteration we then extract the adjacency matrix G(t) (t = 1, · · · , L), from
which we derive posterior mean estimators of the edge inclusion probabilities as

Ĝ =
1

L − b

L∑

t=b+1

G(t).

The hyper-parameter τ in the inverse Wishart prior or hyper-inverse Wishart prior is updated
by a random walk Metropolis-Hastings sampler. The hyper-parameter η and the variance w in
the spike-and-slab prior are sampled from their posterior conditional. For details see Banterle
et al. (2018).

3. The R package BayesSUR

The package BayesSUR is available from GitHub (https://github.com/mbant/BayesSUR).
It can be installed using the devtools package as follows.

R> library("devtools")

R> install_github("mbant/BayesSUR/BayesSUR")

The main function is BayesSUR() which has various arguments that can be used to specify
the models introduced in Section 2, by setting the priors for the covariance matrix C and the
binary latent indicator matrix Γ. In addition, MCMC parameters (nIter, burnin, nChains)
can also be defined. The following syntax example includes the most important function
arguments, which are further explained below. The full list of all arguments in function
BayesSUR() is given in Table 2.

https://github.com/mbant/BayesSUR
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R> BayesSUR(data, Y, X, covariancePrior, gammaPrior, nIter, burnin, nChains,

+ ...)

The data can be provided as a large combined matrix [Y, X] of dimension n × (s + p) via the
argument data; in that case the arguments Y and X need to contain the dimensions of the
individual predictor and response matrices to allow reconstruction of Y and X. Alternatively,
it is also possible to supply X and Y directly via the arguments X and Y. In that case, argument
data needs to be NULL which is the default.

The arguments covariancePrior and gammaPrior specify different models introduced in
Section 2. When using the Markov random field prior (6) for the latent binary vector γ,
an additional argument mrfG is needed to assign the edge potentials; this can either be
specified as a matrix or as a file directory path leading to a text file with the correspond-
ing information. For example, the HRR model with independent hierarchical prior in Sec-
tion 2.1.1 is specified by (covariancePrior = "IG", gammaPrior = "hierarchical"), the
dSUR model with hotspot prior in Section 2.2 by (covariancePrior = "IW", gammaPrior

= "hotspot") and the SSUR model with MRF prior in Section 2.3 for example by
(covariancePrior = "HIW", gammaPrior = "MRF", mrfG = "/mrfGile.txt").

The MCMC parameter arguments nIter, burnin and nChains indicate the total number of
MCMC iterations, the number of iterations in the burn-in period and the number of parallel
chains in the evolutionary stochastic search MCMC algorithm, respectively. See e.g., Bottolo
and Richardson (2010) for more details on the ESS algorithm.

The main function BayesSUR() returns an object of S3 class BayesSUR, in a list format which
includes the input parameters and directory paths of output text files, so that other functions
can retrieve the MCMC output from the output files, load them into R and further process
the output for posterior inference of the model output.

In particular, a summary() function has been provided for BayesSUR class objects, which
is used to summarize the output produced by BayesSUR(). For this purpose, a number of
covariates are selected into the model by thresholding the posterior means of the latent indi-
cator variables. By default the threshold is 0.5, i.e., variable j is selected into the model for
response k if γ̂jk > 0.5. The summary() function also outputs the quantiles of the conditional
predictive ordinates (CPO, Gelfand (1996)), top predictors on average mPIP across all re-
sponse variables and top response variables on average mPIP across all predictors, Expected
log pointwise predictive density (i.e., elpd.LOO and elpd.WAIC, Vehtari et al. (2017)), model
specification parameters, MCMC running parameters and hyperparameters.

To use a specific estimator, the function getEstimator() is convenient to extract the coeffi-
cients matrix B̂, latent indicator variable Γ̂ or learned structure Ĝ from the directory path of
the model object. All point estimates are posterior means, thus γ̂jk is the marginal posterior

inclusion probability for variable j to be selected in the regression for response k, and Ĝkl is
the marginal posterior edge inclusion probability between responses k and l, i.e., the marginal
posterior probability of conditional dependence between k and l. The regression coefficient
estimates B̂ are the posterior means over all models, independently of Γ̂. Thus β̂jk represents
the shrunken estimate of the association effect of variable j in the regression for response k.
In addition, the generic S3 methods coef(), predict(), and fitted() can be used to extract
regression coefficients, predicted responses, or indices of nonzero coefficients corresponding to
the posterior mean estimates of an BayesSUR object.
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Argument Description

data Data combined matrix [Y, X]. Default is NULL.
Y Matrix or indexes with respect to the argument data for the

reponses.
X Matrix or indexes with respect to the argument data for the

predictors.
X_0 Matrix or indexes with respect to the argument data for predictors

forced to be included (i.e., they are not part of variable selection
procedure). Default is NULL.

