Last updated on 2018-04-05 16:50:23 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1.4 | 4.66 | 57.10 | 61.76 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.1.4 | 4.60 | 51.70 | 56.30 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.1.4 | 124.51 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.1.4 | 116.44 | OK | |||
r-devel-windows-ix86+x86_64 | 1.1.4 | 14.00 | 89.00 | 103.00 | OK | |
r-devel-osx-x86_64 | 1.1.4 | OK | ||||
r-patched-linux-x86_64 | 1.1.4 | 3.86 | 62.88 | 66.74 | ERROR | |
r-patched-solaris-x86 | 1.1.4 | 192.60 | OK | |||
r-release-linux-x86_64 | 1.1.4 | 4.61 | 88.86 | 93.47 | OK | |
r-release-windows-ix86+x86_64 | 1.1.4 | 17.00 | 119.00 | 136.00 | OK | |
r-release-osx-x86_64 | 1.1.4 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.1.4 | 12.00 | 111.00 | 123.00 | OK |
Version: 1.1.4
Check: examples
Result: ERROR
Running examples in ‘hyperSMURF-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: hyperSMURF.corr.cv.parallel
> ### Title: hyperSMURF cross-validation with embedded correlation-based
> ### feature selection
> ### Aliases: hyperSMURF.corr.cv.parallel
>
> ### ** Examples
>
> d <- imbalanced.data.generator(n.pos=10, n.neg=160, n.features=7,
+ n.inf.features=1, sd=0.3, seed=1);
> if (Sys.info()['sysname']!="Windows")
+ res<-hyperSMURF.corr.cv.parallel (d$data, d$labels, kk=2, n.part=2, fp=1, ratio=1, k=1,
+ ntree=5, mtry=2, n.feature=3, seed = 1, fold.partition=NULL, ncores=2, file="");
Creating new folds
Starting preparation data for Fold 1 ...
Starting feature selection on Fold 1 ...
Selected features :
1 5 4
Starting training on Fold 1 ...
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Training of ensemble 1 started
Warning in rm(data.train) : object 'data.train' not found
Training of ensemble 2 started
Warning in rm(data.train) : object 'data.train' not found
Error in sendMaster(try(lapply(X = S, FUN = FUN, ...), silent = TRUE)) :
write error, closing pipe to the master
Calls: hyperSMURF.corr.cv.parallel ... <Anonymous> -> mclapply -> lapply -> FUN -> sendMaster
Starting test on Fold 1 ...
Error in { :
task 1 failed - "no applicable method for 'predict' applied to an object of class "NULL""
Calls: hyperSMURF.corr.cv.parallel -> hyperSMURF.test.parallel -> %dopar% -> <Anonymous>
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.1.4
Check: examples
Result: ERROR
Running examples in ‘hyperSMURF-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: hyperSMURF.corr.cv.parallel
> ### Title: hyperSMURF cross-validation with embedded correlation-based
> ### feature selection
> ### Aliases: hyperSMURF.corr.cv.parallel
>
> ### ** Examples
>
> d <- imbalanced.data.generator(n.pos=10, n.neg=160, n.features=7,
+ n.inf.features=1, sd=0.3, seed=1);
> if (Sys.info()['sysname']!="Windows")
+ res<-hyperSMURF.corr.cv.parallel (d$data, d$labels, kk=2, n.part=2, fp=1, ratio=1, k=1,
+ ntree=5, mtry=2, n.feature=3, seed = 1, fold.partition=NULL, ncores=2, file="");
Creating new folds
Starting preparation data for Fold 1 ...
Starting feature selection on Fold 1 ...
Selected features :
1 5 4
Starting training on Fold 1 ...
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Training of ensemble 2 started
Warning in rm(data.train) : object 'data.train' not found
Training of ensemble 1 started
Warning in rm(data.train) : object 'data.train' not found
Error in sendMaster(try(lapply(X = S, FUN = FUN, ...), silent = TRUE)) :
write error, closing pipe to the master
Calls: hyperSMURF.corr.cv.parallel ... <Anonymous> -> mclapply -> lapply -> FUN -> sendMaster
Starting test on Fold 1 ...
Error in { :
task 1 failed - "no applicable method for 'predict' applied to an object of class "NULL""
Calls: hyperSMURF.corr.cv.parallel -> hyperSMURF.test.parallel -> %dopar% -> <Anonymous>
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.1.4
Check: examples
Result: ERROR
Running examples in ‘hyperSMURF-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: hyperSMURF.corr.cv.parallel
> ### Title: hyperSMURF cross-validation with embedded correlation-based
> ### feature selection
> ### Aliases: hyperSMURF.corr.cv.parallel
>
> ### ** Examples
>
> d <- imbalanced.data.generator(n.pos=10, n.neg=160, n.features=7,
+ n.inf.features=1, sd=0.3, seed=1);
> if (Sys.info()['sysname']!="Windows")
+ res<-hyperSMURF.corr.cv.parallel (d$data, d$labels, kk=2, n.part=2, fp=1, ratio=1, k=1,
+ ntree=5, mtry=2, n.feature=3, seed = 1, fold.partition=NULL, ncores=2, file="");
Creating new folds
Starting preparation data for Fold 1 ...
Starting feature selection on Fold 1 ...
Selected features :
1 5 4
Starting training on Fold 1 ...
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Training of ensemble 1 started
Warning in rm(data.train) : object 'data.train' not found
Training of ensemble 2 started
Warning in rm(data.train) : object 'data.train' not found
Starting test on Fold 1 ...
Error in { :
task 1 failed - "no applicable method for 'predict' applied to an object of class "NULL""
Calls: hyperSMURF.corr.cv.parallel -> hyperSMURF.test.parallel -> %dopar% -> <Anonymous>
Execution halted
Flavor: r-patched-linux-x86_64