
The Genetic Algorithm of GMSE1

GMSE: an R package for generalised management strategy evaluation (Supporting2

Information 1)3

A. Bradley Duthie13, Jeremy J. Cusack1, Isabel L. Jones1, Jeroen Minderman1, Erlend B.4

Nilsen2, Rocío A. Pozo1, O. Sarobidy Rakotonarivo1, Bram Van Moorter2, and Nils5

Bunnefeld16

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian7

Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk8

Extended introduction to the genetic algorithm applied in GMSE9

Game theory is the formal study of strategic interactions, and can therefore be applied to modelling stakeholder10

actions and addressing issues of cooperation and conflict in conservation (Lee, 2012; Kark et al., 2015; Adami11

et al., 2016; Tilman et al., 2016; Redpath et al., 2018). In game-theoretic models, agents adopt strategies to12

make decisions that maximise some type of payoff (e.g., utility, biological fitness). Agents are constrained in13

their decision-making, and realised pay-offs depend on decisions made by other agents. In simple models, it is14

often useful to assume that agents are perfectly rational decision-makers, then find optimal solutions for pay-off15

maximisation mathematically. But models that permit even moderately complex decision-making strategies16

or pay-off structures often include more possible strategies than are mathematically tractable (Hamblin, 2013).17

In these models, genetic algorithms, which mimic the process of natural selection (mutation, recombination,18

selection, reproduction), can find adaptive (i.e., practical, but not necessarily optimal) solutions for game19

strategies (e.g., Balmann and Happe, 2000; Tu et al., 2000; Hamblin, 2013).20

A genetic algorithm is called in the predefined GMSE manager and user models to simulate human decision21

making. As of GMSE version 0.4.0.3, this includes one independent call to the genetic algorithm for each22

decision-making agent in every GMSE time step. Therefore, one run of the genetic algorithm occurs to23

simulate the manager’s policy-setting decisions in each time step (unless otherwise defined through non-default24

manage_freq values greater than 1; e.g., see SI6), and one run occurs to simulate each individual user’s25

action decisions in each time step (unless otherwise defined through non-default group_think = TRUE, in26

which case one user makes decisions that all other users copy). Each run of the genetic algorithm mimics the27

evolution by natural selection of a population of potential manager or user strategies over multiple iterations,28

with the highest fitness strategy in the terminal iteration being selected as the one that the manager or user29

decides to implement. For clarity, as in the main text, we use ‘time step’ to refer to a full GMSE cycle (in30

which multiple genetic algorithms may be run) and ‘iteration’ to refer to a single, non-overlapping, generation31

of potential strategies that evolve within a genetic algorithm (see Figure 1 of the main text). Below, we32

explain the genetic algorithm in detail, as it occurs in GMSE v0.4.0.7 (future versions of GMSE might expand33

upon this framework, and we highlight some of these potential avenues for expansion). We first explain the34

key data structures used, then provide an overview of how a population of strategies is initialised, and the35

subsequent processes of crossover, mutation, cost constraint, fitness evaluation, tournament selection, and36

replacement. We then explain the fitness functions of managers and users in more detail.37

Key data structures used38

The focal data structure used for tracking manager and user decisions is a three dimensional array, which39

we will call ACTION (also returned as user_array by gmse_apply; see SI7). Rows of ACTION correspond to40

the entities affected by actions (resources, landscape properties, or potentially other agents), and columns41

correspond either to properties of the affected entities, or to the actions potentially allocated to them. Each42

1

mailto:alexander.duthie@stir.ac.uk

layer of ACTION corresponds to a unique agent, the first of which is the manager; additional layers correspond43

to users. Below shows an ACTION array for a GMSE model with one manager and two users.44