outFilePath Directory path where the output files are written. Default is the
current working directory.

covariancePrior Prior for the covariance matrix, "IG": independent inverse gamma
prior, "IW": inverse Wishart prior, "HIW": hyper-inverse Wishart prior
(default).

gammaPrior Prior for the binary latent variable Γ , "hierarchical": independent
Bernoulli prior, "hotspot": hotspot prior (default), "MRF": Markov
random field prior..

mrfG A matrix or a path to the file containing the edge list of the G
matrix for the MRF prior on Γ. Default is NULL.

gammaSampler Local move sampler for the binary latent variable Γ , either (default)
"bandit" for the Thompson sampling inspired samper or "MC3" for
the usual MC3 sampler.

gammaInit Γ initialisation to either all-zeros ("0"), all ones ("1"), randomly ("R")
or (default) MLE-informed ("MLE").

hyperpar A list of named hyperparameters to use instead of the default values.
Default is an empty list.

output_* Allow (TRUE) or suppress (FALSE) the outut for *; possible outputs
are Γ , G, B, σ, π, tail (hotspot tail probability, see Bottolo and
Richardson (2010)) or model_size. Default is all TRUE.

tmpFolder The path to a temporary folder where intermediate data files are
stored (will be erased at the end of the chain) default to local
tmpFolder.

Table 2: Overview of the arguments in the main function BayesSUR()

The function plotEstimator() visualizes the three estimators. To show the relationship
of multiple response variables with each other, the function plotEstimator() prints the
structure graph based on Ĝ. Furthermore, the structure relations between multiple response
variables and predictors can be shown via function plotNetwork(). The marginal posterior
probabilities of individual predictors are illustrated via the plotManhattan() function, which
also shows the number of associated response variables of each predictor. For convencience,
a generic S3 method plot() is also provided, which creates a selection of the above plots in
an interactive manner.

Model fit can be investigated with elpd() and plotCPO(). elpd() estimates the expected log
pointwise predictive density (Vehtari et al. 2017) to assess out-of-sample prediction accuracy.
plotCPO() plots the conditional predictive ordinate for each individual, i.e., the leave-one-
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out cross-validation predictive density. CPOs are useful for identifying potential outliers
(Gelfand 1996). To check convergence of the MCMC sampler, function plotMCMCdiag()

prints traceplots and density plots for moving windows over the MCMC chains.

Table 3 lists all functions. BayesSUR uses the Rcpp R package (Eddelbuettel and François
2011) to integrate C++ code with R, together with the RcppArmadillo (Eddelbuettel and
Sanderson 2014) and BH (Eddelbuettel, Emerson, and Kane 2019) R packages. The igraph

package (Csardi and Nepusz 2006) was used for constructing the graph plots.
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Function Description

BayesSUR() Main function of the package. Fits any of the models introduced
in Section 2. Returns an object of S3 class BayesSUR, which is a
list which includes the input parameters (input) and directory
paths of output text files (output), as well as the run status and
function call.

elpd() Measure the prediction accuracy by the expected log pointwise
predictive density (elpd). The out-of-sample predictive fit can
either be estimated by Bayesian leave-one-out cross-validation
(LOO) or by widely applicable information criterion (WAIC)
(Vehtari et al. 2017). See Appendix for details.

summary() Summarize the fitted model generated by BayesSUR(), which is
an object of class BayesSUR.

print() Print a short summary the fitted model generated by
BayesSUR(), which is an object of class BayesSUR.

getEstimator() Extract the posterior mean of the parameters of a BayesSUR

class object.
coef() Extract the posterior mean of the coefficients of a BayesSUR

class object.
fitted() Return the fitted response values that correspond to the

posterior mean of the coefficients matrix of a BayesSUR class
object.

predict() Predict responses corresponding to the posterior mean of the
coefficients, return posterior mean of coefficients or indices of
nonzero coefficients of a BayesSUR class object.

plotCPO() Plot the conditional predictive ordinate (CPO) for each
individual of a fitted model generated by BayesSUR which is a
BayesSUR object. CPO is used to identify potential outliers
(Gelfand 1996).

plotEstimator() Plot the estimated relationships between response variables and
estimated coefficients of a BayesSUR class object.

plotResponseGraph() Plot the estimated graph for multiple response variables from a
BayesSUR class object.

plotNetwork() Plot the network representation of the associations between
responses and predictors, based on the estimated Γ̂ matrix of a
BayesSUR class object.

plotManhattan() Plot Manhattan-like plots for marginal posterior inclusion
probabilities (mPIP) and numbers of responses of association for
predictors of a BayesSUR class object.

plotMCMCdiag() Show trace plots and diagnostic density plots of a fitted model
object of class BayesSUR.

plot() Convenience function to create a selection of plots for a
BayesSUR class object; individual plots are generated with the
specific plot functions above.

