
Evaluation of Binary Classifier Algorithms

José Tamez-Peña

jose.tamezpena@tec.mx
Tecnológico de Monterrey, Escuela de Medicina,

Av. Morones Prieto No. 3000, Colonia Los Doctores CP 64710
Monterrey Nuevo León, México.

Table of Contents
Benchmarking with FRESA.CAD.. 2

Sample run: The Colon Cancer Data Set .. 3

The Benchmarking Function.. 5

Analyzing the Results ... 6

Meta-analysis: Radar Plots for Summarizing Performance Results .. 9

Meta-analysis: Which are the Relevant Features? .. 9

Conclusion... 12

References .. 13

Appendix A: The Benchmark Workflow .. 14

Appendix B: Benchmarking a User-Specified Classifier ... 16

Appendix C: The Radar Plots Code ... 18

Benchmarking with FRESA.CAD

This vignette shows the use of FRESA.CAD to evaluate the performance of several binary
classification algorithms on a user-supplied data set.

The FRESA.CAD::BinaryBenchmark(…) function evaluates the holdout cross-validation[1]
(CV) performance of the following algorithms:

 Bootstrap Stage-Wise Model Selection (BSWiMS), or user-supplied cross-
validated (CV) method.

 Least Absolute Shrinkage and Selection Operator[2] (LASSO)1,
 Random Forest[3] (RF)2,
 Recursive Partitioning and Regression Trees[4] (RPART)3,
 K Nearest Neighbors (KNN)4 with BSWiMS features,
 Support Vector Machine[5] (SVM)5 with minimum-Redundancy-Maximum-

Relevance[6] (mRMR)6 feature selection filter,
 The ensemble of all the above methods.

Furthermore, the function evaluates the effect of the following feature selection algorithms:
BSWiMS, LASSO, RPART, RF, integrated discrimination improvement[7] (IDI), net
reclassification improvement (NRI), t student test, Wilcoxon test, Kendall correlation, and
mRMR as filters on the following classifiers: KNN, naive Bayes7, nearest centroid (NC) with
normalized root sum square distance and Spearman correlation distance, RF and SVM.
Appendix A shows the workflow of the Benchmark procedure. The default parameters of
the BinaryBenchmark(…) uses BSWiMS, but the user has the freedom to change the
BSWiMS method for any data classifier with a predict method as show in Appendix B.
Internally BinaryBenchmark(…) runs the FRESA.CAD::randomCV(…) on every
filter/classifier using the same train/test split. The test results of the CV are accumulated
and evaluated by the FRESA.CAD::predictionStats_binary(…) function. The evaluation

1 LASSO algorithm uses the glmnet package. The glmnet::cv.glmnet(…) function is run to fit the LASSO
algorithm with default parameters and predictions are done using min se.
2 RF uses the randomForest package. The randomForest::randomForest(…) function with default
parameters is run to fit the data.
3 RPART uses the rpart package. The rpart::rpart(…) function is used to fit the train data with default
parameters.
4 KNN uses the class package. FRESA.CAD::KNN_method(…) prepares the trained data with order statistics
for data normalization and set k to the square root of number of subjects. Predictions are done using
class::knn(…) function of the class package.
5 SVM uses the e1071 package. The e1071::svm(…) fit function is used with default parameters.
6 mRMR uses the RMRe package. FRESA.CAD::mRMR.classic_FRESA(…)function wraps the classic mRMR
algorithm mRMRe::mRMR.classic(…)setting the maximum number of features to return.
7 Naïve Bayes algorithm uses the naivebayes package. FRESA.CAD::NAIVE_BAYES(…)function wraps the
naivebayes::naive_bayes(…) function and fit the data with default parameters.

function returns the accuracy, precision, sensitivity, the balanced error rate and the ROC
area under the curve with their corresponding 95% confidence intervals (95%CI)

The simplest way to visualize the results of the BinaryBenchmark(…) function is using the
provided plot(…) function. The plot function compares the statistics and ranks them by
comparing the 95%CI, as well as returns the ranked tables associated to each metric. Each
method accumulates a positive score each time their lower CI is superior to the mean of the
other methods and loses a point each time the mean is inferior to the top 95%CI of the
other methods. The ranked data is visualized by bar plots that include the 95%CI.