, , Manager_Actions45

##46

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull47

Resource -2 1 0 0 1000.00000 0 0 0 048

Landscape -1 1 0 0 0.00000 0 0 0 049

Res_cost 1 1 0 0 -20.40816 0 0 10 5850

U1_cost 2 1 0 0 0.00000 0 0 0 051

U2_cost 3 1 0 0 0.00000 0 0 0 052

Castrate Feed Help_off None53

Resource 0 0 0 054

Landscape 0 0 0 055

Res_cost 10 10 10 6256

U1_cost 0 0 0 057

U2_cost 0 0 0 058

##59

, , User_1_Actions60

##61

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull Castrate62

Resource -2 1 0 0 -1 0 0 0 17 063

Landscape -1 1 0 0 0 0 0 0 0 064

Res_cost 1 1 0 0 0 0 0 0 0 065

U1_cost 2 1 0 0 0 0 0 0 0 066

U2_cost 3 1 0 0 0 0 0 0 0 067

Feed Help_off None68

Resource 0 0 069

Landscape 0 0 070

Res_cost 0 0 071

U1_cost 0 0 072

U2_cost 0 0 073

##74

, , User_2_Actions75

##76

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull Castrate77

Resource -2 1 0 0 -1 0 0 0 17 078

Landscape -1 1 0 0 0 0 0 0 0 079

Res_cost 1 1 0 0 0 0 0 0 0 080

U1_cost 2 1 0 0 0 0 0 0 0 081

U2_cost 3 1 0 0 0 0 0 0 0 082

Feed Help_off None83

Resource 0 0 084

Landscape 0 0 185

Res_cost 0 0 086

U1_cost 0 0 087

U2_cost 0 0 088

The above array holds all of the information on manager and user actions. The first seven columns contain89

information about which entities are affected, and how they are affected. The first column Act identifies90

the type of action being performed; a value of -2 defines a direct action to a resource (e.g., culling of the91

resource), and a value of -1 defines direct action to a landscape (e.g., increasing yield). Positive values are92

currently only meaningful for Manager_Actions, where a value of 1 defines an action setting a uniform cost93

of users’ direct actions on resources (i.e., costs where Act = -2 for User_1_Actions and User_2_Actions).94

All other values for Act are meaningless in GMSE 0.4.0.3, but might be expanded upon in future versions95

2

to allow for modification of specific user costs enacted by managers (i.e., managers having different policies96

for different users) or other users (e.g., users increasing the costs of other users’ actions due to conflict or97

cooperation). We will therefore focus only on rows 1-3 of ACTION.98

Columns 2-4 refer to resource or landscape types, but only Type_1 = 1, Type_2 = 0, and Type_3 = 099

are allowed in predefined GMSE v0.4.0.7 manager and user sub-models (i.e., only one type of resource is100

permitted). Future versions might allow for different resource types (e.g., Type_1 might be used to designate101

species, and Type_2 and Type_3 could designate stage or sex). Column 5 Util. of ACTION defines the utility102

associated with the resource (where Act = -2) or landscape (where Act = -1). For managers, the target103

resource abundance set with the GMSE argument manage_target is found in row 1 (1000 in ACTION above);104

for users, the value in row 1 identifies whether resources are preferred to increase (if positive) or decrease (if105

negative). Values of column 5 in row 2 similarly identify whether landscape cell output is preferred by users106

to increase or decrease (managers do not currently have preferences for landscape output). Of special note is107

row 3 for Manager_Actions, which defines the current manager’s utility for resources; that is, the adjustment108

to resource abundance that the manager will attempt to make based on the manage_target and the most109

recent estimate of resource abundance produced by the observation model (in the case of the above, resource110

abundance is estimated at ca 1020.41, so the manager will set policy in attempt to change the population111

size by ca -20.41 resources). Column 6 U_land defines whether or not the utility attached to the resource or112

landscape output depends on it being on a landscape cell that is owned by the acting user. Related, column113

7 U_loc. defines whether or not actions can be performed only on a landscape cell that is owned by the114

acting user. Hence values of columns 6 and 7 are binary, and affected by the land_ownership argument115

in gmse and gmse_apply. Finally, columns 8-13 correspond to specific actions, either direct (where Act <116

0) or indirect by setting policy (for row 3 of Manager_Actions where Act = 1). The last column 13 None117

corresponds with no actions. See GMSE documentation for details about the effects of each action.118