Table 3: Overview of the functions in package BayesSUR.
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4. Quick start with a simple example

In the following example, we illustrate a simple simulation study where we run two models:
the default model choice, which is an SSUR model with the hotspot prior, and in addition
an SSUR model with the MRF prior. The purpose of the latter is to illustrate how we can
construct an MRF prior graph. We simulate a dataset X with dimensions n×p = 10×15, i.e.
10 observations and 15 input variables, a sparse coefficients matrix B with dimension p × s =
15 × 3, which creates associations between the input variables and s = 3 response variables,
and random noise E. The response matrix is generated by the linear model Y = XB + E.

R> set.seed(6349)

R> n <- 10; s <- 3; p <- 15

R> X <- matrix(rnorm(n * p, 2, 1), nrow = n)

R> B <- matrix(c(0 , 0 , 0.5,

+ 0.5, 0.5, 0 ,

+ 0.5, 0.5, 0 ,

+ rep(0, s * p - 9)),

+ nrow = p, byrow = TRUE)

R> E <- matrix(rnorm(n * s, 0, 0.2), nrow = n)

R> Y <- X %*% B + E

Note that B is sparse and only the first three input variables have non-zero coefficients:

R> print(B)

[,1] [,2] [,3]

[1,] 0.0 0.0 0.5

[2,] 0.5 0.5 0.0

[3,] 0.5 0.5 0.0

[4,] 0.0 0.0 0.0

[5,] 0.0 0.0 0.0

[6,] 0.0 0.0 0.0

[7,] 0.0 0.0 0.0

[8,] 0.0 0.0 0.0

[9,] 0.0 0.0 0.0

[10,] 0.0 0.0 0.0

[11,] 0.0 0.0 0.0

[12,] 0.0 0.0 0.0

[13,] 0.0 0.0 0.0

[14,] 0.0 0.0 0.0

[15,] 0.0 0.0 0.0

First, let’s fit the default model, which is the SSUR model with a hotspot prior for Γ. The
default is to run two MCMC chains with 10000 iterations each, of which the first 5000 iter-
ations are discarded as the burn-in period. The function print() returns a short summary
of the results from the fitted model object, including the number of selected predictors by
thresholding the marginal posterior inclusion probabilities (mPIP) at 0.5, and two measures
of the model’s prediction accuracy (i.e., elpd.LOO and elpd.WAIC).
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R> library("BayesSUR")

R> fit <- BayesSUR(Y = Y, X = X, outFilePath = "results/")

R> print(fit)

Call:

BayesSUR(Y = Y, X = X, outFilePath = "results/")

Number of selected predictors (mPIP > 0.5): 5 of 3x15

Expected log pointwise predictive density (elpd):

elpd.LOO = -28.85931, elpd.WAIC = -29.15983

The posterior means of the coefficients matrix and latent indicator variable are printed by
the function plotEstimator() (Figure 1).

R> plotEstimator(fit, estimator = c("beta", "gamma"),

+ fig.tex = TRUE, output = "exampleEst",

+ xlab = "Predictors", ylab = "Responses")
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Figure 1: The posterior mean estimates of the coefficients matrix B̂ and latent indicator
variable Γ̂ for the SSUR model with the hotspot prior plotted with plotEstimator().

Before running the SSUR model with the MRF prior, we need to construct the edge potentials
matrix G. If we assume (in accordance with the true matrix B in this simulation scenario)
that the 2nd and 3rd predictors are related to the first two response variables, this implies
that γ21, γ22, γ31 and γ32 are expected to be related and therefore we might want to encourage
these variables to be selected together. In addition, we assume that we know that predictor
1 is associated with response 3, and therefore we encourage the selection of γ13 as well. Since
matrix G represents prior relation of any two predictors corresponding the vec{Γ}, it can be
generated by the following code:
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R> G <- matrix(0, ncol = s * p, nrow = s * p)

R> combn1 <- combn(rep((1:2 - 1) * p, each = length(2:3))

+ + rep(2:3, times = length(1:2)), 2)

R> combn2 <- rep(rep((3-1) * p, each = length(1))

+ + rep(1, times = length(3)), 2)

R> G[c(combn1[1,], combn2[1]), c(combn1[2,], combn2[2])] <- 1

Calling BayesSUR() with the argument gammaPrior = "MRF" will run the SSUR model with
the MRF prior, and the argument mrfG = G imports the edge potentials for the MRF prior.
The two hyper-parameters d and e for the MRF prior (6) can be specified through the argu-
ment hyperpar; here we use the default values d = −3, e = 0.001. See Lee et al. (2017) for
an example for how one can select d and e via a grid search strategy which exploits the phase
transition of the MRF parametrization. The posterior mean estimates for the coefficientes
matrix and latent indicator variable are shown in Figure 2.