The simplest code for data evaluation is the following:

R> cp <- BinaryBenchmark(theData = Data, theOutcome = "Class")
R> pr <-plot(cp)

The above code will randomly split the data into train and test sets 100 times. Then the
results of the 100 test evaluation will be ranked and plotted by the
plot.FRESA_benchmark(x,…) function. The user has the freedom to select the number of
random train/test splits as well as the fraction of the data that will be used at each train
session. The runtime will depend on the size of the data sets. It may take a few minutes for
small data sets to hours for larger sets.

The next section will use the colon cancer data set to show the usage of the method and to
display the results.

Sample run: The Colon Cancer Data Set

The data is an instance for the Alon et al. (1999) colon cancer data. 62 samples (40 tumor
samples, 22 normal samples) from colon-cancer patients were analyzed with an Affymetrix
oligonucleotide Hum6000 array[8]. Here we will use the data to show the ability of the
benchmarking/plot functions to evaluate the performance of the classifier algorithms.

FRESA.CAD requires that all the data sets to be evaluated be R data frames, where each
column is a feature and each row is a sample. The data frame has to be numeric, hence each
factor has to be converted to its corresponding numeric value. The “rda” R package has the
Colon dataset:

R> data(colon,package = "rda")
R> Colon <- as.data.frame(cbind(Class = colon.y,colon.x))
R> Colon$Class <- Colon$Class - 1

After loading the data, I make a numeric data frame where cases are 1s and controls are the
0s. The next step returned the number of informative features using the
FRESA.CAD::univariate_Logit(…) function.

R> #Univariate feature selection snippet

R> q_values <- univariate_Logit(data = Colon,
 Outcome = "Class",
 pvalue = 0.05)

R> pander::pander(length(q_values))

The function returned 495 features that have the potential to separate cases and controls.
The histogram of the p-values is show next:

R> hist(-log10(q_values),main = "Distribution of q-values")

Figure 1: Distribution of the significant q-values (q<0.05) in the colon data set.

The Benchmarking Function

Once I have prepared the data frame, I can compare the classification algorithms using the
benchmark function:

R> #Benchmarking the Colon Dataset

R> cp <- BinaryBenchmark(theData = Colon, theOutcome = "Class", reps = 75,
trainFraction = 0.8)

The above example specifies that 80% of the data will be used for training and the CV will
be repeated 75 times. The above configuration will result, on average, 15 test results per
sample. Internally the CV function will report the median of the repeated test and provide a
single test result for each subject. Figure 2 shows the plots that the benchmark function
outputs while running. The plots are ROC curves of the ensemble of the 75 test results. The
ensemble provides a unique test prediction of each subject, hence it is possible to estimate
a reliable 95%CI of each metric.

Figure 2: Plot outputs of the FRESA.CAD::BinaryBenchmark(…) showing the ROC of the
main classifiers

Analyzing the Results

The results of the BinaryBenchmark(…)object can be visualized in different forms. This
section describes the heat-map and the plot FRESA.CAD functions. But first, here is the
average train time of each classifier:

R> #The Runtimes
R> pander::pander(cp$cpuElapsedTimes)

BSWiMS RF RPART LASSO SVM KNN ENS

8.834 2.044 0.4968 0.2955 0.01187 0.0268 11.71

As we can see the BSWiMS method took on average 8.3 seconds to train. The fastest
method was the KNN that only took 0.014 seconds to train on 80% of the data.

Regarding the similarity of the test results, I used the FRESA.CAD::heatMaps(…) to display
the similarity of the test results. Figure 3 shows each one of the test predictions by the
different classification methods. It is clear that all the methods had similar predictions on
each subject, but the RPART method. The RPART had slightly different predictions of a
selected group of subjects.

R> # Heat maps of predicted values

R> hm <- heatMaps(Outcome = "Outcome",
 data = cp$testPredictions,
 title = "Heat Map",Scale = TRUE,
 hCluster = "col",
 cexRow = 0.25,cexCol = 0.75,srtCol = 45)

Figure 3: Heat map showing how similar is each classifier.

The object returned by the benchmarking can be visualized by invoking the
FRESA.CAD::plot(x,…) function. This function will output a series of plots that visualize
the key metrics of test results. Figure 4 to 6 shows the outputs returned for Feature
Selection evaluation (Figure 4), bar plots for the basic classifiers (Figure 5) and the bar
plots evaluating the Filter/Classifier performance (Figure 6).