Constraints on the values that elements in the ACTION array can take are defined by a COST array (also119

returned as manager_array by gmse_apply; see SI7) of dimensions identical to ACTION. Elements of COST120

define how many units from the manager_budget or user_budget are needed to perform a single action; a121

minimum_cost for actions is defined as an argument in GMSE (10 by default). All values in COST columns 1-7122

are set to 100001, one higher than the highest possible manager_budget or user_budget, so neither managers123

nor users can affect resource types or utilities. Columns 8-13 are also set to 10001, except where actions are124

allowed. Maximum values of 100000 are independent of any other parameter value specified in GMSE (e.g.,125

landscape dimensions). Below shows the COST array that corresponds to the above ACTION array.126

, , Manager_Costs127

##128

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull129

Resource 100001 100001 100001 100001 100001 100001 100001 100001 100001130

Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001131

Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 10132

U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001133

U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001134

Castrate Feed Help_off None135

Resource 100001 100001 100001 10136

Landscape 100001 100001 100001 10137

Res_cost 100001 100001 100001 10138

U1_cost 100001 100001 100001 100001139

U2_cost 100001 100001 100001 100001140

##141

, , User_1_Costs142

##143

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull144

Resource 100001 100001 100001 100001 100001 100001 100001 100001 58145

Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001146

Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001147

3

https://cran.r-project.org/web/packages/GMSE/GMSE.pdf

U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001148

U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001149

Castrate Feed Help_off None150

Resource 100001 100001 100001 10151

Landscape 100001 100001 100001 10152

Res_cost 100001 100001 100001 100001153

U1_cost 100001 100001 100001 100001154

U2_cost 100001 100001 100001 100001155

##156

, , User_2_Costs157

##158

Act Type_1 Type_2 Type_3 Util. U_land U_loc. Scare Cull159

Resource 100001 100001 100001 100001 100001 100001 100001 100001 58160

Landscape 100001 100001 100001 100001 100001 100001 100001 100001 100001161

Res_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001162

U1_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001163

U2_cost 100001 100001 100001 100001 100001 100001 100001 100001 100001164

Castrate Feed Help_off None165

Resource 100001 100001 100001 10166

Landscape 100001 100001 100001 10167

Res_cost 100001 100001 100001 100001168

U1_cost 100001 100001 100001 100001169

U2_cost 100001 100001 100001 100001170

Note that in default GMSE parameters, culling = TRUE, but all other actions are set to FALSE. Hence, the171

Cull column 9 is the only column besides column 13 None in which cost is less than 100001. Manager’s172

actions in ACTION directly affect the cost of users performing one of the five possible actions on resources173

(columns 8-12). This can be verified in ACTION where the manager has set the cost of culling to 58 (row 3),174

and the corresponding COST of resource culling is 58 for both users (row 1). The cost of the manager affecting175

the cost of user actions is always set to the minimum_cost; here the default 10 is used. This minimum_cost176

also defines cost values for None, in which the user or manager does nothing, as might occur if the manager177

wants to permit culling and therefore does not want to invest any of their manager_budget to increasing the178

cost of culling. Both ACTION and COST are updated in each time step unless manage_freq > 1, in which case179

COST and Manager_Actions in ACTION are updated at the frequency defined.180

General overview of key aspects of the genetic algorithm181

The genetic algorithm updates a single layer of the ACTION array, which defines the decisions of a single agent182

(either the manager or a user). The corresponding layer of the COST array remains unchanged, and serves183

only to ensure that ACTION values do not exceed manager_budget or user_budget for managers and users,184

respectively. The genetic algorithm proceeds by first initialising a large (but temporary) population of new185

ACTION layers. In each iteration, these layers crossover and mutate, generating variation in potential agent186

decisions; costs constrain this variation from exceeding a maximum budget, then the fitness of each layer is187

evaluated based on how the layer is predicted to affect resources or landscape output to which the agent has188

assigned some utility. A tournament is used to select high fitness layers, and these selected layers become the189

new iteration of layers; iterations continue until a minimum number of iterations (ga_mingen) have passed190

and a convergence criteria is satisfied such that the increase in mean fitness from the previous iteration is191

below the threshold converge_crit (Figure 1 below).192

4

Initialisation Crossover Mutation
Cost

constraint
Fitness

evaluation
Tournament

selection
Replacement

No
Termination?