R> fit <- BayesSUR(Y = Y, X = X, outFilePath = "results/",

+ gammaPrior = "MRF", mrfG = G)

R> plotEstimator(fit, estimator = c("beta", "gamma"),

+ fig.tex = TRUE, output = "exampleEst2",

+ xlab = "Predictors", ylab = "Responses")
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Figure 2: The posterior mean estimates of the coefficients matrix B̂ and latent indicator
variable Γ̂ for the SSUR model with MRF prior plotted with plotEstimator().

5. Two extended examples based on real data

In this section, we use a simulated eQTL dataset and a real pharmacogenetic database to
illustrate the usage of the BayesSUR package. The first example is under the known true
model and demonstrates the recovery performance of the models introduced in Section 2. It
also demonstrates an example data analysis step by step. The second example illustrates how
to use potential relationships between multiple response variables and input predictors as the
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prior information in Bayesian SUR models and showcases how the resulting estimated graph
structures can be visualized with functions provided in the package.

5.1. Simulated eQTL data

Similarly to Banterle et al. (2018), we simulate single nucleotide polymorphism (SNP) data
X by resampling from the scrime package (Schwender and Fritsch 2012), with p = 150
SNPs and n = 100 subjects. To construct multiple response variables Y (with s = 10) with
structured correlation - which we imagine to represent gene expression measurements of genes
that are potentially affected by the SNPs - we first fix a sparse latent indicator variable Γ

and then design a decomposable graph for responses to build association patterns between
multi-response variables and predictors. The nonzero coefficients are sampled from the normal
distribution independently and the noise term from a multivariate normal distribution with
the covariance matrix sampled from a Wishart distribution. Finally, the simulated gene
expression data Y is then generated from the linear model (1). The concrete steps are as
follows:

• Simulate SNPs data X from the scrime package, dim(X) = n × p.

• Design a decomposable graph G as the right panel of Figure 3, dim(G) = s × s.

• Design a sparse matrix Γ as the left panel of Figure 3, dim(Γ) = p × s.

• Simulate βjk ∼ N (5, 1), j = 1, · · · , p and k = 1, · · · , s.

• Simulate ũij ∼ N (1, 0.5), i = 1, · · · , n and j = 1, · · · , p.

• Simulate P ∼ WG(2, M) (G-Wishart distribution, Mohammadi and Wit (2019)) where
diagonals of M are 1 and off-diagonals are 0.9, dim(P ) = s × s.

• Use Cholesky decomposition chol(P −1) to get U = Ũ · chol(P −1).

• Generate Y = (XB)Γ + U.

The signal-to-noise ratio SNRβ within 10% of the desired value 35, where

SNRβ =
1

(n − 1)s

s∑

k=1

n∑

i=1

(Xi,γk
βγk

)⊤(Xi,γk
βγk

)

σ2
k

.

The R code for the simulation can be found through help("example_eQTL").

R> data("example_eQTL", package = "BayesSUR")

R> str(example_eQTL)

List of 2

$ data : num [1:100, 1:160] 40.1 63 65.4 50.3 42.2 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:100] "1" "2" "3" "4" ...

.. ..$ : chr [1:160] "GEX1" "GEX2" "GEX3" "GEX4" ...

$ blockList:List of 2

..$ : int [1:10] 1 2 3 4 5 6 7 8 9 10

..$ : num [1:150] 11 12 13 14 15 16 17 18 19 20 ...
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R> attach(example_eQTL)

In the BayesSUR package, the data Y and X are saved as one matrix in the first compo-
nent data of the example dataset example_eQTL. The second component of example_eQTL

is blockList which specifies the indices of Y and X in data. Throughout this section we
attach the data set for more concise R code.
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Figure 3: True parameters of the simulated dataset example_eQTL. The left panel is the
designed sparse Γ and the right panel is the given true structure of responses represented by
the decomposible graph G. Black indicates a value 1 and white indicates 0.