R> pr <- plot(cp)

Figure 4: The Jaccard index and the number of returned features of each feature selection
algorithm.

Figure 4 shows the Jaccard index of the different feature selection algorithms tested by the
FRESA.CAD benchmarking function. This index indicates how consistent the selected
features on all the CV runs were. The right plot shows the number of selected features by
the FRESA.CAD::filterUnivariate functions. These FRESA.CAD functions are run inside
the benchmark with an upper limit to the returned number of features. For that reason, no
more than 45 features were returned by the feature selection methods.

Figure 5 shows the output of the performance comparison of the stand-alone classifiers.
The analysis of the 95%CI indicates that none of the methods were superior or inferior to
any other method. While Figure 6 shows the comparison of all the filtered/classifiers.
These last plots show that there are filters/classifiers method inferior to the others.

Figure 5: Balanced error rate, Accuracy, ACU, Sensitivity and Specify of the analyzed
classifiers.

Figure 6: Balanced Error Rate, Accuracy, AUC, Sensitivity, and Specificity for the different
combinations of Filters/Classifiers algorithms.

Meta-analysis: Radar Plots for Summarizing Performance Results

All the presented results can be summarized by using radar plots as shown in Figure 7.
These two plots show that the performance the methods are very similar. The largest
difference in CPU time, and the number/consistency of the selected features. The R code
snippet used to create radar plots is shown in Appendix C.

Figure 7: Radar plots summarizing the results of the benchmark analysis.

Meta-analysis: Which are the Relevant Features?

The returned object of the Benchmark function contains a table with all the selected
features by the method. I will use the gplots::heatmap.2(…) function to display the
features that were selected more than 10%. Figure 8 shows the result of the analysis.
Figure 9 shows the heat map of the features and their association with the outcome.
Finally, Table 1 shows the descriptive statistics of the top 10 features as well as the average
selection rate of these features.

R> rm <- rowMeans(cp$featureSelectionFrequency)
R> selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
R> gplots::heatmap.2(selFrequency,trace = "none",
 mar = c(10,10),
 main = "Features",cexRow = 0.25)

Figure 8: The features with a selection rate greater than 10%.

R> hm <- heatMaps(Outcome = "Class",
 data = Colon[,c("Class",rownames(selFrequency))],
 title = "Heat Map",Scale = TRUE,
 hCluster = "col",cexRow = 0.25,cexCol = 0.25,srtCol = 45)

Figure 9: FRESA.CAD::heatMaps(…) showing the value of the top features discovered by FS
methods.

Table 1: Top 10 Features

 controlMean controlStd caseMean caseStd ROCAUC
Wilcon
pvalue Frequency

V378 0.741 0.4201 -0.0097 0.3183 0.9341 0 0.8853

V494 1.207 0.5516 0.0745 0.516 0.9205 0 0.8667

V1636 -0.07 0.4481 -1.098 0.5804 0.9045 0 0.804

V1424 1.121 0.8332 -0.3798 0.8767 0.8909 0 0.6253

V626 0.2895 0.5038 1.138 0.482 0.8898 0 0.6853

V250 2.091 0.7986 0.7251 0.637 0.8886 0 0.7347

V1772 -1.061 0.4778 -0.2618 0.5116 0.8852 0 0.7053

V1043 -0.5278 0.3595 0.2742 0.6335 0.8795 0 0.5133

V1844 0.3261 0.5442 -0.8701 0.8825 0.8761 0 0.56

V1773 -1.319 0.45 -0.6071 0.4575 0.8727 0 0.7933

A snippet of the code used to generate Table 1:

R> #Setting up a summary table with relevant information

R> vlist <- rownames(selFrequency)
R> vlist <- cbind(vlist,vlist)
R> univ <- univariateRankVariables(variableList = vlist,
 formula = "Class~1",
 Outcome = "Class",
 data = Colon,
 type = "LOGIT",
 rankingTest = "zIDI",
 uniType = "Binary")

R> univ <- univ[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]

R> cnames <- colnames(univ);
R> univ <- cbind(univ,rm[rownames(univ)])
R> colnames(univ) <- c(cnames,"Frequency")
R> univ <- univ[order(-univ[,5]),]
R> pander::pander(univ[1:10,],caption = "Features",round = 4)

Conclusion

FRSA.CAD provides a simple to use set of functions that evaluate, and display the
performance of supervised classifiers on a user-provided data set. The results of the call
and the provided visual results gives the user a perspective of what is the best classifier,
the expected performance on an independent test and the set of features that are
associated with the study outcome.