Agent
decision Yes

Figure 1: Conceptual overview of the GMSE genetic algorithm

Initialisation193

At the start of each genetic algorithm, a population of size ga_popsize is initialised (hereafter the POPULATION194

array). This population is held in a 3D array of ga_popsize layers. Each layer includes an identical number195

of rows and columns as in ACTION, and one layer defines a single ‘individual’ in the population. The first seven196

columns of ACTION are replicated exactly for all individuals, and remain unchanged throughout the genetic197

algorithm thereby preserving the information about which entities are affected by actions in a given row. The198

remaining columns are either also replicated exactly as in ACTION (i.e., initialised to be the same decisions199

as in a previous time step), or randomly seeded with values given the constraints of manager_budget or200

user_budget (i.e., initialised to random decision making). The number of exact replicates initialised is set201

using ga_seedrep (if ga_seedrep ≥ ga_popsize, then all individuals are seeded as replicates). After the202

POPULATION of ga_popsize individuals is initialised, a loop simulating the adaptive evolution of POPULATION203

in non-overlapping iterations begins (see Figure 1 above).204

Crossover205

A single iteration of the genetic algorithm begins with a uniform crossover (Hamblin, 2013), by which actions206

of individuals in POPULATION are randomly swapped with some probability. To implement crossover, each207

individual selects a partner, then exchanges corresponding array elements affecting agent actions (columns208

8-13) with their partner at a fixed probability of ga_crossover.209

Mutation210

Following crossover, POPULATION array elements affecting agent actions (columns 8-13) mutate at a fixed211

probability of ga_mutation. For each array element, a random uniform number u ∈ [0, 1] is sampled. If u is212

greater than 1 - (0.5 * ga_mutation), then the value of the array element is increased by 1. If u is less213

than 0.5 * ga_mutation, then the value of the array element is decreased by 1; when this decrease results214

in a negative value, the mutated value is multiplied by -1 to be positive.215

Cost constraint216

Variation in manager or user actions generated by crossover and mutation might result in strategies that217

exceed manager_budget or user_budget, respectively. Left unchecked, this over-budgeting could lead to218

unnacceptably high fitness strategies, so strategies that are over budget following crossover and mutation219

need to be brought back within budgetary constraints. To do this, the genetic algorithm first checks to see if220

an individual in POPULATION is over budget. If so, then an action is randomly selected and removed, and221

5

budget use is reassessed; this random removal of an action and subsequent budget reassessment continues222

until the individual does not exceed their budget.223

Fitness evaluation224

Once all individuals in POPULATION are within budget, the fitness of each individual is assessed. Fitness225

assessment works differently for managers versus users because managers need to consider the consequences of226

their decisions on user actions, and how those actions will affect resource abundance. In contrast, user actions227

need to consider the consequences of their decisions on resource abundance or landscape output. Individual228

fitness is defined by a real number that increases with the degree to which an individual’s actions are predicted229

to increase entities of positive utility and decrease entities of negative utility (recall that managers and users230

assign resources or landscape output a utility value). Details for how fitness is calculated are provided below.231