Figure 3 shows the true Γ and decomposible graph G used in the eQTL simulation scenario.
The following code shows how to fit an SSUR model with hotspot prior for the indicator
variables Γ and the sparsity-inducing hyper-inverse Wishart prior for the covariance using
the main function BayesSUR().

R> fit <- BayesSUR(data = data, Y = blockList[[1]], X = blockList[[2]],

+ outFilePath = "results/", nIter = 210000, nChains = 4,

+ burnin = 10000, covariancePrior = "HIW",

+ gammaPrior = "hotspot")

Figure 4 summarizes the posterior inference results by plots for B̂, Γ̂ and Ĝ created with the
function plotEstimator(). When comparing with Figure 3, we see that this SSUR model
has good recovery of the true latent indicator matrix Γ and of the structure of the responses as
represented by G. The function plotResponseGraph() visualizes the estimated structure of
the ten gene expression variables as shown in the right panel of Figure 5. For comparison, the
true structure of them is shown in the left panel. When we threshold the posterior selection
probability estimates for G and for Γ at 0.5, the resulting full network between the ten gene
expression variables and 150 SNPs is displayed in Figure 6. Furthermore, the Manhattan-like
plots in Figure 7 show both, the marginal posterior inclusion probabilities (mPIP) of the SNP
variables (top panel) and the number of gene expression response variables associated with
each SNP (bottom panel).

R> plotEstimator(fit, fig.tex = TRUE)
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Figure 4: The estimated coefficients matrix B̂, latent indicator variable Γ̂ and learn-
ing structure Ĝ by the SSUR model with hotspot prior and sparse covariance prior by
plotEstimator().

R> plotResponseGraph(fit)

Figure 5: Structure of the ten response variables visualized by plotResponseGraph(). Their
associations are based on Ĝ thresholded at 0.5.

R> plotNetwork(fit)

R> plotManhattan(fit)

In order to investigate the behaviour of the MCMC sampler, the top two panels of Figure
8 show the trace plots of the loglikelihood and model size, i.e., the total number of selected
predictors. We observe that the Markov chain seems to start sampling from the correct
distribution after ca. 50,000 iterations. The bottom panels of Figure 8 indicate that the log
posterior distribution of the latent indicator variable Γ is stable for the last half of the chains
after substracting the burn-in length.

R> plotMCMCdiag(fit)

We finish this example analysis by detaching the eQTL example data set.
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Figure 6: Network representation between the ten expression level genes and 150 SNPs by
plotNetwork(). The connections between expression level genes are based on Ĝ thresholded
at 0.5, and the connections between the expression level genes and SNPs are based on Γ̂

thresholded at 0.5.

Figure 7: Manhattan-like plots by plotManhattan(). The top panel shows the mPIP of each
SNP, and the bottom panel shows the number of genes associated with each SNP. The number
of responses are based on Γ̂ thresholded at 0.5.

R> detach(example_eQTL)
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Figure 8: Diagnostic plots of the MCMC sampler by plotMCMCdiag().

5.2. The Genomics of Drug Sensitivity in Cancer data

In this section we analyse a subset of the Genomics of Drug Sensitivity in Cancer (GDSC)
dataset from a large-scale pharmacogenomic study (Yang, Soares, Greninger, Edelman, Light-
foot, Forbes, Bindal, Beare, Smith, Thompson, Ramaswamy, Futreal, Haber, Stratton, Benes,
McDermott, and Garnett 2013; Garnett et al. 2012). We analyze s = 7 cancer drugs’
pharmacological profiling of n = 498 cell lines from p0 = 13 cancer tissues. The sensitiv-
ity of the cell lines to each of the drugs was summarised by the logIC50 values estimated
from in vitro dose response experiments. The cell lines are characterised by p1 = 343
selected gene expression features (GEX), p2 = 426 genes affected by copy number vari-
ations (CNV) and p3 = 68 mutated genes (MUT). The data sets were downloaded from
ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/ and processed as
described in help("example_GDSC").

Garnett et al. (2012) provide the target genes or pathways for all drugs. The aim of this
study was to identify molecular characteristics that help predict the response of a cell line
to a particular drug. Because many of the drugs share common targets and mechanism of
action, the response of cell lines to many of the drugs is expected to be correlated. Therefore,
a multivariate model seems appropriate:

Ydrugs = XtissuesB0 + XGEXB1 + XCNVB2 + XMUTB3 + Uerror.