References

1. Kim JH. Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap. Computational Statistics & Data Analysis. 2009;53(11):3735-45.
doi: 10.1016/j.csda.2009.04.009. PubMed PMID: WOS:000267505600001.
2. Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society Series B-Methodological. 1996;58(1):267-88. PubMed PMID:
WOS:A1996TU31400017.
3. Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. doi:
10.1023/a:1010933404324. PubMed PMID: WOS:000170489900001.
4. De'ath G, Fabricius KE. Classification and regression trees: A powerful yet simple
technique for ecological data analysis. Ecology. 2000;81(11):3178-92. doi: 10.1890/0012-
9658(2000)081[3178:cartap]2.0.co;2. PubMed PMID: WOS:000165384000018.
5. Cortes C, Vapnik V. SUPPORT-VECTOR NETWORKS. Machine Learning.
1995;20(3):273-97. doi: 10.1007/bf00994018. PubMed PMID: WOS:A1995RX35400003.
6. Ding C, Peng H. Minimum redundancy feature selection from microarray gene
expression data. Journal of bioinformatics and computational biology. 2005;3(2):185-205.
doi: 10.1142/s0219720005001004. PubMed PMID: MEDLINE:15852500.
7. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. Evaluating the added
predictive ability of a new marker: From area under the ROC curve to reclassification and
beyond. Statistics in Medicine. 2008;27(2):157-72. doi: 10.1002/sim.2929. PubMed PMID:
WOS:000253098900001.
8. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, et al. Broad patterns of
gene expression revealed by clustering analysis of tumor and normal colon tissues probed
by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United
States of America. 1999;96(12):6745-50. doi: 10.1073/pnas.96.12.6745. PubMed PMID:
WOS:000080842200032.

Appendix A: The Benchmark Workflow

Figure 10: Holdout Cross Validations performed by the Binary Benchmark Function

Figure 11: Random Holdout Cross Validation

Appendix B: Benchmarking a User-Specified Classifier

The BinaryBenchmark(…) function can be set up to evaluate any supervised classifier as
long as the classifier has the proper R x<-fit(data, formula,…) method with its
corresponding predict.fit(x,…) function. This section shows how to change the base
classifier to a quadratic discriminant analysis (QDA) using the MASS::qda(…) fit function.

The basic instructions are show in the following snippet:

R> cv <- randomCV(Colon,"Class",
 MASS::qda,trainFraction = 0.8,
 repetitions = 75,
 featureSelectionFunction = univariate_Wilcoxon,
 featureSelection.control = list(limit = 0.25,thr = 0.95));

R> ps <- predictionStats_binary(cv$medianTest,plotname = "QDA",cex=0.8)

R> cp <- BinaryBenchmark(referenceCV = cv,referenceName =
"QDA",referenceFilterName="Wilcoxon_25")

R> pr <- plot(cp)

The above snippet shows how to cross-validate and benchmark the QDA classifier on the
Colon dataset. First, the QDA CV was done using 80% of the data for training and 20% for
testing and the Wilcoxon test was used as a feature selection method. The feature selection
was constrained to return as many of 25% of the number of samples in the data set, by
step-wise removing highly correlated features (Spearman rho > 0.95n, where n is the step).
This constraint is required by the QDA method in order to be able to compute the class
covariance matrix. The CV was repeated 75 times. Hence, on average each subject had 15
test results. Second, the predictionStats_binary(…) function was used to create Figure
10. This figure shows the ROC plot of CV test results, as well as the confusion matrix. The
same function returns the accuracy, sensitivity, specificity, ROC AUC and the balanced error
rate with their corresponding 95%CI. Third, the BinaryBenchmark(…) function is run
passing the CV object and the names associated with the classification method and the
feature selection method. The function call will use the QDA CV train/test splits that were
repeated 75 times in all the classifiers. Finally, the plot(cp) call returns the similar set of
plots shown in Figures 5 and 6 but specific to the QDA process. Figure 11 shows the specific
plot associated with the balanced error rate.