Tournament selection232

After each individual in POPULATION is assigned a fitness, a tournament is used to select individuals. Tourna-233

ment selection is an especially flexible, non-parametric method that samples a subset of individuals from234

the total population and chooses the fittest of the subset for replacement (Hamblin, 2013). In GMSE,235

tournament selection proceeds by randomly sampling ga_sampleK individuals from the total POPULATION236

with replacement. The fitnesses of the subset of ga_sampleK individuals are compared, and the ga_chooseK237

individuals of highest fitness are retained (if ga_sampleK ≥ ga_chooseK, then all ga_sampleK are chosen, but238

this will prevent adaptive evolution and is therefore not recommended). Tournaments selecting ga_chooseK239

individuals from random subsets of size ga_sampleK continue until a total of ga_popsize individuals are240

retained.241

Replacement and termination242

Once a new set of ga_popsize individuals is retained through tournament selection, these individuals replace243

the previous POPULATION array. The genetic algorithm terminates if and only if a minimum number of244

iterations has passed (ga_mingen) and a convergence criteria (converge_crit) is satisfied. The convergence245

criteria checks the difference between the mean fitness of individuals in the new iteration versus the previous246

iteration; if this difference is greater than converge_crit, then termination does not occur (this prevents247

termination from occuring while fitness is still increasing, though it is usually fine to use the default GMSE248

converge_crit = 0.1 and ga_mingen = 40, which nearly always terminates the genetic algorithm after 40249

iterations having identified adaptive manager or user strategies). Due to the way in which fitness is calculated250

(see below), in practice, converge_crit currently applies only to users. If termination conditions are not251

satisfied, then the POPULATION of individuals begins a new iteration of crossover, mutation, cost constraint,252

fitness evaluation, and tournament selection (Figure 1).253

Detailed explanation of manager and user fitness functions254

Here we explain how the fitnesses of candidate manager and user strategies in a POPULATION array (see255

above) are calculated. We emphasise that the fitness functions used in GMSE v0.4.0.7 are intended to be256

heuristic tools for identifying reasonable manager and user behaviours. In practice, our fitness functions257

identify behaviours that are well-aligned with manager and user interests for harvesting or crop yield, but258

they are not intended to identify optimal decisions. This practical, metaheuristic approach is consistent with259

the objectives of management strategy evaluation (Bunnefeld et al., 2011), and is well-suited for the use260

of genetic algorithms (Hamblin, 2013). Luke (2009) describes the metaheuristic approach more generally261

(original emphasis retained):262

6

Metaheuristics are applied to I know it when I see it problems. They’re algorithms used to find263

answers to problems when you have very little to help you: you don’t know beforehand what264

the optimal solution looks like, you don’t know how to go about finding it in a principled way,265

you have very little heuristic information to go on, and brute-force search is out of the question266

because the space is too large. But if you’re given a candidate solution to your problem, you can267

test it and assess how good it is. That is, you know a good one when you see it.268

Given the complexity of adaptive management and socio-ecological interactions, the above conditions for269

applying the metaheuristic approach are clearly satisfied for manager and user decisions. With this in mind,270

we now explain the details of manager and user fitness functions; that is, how GMSE assesses whether or not271

a strategy is a good one.272

Fitness function for managers273

Individual fitness as calculated for managers (Fm
i) is affected by a manager’s utility for resources and274

the projected change in resource abundance caused by the individual’s policy (i.e., the contents of their275

POPULATION layer, specifically row 3; here again we use ‘individual’ to refer to one of ga_popsize discrete276

strategies in POPULATION, which may be selected and reproduce within the genetic algorithm). Manager utility277

for a resource (Um
res) is defined as the difference between manage_target and the estimation of population278

abundance as produced by the GMSE observation model (see “Key data structures used” above, and SI7279

for more information). Manager utility can therefore change in each GMSE time step as estimated resource280

abundance changes; when the estimated resource abundance is greater than manage_target, Um
res is negative,281

and when the estimated resource abundance is less than manage_target, Um
res is positive. To get the fitness282

of individuals, first the change in resource abundance predicted by the individual’s policy (∆Ai) is calculated,283

then the squared difference between ∆Ai and Um
res is calculated to obtain a utility deviation (Di) for the284

individual i,285

Di = (∆Ai − Um
res)2.

The value of Di increases as ∆Ai gets further from Um
res; i.e, Di is high when i sets a policy that is not286

predicted to get closer to the manage_target abundance. Fitness is defined by first finding the maximum Di287

value among all ga_popsize individuals (Dmax), then subtracting Di from this value for each individual,288

Fm
i = Dmax −Di.

