CRAN Package Check Results for Package userfriendlyscience

Last updated on 2018-09-23 07:48:27 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.7.1 27.03 265.13 292.16 ERROR
r-devel-linux-x86_64-debian-gcc 0.7.1 25.65 204.52 230.17 ERROR
r-devel-linux-x86_64-fedora-clang 0.7.1 343.05 ERROR
r-devel-linux-x86_64-fedora-gcc 0.7.1 334.31 ERROR
r-devel-windows-ix86+x86_64 0.7.1 65.00 339.00 404.00 ERROR
r-patched-linux-x86_64 0.7.1 27.94 241.69 269.63 OK
r-patched-solaris-x86 0.7.1 3.80 ERROR
r-release-linux-x86_64 0.7.1 29.95 241.41 271.36 OK
r-release-windows-ix86+x86_64 0.7.1 49.00 329.00 378.00 OK
r-release-osx-x86_64 0.7.1 OK
r-oldrel-windows-ix86+x86_64 0.7.1 26.00 365.00 391.00 OK
r-oldrel-osx-x86_64 0.7.1 OK

Check Details

Version: 0.7.1
Check: examples
Result: ERROR
    Running examples in ‘userfriendlyscience-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: userfriendlyscience-package
    > ### Title: Userfriendlyscience (UFS)
    > ### Aliases: userfriendlyscience-package userfriendlyscience ufs UFS
    > ### Keywords: package
    >
    > ### ** Examples
    >
    > ### Create simple dataset
    > dat <- PlantGrowth[1:20,];
    > ### Remove third level from group factor
    > dat$group <- factor(dat$group);
    >
    > ### Examine normality
    > normalityAssessment(dat$weight);
    ## SAMPLE DISTRIBUTION ###
    Sample distribution of 20 observations
    Mean=4.85, median=4.75, SD=0.7, and therefore SE of the mean = 0.16
    
    Skewness (G1): 0.23 (se = 0.51, confidence interval = [-0.77, 1.23], z = 0.45, p = .65)
    Kurtosis (G2): -0.57 (se = 0.99, confidence interval = [-2.5, 1.4], z = -0.57, p = .57)
    Hartigans' Dip Test: 0.06, p = .73
    
    Shapiro-Wilk: p=0.82 (W=0.97; based on 20 observations)
    Anderson-Darling: p=0.87 (A=0.2)
    Kolmogorov-Smirnof: p=0 (D=1)
    
    ## SAMPLING DISTRIBUTION FOR THE MEAN ###
    Sampling distribution of 10000 samples of n=20
    Mean=4.85, median=4.84, SD=0.15
    
    Skewness (G1): 0.05 (se = 0.51, confidence interval = [-0.95, 1.06], z = 0.1, p = .92)
    Kurtosis (G2): 0.05 (se = 0.99, confidence interval = [-1.9, 2.0], z = 0.048, p = .96)
    Hartigans' Dip Test: 0, p = .99
    
    Shapiro-Wilk: p=0.38 (W=1; NOTE: based on the first 5000 of 10000 observations)
    Anderson-Darling: p=0.26 (A=0.46)
    Kolmogorov-Smirnof: p=0 (D=1)>
    > ### Compute mean difference and show it
    > meanDiff(dat$weight ~ dat$group, plot=TRUE);
    Input variables:
    
     group (grouping variable)
     weight (dependent variable)
     Mean 1 (ctrl) = 5.03, sd = 0.58, n = 10
     Mean 2 (trt1)= 4.66, sd = 0.79, n = 10
    
    Independent samples t-test (tested for equal variances, p = .372, so equal variances)
     (pooled standard deviation used, 0.7)
    
    95% confidence intervals:
     Absolute mean difference: [-0.28, 1.03] (Absolute mean difference: 0.37)
     Cohen's d for difference: [-0.36, 1.42] (Cohen's d point estimate: 0.53)
     Hedges g for difference: [-0.34, 1.36] (Hedges g point estimate: 0.51)
    
    Achieved power for d=0.53: 0.2038 (for small: 0.0708; medium: 0.1851; large: 0.3951)
    