We may know the biological relationships within and between drugs and molecular features,
so that the MRF prior (6) can be used to learn the above multivariate model well. Drugs
RDEA119, PD-0325901, CI-1040 and AZD6244 are MEK inhibitors which affect the MAP-
K/ERK pathway. Drugs Nilotinib and Axitinib are Bcr-Abl tyrosine kinase inhibitors which
inhibit the mutated BCR-ABL gene. Drug Methotrexate is a chemotherapy agent and gen-
eral immune system suppressant, which is not associated with a particular target gene or
pathway. For the target genes (and genes in target pathways) we consider all characteristics
(GEX, CNV, MUT) available in our data set as eing potentially associated. Based on this

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/
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information, we construct edge potentials for the MRF prior:

• edges between drugs: Group1 ("RDEA119","PD-0325901","CI-1040" and "AZD6244");
Group2 ("Nilotinib","Axitinib")

• edges between genes in MAPK/ERK pathway (target of Group1 drugs)

• edges between genes in the Bcr-Abl fusion gene (target of Group2 drugs)

• edges between genes of MAPK/ERK pathway and Group1 drugs

• edges between genes of the Bcr-Abl fusion gene and Group2 drugs

• edges between the representations of each gene in different data sources (i.e., GEX,
CNV and MUT)

By matching the selected genes with the gene set of the MAPK/ERK pathway from the
KEGG database, 57 features are considered to be connected to the four MEK inhibitors.
The two genes (i.e., BCR and ABL) representing the Bcr-Abl fusion are connected with five
features in the data set, which are BCR-ABL mutaion, BCR gene expression, BCR copy
number variation, ABL gene expression and ABL copy number variation (left panel of Figure
9). In addition, there are 347 small feature groups representing different available data sources
for each of the genes in the data set, which are potentially connected to all drugs. Figure 9
illustrates the edges between Drugs Nilotinib, Axitinib and the related genes of the Bcr-Abl
fusion gene, and the same gene from different data sources related to each drug. Based on
this information, we construct the matrix G for the MRF prior.

Figure 9: Illustration of the relationship between drugs and a group of related genes. The left
panel is for the Bcr-Abl fusion gene and the corresponding related genes. The right panel is
for all drugs and gene TP35 as one example with features representing all three data sources.
The names with suffix ".GEX", ".CNV" and ".MUT" are features of expression, copy number
variation and mutation, respectively.

First, we load and attach the data.

R> data("example_GDSC", package = "BayesSUR")

R> attach(example_GDSC)
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The following code chunk will run the MCMC sampler to fit the model. This represents
a full analysis, which might take several hours to run with the chosen MCMC parameter
values (nIter=200000, nChains=10, burnin=50000). Approximate results for an initial
assessment of the model can be achieved with much shorter MCMC runs.

R> hyperpar <- list(mrf_d = -3, mrf_e = 0.2)

R> fit <- BayesSUR(data = data, Y = blockList[[1]], X_0 = blockList[[2]],

+ X = blockList[[3]], outFilePath = "results/",

+ nIter = 200000, nChains = 10, burnin = 50000,

+ covariancePrior = "HIW", gammaPrior = "MRF",

+ mrfG = example_GDSC$mrfG)

After fitting an SSUR model with the MRF prior, the structure of the seven drugs, G, has
been learned as illustrated in Figure 10. The learned structure accurately reflects the true
drug groups of the MEK inhibitors (group 1) and Bcr-Abl tyrosine kinase inhibitors (group
2) as well as the singleton drug Methotrexate, when thresholding Ĝ at 0.5.

R> plotEstimator(fit, "Gy", name.responses = c("Methotrexate", "RDEA119",

+ "PD.0325901", "CI.1040", "AZD6244", "Nilotinib",

+ "Axitinib"), fig.tex = TRUE, output = "ResponseGraphGDSC1")

R> plotResponseGraph(fit)
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Figure 10: Estimated structure of the seven drugs Ĝ. Their associations as visualized in the
right panel are based on Ĝ thresholded at 0.5. Figures created with plotEstimator() (left)
and plotResponseGraph() (right).

The estimated relationships between the drugs and genes are displayed in Figure 11. There
are 812 of 5859 molecular features selected in total when thresholding Γ̂ at 0.5, 116 for drug
Methotrexate, 463 for the MEK inhibitors and 233 for the Bcr-Abl tyrosine kinase inhibitors.
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R> plotNetwork(fit, label.predictor = "", name.predictors = "Genes",

+ name.responses = "Drugs", nodesizePredictor = 2)

Figure 11: Estimated network between the seven drugs and selected genes based on thresholds
0.5. Figure created with plotNetwork().

Network substructures of interest can also be selected and visualized individually, since the
user can specify, which response variables (drugs) and which input variabbles (molecular
features) to include in a figure. For example, Figures 12 and Figure 13 show the estimated
network representations of the two groups of drugs, respectively.