We have explained how Um
res is calculated in the above section on key data structures. We now explain in289

more detail how individuals in the genetic algorithm calculate how their actions will affect ∆Ai.290

To predict change in resource abundance as a consequence of policy, an individual first needs to know the291

total number of actions of all types j (e.g., scaring, culling, etc.) performed by users in the previous time292

step (X•,j ; note that this value includes the increment manage_caution, with a default of manage_caution293

= 1, to ensure that managers do not naïvely assume that users will not perform an action just because they294

did not perform it in the previous time step), and the cost of performing each action (C•,j). This information295

is collected from ACTION and COST arrays. The individual i then needs to predict how their policy (i.e., the296

costs that they set for users to perform an action) will affect the new total number of each action j performed297

(Xi,j). To do this, the individual assumes that total user actions performed under their policy will change in298

proportion to that of the old policy, while also recognising that users have a maximum above which higher299

costs set by the manager will have no effect. Interested readers might wish to examine the short new_act300

function, which is summarised mathematically below; this function is called by the policy_to_counts301

function in the genetic algorithm source file.302

The manager first calculates how much total budget, as summed over all users, was devoted to an action by303

multiplying the old per action cost C•,j by the total number of actions performed, X•,j . The manager then304

divides this by the new cost Ci,j per action to calculate the new predicted number of actions,305

7

https://github.com/bradduthie/gmse/blob/master/src/game.c#L452
https://github.com/bradduthie/gmse/blob/master/src/game.c#L482
https://github.com/bradduthie/gmse/blob/dev/src/game.c

Xi,j = X•,j × C•,j

Ci,j
.

Note again that if Ci,j = C•,j , then the total number of new predicted actions j will remain unchanged. If306

Ci,j > C•,j , then the total number of new actions will decrease, and if Ci,j < C•,j , then the total number of307

new actions will increase.308

The predicted consequences of Xi,j for resource abundance differ for each possible action. For each action, no309

consequence is predicted if the policy is not allowed by a simulation of GMSE (e.g., culling = FALSE). For310

allowed actions, the parameter manager_sense (σ) modulates predicted consequences for abundance by some311

factor; this is useful because not all actions attempted by users will be realised, and a value of σ = 1 tends to312

slightly overestimate how much the actions attempted by users will actually translate to a change in resource313

abundance. In practice, the default σ = 0.9 performs well. Allowed actions are predicted by managers to314

have the following effects (again, we emphasise that whether or not these effects are realised will depend later315

on the user model, to which the manager – by design – does not have access):316

• scaring is assumed to be nonlethal and therefore have no effect on resource number (resources are317

moved to a random cell on the landscape, as sampled from a uniform distribution such that movement318

to any given cell is equally probable).319

• culling decreases resource number by σ.320

• castration decreases resource number by σλ, where λ is the GMSE argument lambda that defines the321

baseline population growth rate of resources.322

• feeding increases resource number by σλ.323

• help_offspring increases resource number by σ.324

Note that σ is included in all of the predicted actions above as a modulator for how strongly the manager325

predicts users will respond to a change in manager policy (e.g., a value of 0 would predict no reaction on the326

part of users to a change in policy, while a value of 1 would predict that an action would increase in exact327

proportion to its decrease in cost).328

The above effects cannot be altered directly in gmse or gmse_apply (though parameter values can of course be329

changed using manager_sense and lambda arguments), but future versions of GMSE might include different330

predicted effects to increase precision or allow for multiple resource types or different actions. The summation331

of Xi,j for all actions defines the predicted change in resource abundance caused by the policy of an individual332

i, ∆Ai.333

Fitness function for users334

The previous section described the fitness function applied when individual’s fitness was evaluated for335

managers; here we explain a separate fitness function that is applied when individuals are instead evaluated336

for users. Individual fitness as calculated for users (Fu
i) is affected by a user’s utility for resources (Uu

res) and337

landscape output (Uu
land), and the predicted change in each caused by the user’s actions (∆Ai and ∆Li for338

predicted change in resource abundance and summed values of the landscape cells owned by i, respectively).339

Individual fitness is defined for users below,340

Fu
i = ∆AiU

u
res + ∆LiU

u
land.