Figure 12: ROC plot of the QDA on the Cancer data set.

Figure 13: Balanced Error Rate of the QDA, RF, RPART, LASSO, SVM, KNN and the ensemble
on the Cancer dataset.

Appendix C: The Radar Plots Code
R> op <- par(no.readonly = TRUE)

R> par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

R> mNames <- names(cp$cpuElapsedTimes)

R> classRanks <- c(pr$minMaxMetrics$BER[1],
 pr$minMaxMetrics$ACC[2],
 pr$minMaxMetrics$AUC[2],
 pr$minMaxMetrics$SEN[2],
 pr$minMaxMetrics$SPE[2],
 min(cp$cpuElapsedTimes))

R> classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
R> classRanks <- as.data.frame(rbind(classRanks,
 cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),
 cp$cpuElapsedTimes)))

R> colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

R> classRanks$BER <- -classRanks$BER
R> classRanks$CPU <- -classRanks$CPU

R> colors_border = c(rgb(1.0,0.0,0.0,1.0),
 rgb(0.0,1.0,0.0,1.0),
 rgb(0.0,0.0,1.0,1.0),
 rgb(0.2,0.2,0.0,1.0),
 rgb(0.0,1.0,1.0,1.0),
 rgb(1.0,0.0,1.0,1.0),
 rgb(0.0,0.0,0.0,1.0))

R> colors_in = c(rgb(1.0,0.0,0.0,0.05),
 rgb(0.0,1.0,0.0,0.05),
 rgb(0.0,0.0,1.0,0.05),
 rgb(1.0,1.0,0.0,0.05),
 rgb(0.0,1.0,1.0,0.05),
 rgb(1.0,0.0,1.0,0.05),
 rgb(0.0,0.0,0.0,0.05))

R> fmsb::radarchart(classRanks,axistype = 0,
 maxmin = T,pcol = colors_border,
 pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),
 plty = 1, cglcol = "grey", cglty = 1,
 axislabcol = "black",cglwd = 0.8, vlcex = 0.5,
 title = "Prediction Model")

R> legend("topleft",legend = rownames(classRanks[-c(1,2),]),
 bty = "n",pch = 20,col = colors_in,
 text.col = colors_border,cex = 0.5,pt.cex = 2)

R> filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")

R> filterRanks <- c(pr$minMaxMetrics$BER[1],
 pr$minMaxMetrics$ACC[2],
 pr$minMaxMetrics$AUC[2],
 pr$minMaxMetrics$SEN[2],
 pr$minMaxMetrics$SPE[2],
 max(cp$jaccard),min(cp$featsize));

R> filterRanks <- rbind(filterRanks,
 c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

R> filterRanks <- as.data.frame(rbind(filterRanks,
 cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),
 cp$jaccard[filnames],cp$featsize[filnames])));

R> colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
R> filterRanks$BER <- -filterRanks$BER
R> filterRanks$SIZE <- -filterRanks$SIZE

R> colors_border = c(rgb(1.0,0.0,0.0,1.0),
 rgb(0.0,1.0,0.0,1.0),
 rgb(0.0,0.0,1.0,1.0),
 rgb(0.2,0.2,0.0,1.0),
 rgb(0.0,1.0,1.0,1.0),
 rgb(1.0,0.0,1.0,1.0),
 rgb(0.0,0.0,0.0,1.0))

R> colors_in = c(rgb(1.0,0.0,0.0,0.05),
 rgb(0.0,1.0,0.0,0.05),
 rgb(0.0,0.0,1.0,0.05),
 rgb(1.0,1.0,0.0,0.05),
 rgb(0.0,1.0,1.0,0.05),
 rgb(1.0,0.0,1.0,0.05),
 rgb(0.0,0.0,0.0,0.05))

R> fmsb::radarchart(filterRanks,axistype = 0,
 maxmin = T,pcol = colors_border,
 pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),
 plty = 1, cglcol = "grey", cglty = 1,
 axislabcol = "black",cglwd = 0.8, vlcex = 0.6,
 title = "Filter Method")

R> legend("topleft",legend = rownames(filterRanks[-c(1,2),]),
 bty = "n",pch = 20,col = colors_in,
 text.col = colors_border,cex = 0.5,pt.cex = 2)

R> par(mfrow = c(1,1))
R> par(op)