R> data("targetGene", package = "BayesSUR")

R> plotNetwork(fit, includeResponse = c("RDEA119", "PD.0325901", "CI.1040",

+ "AZD6244"), includePredictor = names(targetGene[[1]]))

In addition, Figure 13 illustrates, how one can customize how to display the edges between
input and response variables to visualize the strength of the association between nodes. In
particular, one can either simply use a threshold, e.g., 0.5, to show all edges with marginal
posterior inclusion probabilities larger than the threshold equally (left panel), or the width of
edges (greater than the specified threshold) can be weighted by the corresponding inclusion
probability (right panel).

R> layout(matrix(1:2, ncol = 2))

R> plotNetwork(fit, includeResponse = c("Nilotinib", "Axitinib"),

+ includePredictor = names(targetGene[[2]]), edge.weight = T)

R> plotNetwork(fit, PmaxPredictor = 0.05,

+ includeResponse = c("Nilotinib","Axitinib"),

+ includePredictor = names(targetGene[[2]]), edge.weight = T)



Banterle M, Zhao Z, Bottolo L, Richardson S, Lewin A and Zucknick M 23

Figure 12: Estimated network between the MEK inhibitors and selected target genes based
on thresholds 0.5. Figure created with plotNetwork().

Figure 13: Estimated network between the Bcr-Abl inhibitors and selected target genes.
The left plot is based on threshold on Γ̂ of 0.5 while the right plot is based on threshold
0.05. Both panels use a threshold on Ĝ of 0.5. The edges are weighted by the corresponding
inclusion probabilities, if they are greater than the specified thresholds. Figures created with
plotNetwork().

6. Conclusion

The BayesSUR package presents a series of multivariate Bayesian variable selection models
which employ the ESS algorithm for posterior inference over the model space. It provides
a unified R package and a consistent interface for the C++ implementations of individual
models. The package supports all combinations of the covariance priors and variable selection
priors from Section 2 in the Bayesian HRR and SUR model frameworks. This includes the
MRF prior on the latent indicator variables, which is newly introduced in the context of
SUR models, to allow the user to make use of prior knowledge of the relationships between
both response variables and predictors. To overcome the computational cost for datasets
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with large numbers of input variables, parallel processing is also considered with respect to
multiple chains, likelihoods of parameters and samples, although the MCMC algorithm is still
challenging to be parallelized. We demonstrated the modelling aspects of variable selection
and structure recovery to identify relationships between multivariate responses and between
(potentially high-dimensional) responses and high-dimensional predictors, by applying the
package to a simulated eQTL dataset and to the GDSC pharmacogenomic data.

Possible extensions of the R package include the implementation of different priors to introduce
even more flexibility in the modeling choices. In particular, the g-prior could be considerd for
the regression coefficients matrix B (Bottolo and Richardson 2010; Richardson et al. 2011;
Lewin et al. 2015), whereas currently only the independence prior is available. In addition,
the spike-and-slab prior on the covariance matrix C (Wang 2015; Banerjee and Ghosal 2015;
Deshpande et al. 2019) might be useful, or the horseshoe prior on the latent indicator variable
Γ, which was recently implemented in the multivariate regression setup by Ruffieux, Davison,
Hager, Inshaw, Fairfax, Richardson, and Bottolo (2018).
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Appendix for the elpd

W.L.O.G., here we only consider each response variable y of the whole response matrix Y.
Then the basic linear model is

y|X, β, σ2 ∼ N (Xβ, σ2
■m),

β|σ2 ∼ N (µβ , σ2Vβ),

σ2 ∼ IG(a, b).

(A.1)

In Bottolo et al. (2011) and the HRR model of this article, µβ = 0 and Vβ = ■p for nonzero
coefficients.

Appendix 1: Posterior predictive for the HRR model

From (A.1), the joint distribution of (β, σ2) is Normal-Inverse-Gamma, i.e.,

f(β, σ2) = f(β|σ2)f(σ2) = N (µβ, Vβ) · IG(a, b) = N IG(µβ, σ2Vβ, a, b).

Further we can know the posterior distribution of (β, σ2) is still Normal-Inverse-Gamma
N IG(µ∗

β, V ∗
β , a∗, b∗), where

µ∗ = (V −1
β + X⊤X)−1(V −1

β µβ + X⊤y),

V ∗ = (V −1
β + X⊤X)−1,

a∗ = a +
n

2
,

b∗ = b +
1

2
(µ⊤

β V −1
β µβ + y⊤y − µ∗⊤V ∗−1µ∗).