Note that Fu
i increases when ∆Ai and ∆Li are of the same sign as Uu

res and Uu
land, respectively. Further,341

in GMSE v0.4.0.7, only one term of the equation is nonzero. When land_ownership = FALSE (default,342

modelling users that harvest resources), Uu
res = −1 and Uu

land = 0, and when land_ownership = TRUE,343

Uu
res = 0 and Uu

land = 100 (modelling farmers trying to increase crop yield). Hence users only have a single344

objective of either decreasing resource abundance or increasing landscape output, though landscape output345

might be increased indirectly by decreasing resource abundance if resource_consume is greater than zero.346

8

User actions are predicted to affect resources in the following way:347

• scaring decreases resource number by 1.348

• culling decreases resource number by 1.349

• castration decreases resource number by λ.350

• feeding increases resource number by λ.351

• help_offspring increases resource number by 1.352

The number of each action performed is multiplied by its effect, and the sum of all these products is the353

predicted ∆Ai,354

∆Ai = (λ)Feeds+Helps− Scares− Culls− (λ)Castrations.

There are only two possible actions that users can take to directly affect landscape output, tending crops355

(tend_crops) and killing crops (kill_crops). The increase in landscape output is modulated by the356

parameter tend_crop_yld (φ). User actions are therefore predicted to have the following effects for one357

landscape cell:358

• tend_crops will increase landscape output by φ.359

• kill_crops will decrease landscape output by 1 (since the output of a cell is 1 by default, this action360

removes all output on a landscape cell).361

Actions on resources can also have indirect effects on ∆Li when resources consume output on the landscape;362

we define the value res_consume as r. The predicted ∆Li is then,363

∆Li = (φ)Tends−Kills− r∆Ai.

That is, the change in landscape output equals the increase in output from tending crops, minus the number364

of crops destroyed, minus the change in resource abundance times the effect that resource abundance has on365

landscape output (note that if user actions decrease resource abundance, then this last term will be positive,366

increasing landscape output).367

Choosing genetic algorithm parameter values368

Options for adjusting genetic algorithm parameter values in gmse and gmse_apply are shown below.369

GMSE argument Default Description
ga_popsize 100 The number of individuals in the population temporarily

simulated during a single run of the genetic algorithm.
ga_mingen 40 The minimum number of iterations that a genetic

algorithm will run before settling on an agent’s strategy.
ga_seedrep 20 The number of individuas in the population to be

initiaised with the current agent’s strategy (e.g., from a
previous time step in the broader GMSE simulation), as
opposed to being initialised with random strategies.

ga_sampleK 20 For the tournament step of the genetic agorithm, how
many strategies are selected at random from the larger
population (with replacement) to be included a the
tournament.

ga_chooseK 2 Four the tournament step of the genetic agorithm, how
many strategies are selected as winners of the tournament,
to be included in the next iteration.

ga_mutation 0.1 The mutation rate of any action in an agent’s strategy

9

GMSE argument Default Description
ga_crossover 0.1 The crossover rate of any action in an agent’s strategy;

crossover events occur with a different randomly selected
strategy in the population.

ga_converge_crit 0.1 The percent increase in strategy fitness from one iteration
to the next below which the convergence criteria is
satisfied. Iterations wil continue as long as fitness increase
is above this convergence criteria.

group_think FALSE Whether or not all users (i.e., not including the manager)
have identical strategies. If TRUE, then one genetic
algorithm will be run and applied to all users.