Now we drive the posterior predictive w.r.t. individual response yi.

f(yi|y) =

∫
f(yi|β, σ2)f(β, σ2|y)dβdσ2

=

∫
N (Xiβ, σ2) · N IG(µ∗, V ∗, a∗, b∗)dβdσ2

=

∫
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

(
1

σ2

)a∗+ p+1

2
+1

×

exp

{
− 1

σ2

[
b∗ +

1

2

{
(β − µ∗)⊤V ∗−1(β − µ∗) + (yi − Xiβ)2

}]}
dβdσ2

=

∫
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

(
1

σ2

)a∗+ p+1

2
+1

×

exp

{
− 1

σ2

[
b∗∗ +

1

2
(β − µ∗∗)⊤V ∗∗−1(β − µ∗∗)

]}
dβdσ2

where

µ∗∗ = (V ∗−1
β + X∗⊤X∗)−1(V ∗−1

β µ∗
β + X∗⊤y∗),

V ∗∗ = (V ∗−1
β + X∗⊤X∗)−1,

b∗∗ = b∗ +
1

2
(µ∗⊤

β V ∗−1
β µ∗

β + y2
i − µ∗∗⊤V ∗∗−1µ∗∗).
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Let z , c
σ2 , c , b∗∗ + 1

2(β − µ∗∗)⊤V ∗∗−1(β − µ∗∗), and then

f(yi|y) =
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫
c−(a∗+ p+1

2
+1)za∗+ p+1

2
+1e−zdcz−1dβ

=
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫
c−(a∗+ p+1

2
)dβ

=
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2

∫ [
b∗∗ +

1

2
(β − µ∗∗)⊤V ∗∗−1(β − µ∗∗)

]
dβ

=
b∗a∗

(2π)
p+1

2 Γ(a∗)|V ∗|1/2
b∗∗−

2a∗
+p+1

2 ×

∫
Γ(2a∗+p+1

2 )

Γ(2a∗+1
2 )πp/2|(2a∗ + 1)[ 2b∗∗

2a∗+1V ∗∗]| 1

2

[
1 +

(β − µ∗∗)⊤[ 2b∗∗

2a∗+1V ∗∗]−1(β − µ∗∗)

2a∗ + 1

]− 2a∗
+p+1

2

dβ.

The integrable function above is the density of β, which is actually multivariate t-distribution
MVSt2a∗+1(µ∗∗, 2b∗∗

2a∗+1V ∗∗). Since

|2b∗∗V ∗∗|1/2 = 2p/2b∗∗ 1

2
|V ∗|1/2

|1 + XiV ∗X⊤
i |1/2

,

then we have

f(yi|y) =
Γ(2a∗+1

2 )√
2a∗πΓ(2a∗

2 )[ 2b∗

2a∗ (1 + XiV ∗X⊤
i )]1/2

[
1 +

(yi − Xiµ
∗)2{ 2b∗

2a∗ (1 + XiV
∗X⊤

i )}
2a∗

]− 2a∗
+1

2

.

It is like a univariate t-distribution shifted by yi − Xiµ
∗ and scaled by

2b∗

2a∗ (1+XiV
∗X⊤

i
)

2a∗ .

Vehtari et al. (2017) proposed the expected log pointwise predictive density (elpd) to measure
the predictive accuracy for the new data ỹi (i = 1, · · · , n). The elpd is defined as

elpd =
n∑

i=1

∫
f(ỹi) log f(ỹi|y)dỹi.

Therefore, we use the log pointwise predictive density (lpd) to measure the predictive accu-
racy, i.e., lpd =

∑n
i=1 log f(yi|y). The widely applicable information criterion (WAIC) is an

alternative approach which is

lpd −
n∑

i=1

❱ar[log f(yi|y)].

Appendix 2: Posterior predictive for the dSUR and SSUR models

For the dSUR and SSUR models, the response variables are independent in their reparametrised
forms. It is feasible to use the out-of-sample predictive to measure the elpd. The Bayesian
leave-one-out estimate is

elpdloo =
n∑

i=1

log f(yi|y−1).
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As note by the importance sampling, we get

f(yi|y−1) ≈ 1
1
T

∑T
t=1

1
f(yi|θt)

,

where all related parameters θt are drawn from its full posterior. The WAIC is estimated by

êlpdwaic = êlpdloo −
n∑

i=1

❱arT
t=1[log f(yi|θt)].

The posterior predictive f(yi|y−1) can be used to check outliers, which is also named the
Conditional Predictive Ordinate (CPO, Gelfand (1996)).
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