Given the heuristic goals of the genetic algorithm to mimic the goal-oriented behaviour of agents, default370

parameters are typically sufficient for agent decision making. Key parameters can be adjusted if more371

precision in decision making is desired, but these adjustments will come at a cost of simulation efficiency. For372

example, increasing ga_popsize or ga_mingen, or decreasing ga_converge_crit, might fine tune strategies373

more effectively, but this will cause the genetic algorithm to take longer every time that it is run, ultimately374

slowing down GMSE simulations. Alternativey, setting group_think = TRUE will greatly speed up GMSE375

simulations when many users are being simulated, but this comes at the cost of among-user variation in376

decision making. Overall, we recommend first using default values in the genetic algorithm before exploring377

how other parameter value options affect simulation dynamics; for a more general discussion about selecting378

parameter values in genetic algorithms, see Hamblin (2013).379

Future development of fitness functions380

The fitness functions defined above are useful heuristics for simulating manager and user decision-making in381

a way that produces realistic, I know it when I see it, strategies. Future versions of GMSE might improve382

upon these heuristics to generate more accurate or more realistic models of human decision making. Such383

improvements could incorporate additional information such as memory of actions from multiple past time384

steps, or a continually updated estimate for how actions are predicted to affect resource abundance or landscape385

output in a simulation (e.g., through a dynamic manager_sense). Alternatively, future improvements could386

usefully incorporate knowledge of human decision making collected from empirical observation of human387

behaviour during conservation conflicts. While such possibilities could be useful for future GMSE modelling,388

repeated simulations demonstrate the ability of the current GMSE genetic algorithm to find adaptive strategies389

for managers attempting to keep resources at target abundance, and users attempting to maximise their390

harvests or crop yields. It is therefore useful as a tool for modelling manager and user decisions in a generalised391

management strategy evaluation framework.392

References393

Adami, C., Schossau, J., and Hintze, A. (2016). Evolutionary game theory using agent-based methods.394

Physics of Life Reviews, 19:1–26.395

Balmann, A. and Happe, K. (2000). Applying parallel genetic algorithms to economic problems: The case of396

agricultural land markets. In IIFET Conference “Microbehavior and Macroresults”. Proceedings., Corvallis,397

Oregon, USA.398

Bunnefeld, N., Hoshino, E., and Milner-Gulland, E. J. (2011). Management strategy evaluation: A powerful399

tool for conservation? Trends in Ecology and Evolution, 26(9):441–447.400

Hamblin, S. (2013). On the practical usage of genetic algorithms in ecology and evolution. Methods in Ecology401

and Evolution, 4(2):184–194.402

10

Kark, S., Tulloch, A., Gordon, A., Mazor, T., Bunnefeld, N., and Levin, N. (2015). Cross-boundary403

collaboration: Key to the conservation puzzle. Current Opinion in Environmental Sustainability, 12:12–24.404

Lee, C. S. (2012). Multi-objective game-theory models for conflict analysis in reservoir watershed management.405

Chemosphere, 87(6):608–613.406

Luke, S. (2009). Essentials of Metaheuristics. Lulu. Available for free at407

http://cs.gmu.edu/∼sean/book/metaheuristics/.408

Redpath, S. M., Keane, A., Andrén, H., Baynham-Herd, Z., Bunnefeld, N., Duthie, A. B., Frank, J., Garcia,409

C. A., Månsson, J., Nilsson, L., Pollard, C. R. J., Rakotonarivo, O. S., Salk, C. F., and Travers, H. (2018).410

Games as Tools to Address Conservation Conflicts. Trends in Ecology and Evolution, 33(6):415–426.411

Tilman, A. R., Watson, J. R., and Levin, S. (2016). Maintaining cooperation in social-ecological systems:.412

Theoretical Ecology.413

Tu, M. T., Wolff, E., and Lamersdorf, W. (2000). Genetic algorithms for automated negotiations: a FSM-414

based application approach. Proceedings 11th International Workshop on Database and Expert Systems415

Applications, pages 1029–1033.416

11

	Extended introduction to the genetic algorithm applied in GMSE
	Key data structures used
	General overview of key aspects of the genetic algorithm
	Initialisation
	Crossover
	Mutation
	Cost constraint
	Fitness evaluation
	Tournament selection
	Replacement and termination

	Detailed explanation of manager and user fitness functions
	Fitness function for managers
	Fitness function for users
	Choosing genetic algorithm parameter values
	Future development of fitness functions