    (secondary information (NHST): t[18] = 1.19, p = .249)
    >
    > ### Show the t-test
    > didacticPlot(meanDiff(dat$weight ~ dat$group)$t,
    + statistic='t',
    + df1=meanDiff(dat$weight ~ dat$group)$df);
    Warning: `panel.margin` is deprecated. Please use `panel.spacing` property instead
    Warning: Ignoring unknown aesthetics: x.lo, x.hi
    Warning: Ignoring unknown aesthetics: x.lo, x.hi
    >
    > ### Load data from simulated dataset testRetestSimData (which
    > ### satisfies essential tau-equivalence).
    > data(testRetestSimData);
    >
    > ### Select some items in the first measurement
    > exampleData <- testRetestSimData[2:6];
    >
    > ## Not run:
    > ##D ### Show reliabilities
    > ##D scaleStructure(dat=exampleData, ci=FALSE,
    > ##D omega.psych=FALSE, poly=FALSE);
    > ## End(Not run)
    >
    > ### Create a dichotomous variable
    > exampleData$group <- cut(exampleData$t0_item2, 2);
    >
    > ### Show item distributions and means
    > meansDiamondPlot(exampleData);
    Warning in mean.default(vector) :
     argument is not numeric or logical: returning NA
    Error in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm = na.rm) :
     Calling var(x) on a factor x is defunct.
     Use something like 'all(duplicated(x)[-1L])' to test for a constant vector.
    Calls: meansDiamondPlot ... sapply -> lapply -> FUN -> meanConfInt -> sd -> var
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.7.1
Check: examples
Result: ERROR
    Running examples in ‘userfriendlyscience-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: userfriendlyscience-package
    > ### Title: Userfriendlyscience (UFS)
    > ### Aliases: userfriendlyscience-package userfriendlyscience ufs UFS
    > ### Keywords: package
    >
    > ### ** Examples
    >
    > ### Create simple dataset
    > dat <- PlantGrowth[1:20,];
    > ### Remove third level from group factor
    > dat$group <- factor(dat$group);
    >
    > ### Examine normality
    > normalityAssessment(dat$weight);
    ## SAMPLE DISTRIBUTION ###
    Sample distribution of 20 observations
    Mean=4.85, median=4.75, SD=0.7, and therefore SE of the mean = 0.16
    
    Skewness (G1): 0.23 (se = 0.51, confidence interval = [-0.77, 1.23], z = 0.45, p = .65)
    Kurtosis (G2): -0.57 (se = 0.99, confidence interval = [-2.5, 1.4], z = -0.57, p = .57)
    Hartigans' Dip Test: 0.06, p = .73
    
    Shapiro-Wilk: p=0.82 (W=0.97; based on 20 observations)
    Anderson-Darling: p=0.87 (A=0.2)
    Kolmogorov-Smirnof: p=0 (D=1)
    
    ## SAMPLING DISTRIBUTION FOR THE MEAN ###
    Sampling distribution of 10000 samples of n=20
    Mean=4.85, median=4.84, SD=0.15
    
    Skewness (G1): 0.05 (se = 0.51, confidence interval = [-0.95, 1.06], z = 0.1, p = .92)
    Kurtosis (G2): 0.05 (se = 0.99, confidence interval = [-1.9, 2.0], z = 0.048, p = .96)
    Hartigans' Dip Test: 0, p = .99
    
    Shapiro-Wilk: p=0.38 (W=1; NOTE: based on the first 5000 of 10000 observations)
    Anderson-Darling: p=0.26 (A=0.46)
    Kolmogorov-Smirnof: p=0 (D=1)>
    > ### Compute mean difference and show it
    > meanDiff(dat$weight ~ dat$group, plot=TRUE);
    Input variables:
    
     group (grouping variable)
     weight (dependent variable)
     Mean 1 (ctrl) = 5.03, sd = 0.58, n = 10
     Mean 2 (trt1)= 4.66, sd = 0.79, n = 10
    
    Independent samples t-test (tested for equal variances, p = .372, so equal variances)
     (pooled standard deviation used, 0.7)
    
    95% confidence intervals:
     Absolute mean difference: [-0.28, 1.03] (Absolute mean difference: 0.37)
     Cohen's d for difference: [-0.36, 1.42] (Cohen's d point estimate: 0.53)
     Hedges g for difference: [-0.34, 1.36] (Hedges g point estimate: 0.51)
    
    Achieved power for d=0.53: 0.2038 (for small: 0.0708; medium: 0.1851; large: 0.3951)
    
    (secondary information (NHST): t[18] = 1.19, p = .249)
    >
    > ### Show the t-test
    > didacticPlot(meanDiff(dat$weight ~ dat$group)$t,
    + statistic='t',
    + df1=meanDiff(dat$weight ~ dat$group)$df);
    Warning: `panel.margin` is deprecated. Please use `panel.spacing` property instead
    Warning: Ignoring unknown aesthetics: x.lo, x.hi
    Warning: Ignoring unknown aesthetics: x.lo, x.hi
    >
    > ### Load data from simulated dataset testRetestSimData (which
    > ### satisfies essential tau-equivalence).
    > data(testRetestSimData);
    >
    > ### Select some items in the first measurement
    > exampleData <- testRetestSimData[2:6];
    >
    > ## Not run:
    > ##D ### Show reliabilities
    > ##D scaleStructure(dat=exampleData, ci=FALSE,
    > ##D omega.psych=FALSE, poly=FALSE);
    > ## End(Not run)
    >
    > ### Create a dichotomous variable
    > exampleData$group <- cut(exampleData$t0_item2, 2);
    >
    > ### Show item distributions and means
    > meansDiamondPlot(exampleData);
    Warning in mean.default(vector) :
     argument is not numeric or logical: returning NA
    Error in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm = na.rm) :
     Calling var(x) on a factor x is defunct.
     Use something like 'all(duplicated(x)[-1L])' to test for a constant vector.
    Calls: meansDiamondPlot ... sapply -> lapply -> FUN -> meanConfInt -> sd -> var
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64

Version: 0.7.1
Check: package dependencies
Result: ERROR
    Package required but not available: ‘MBESS’
    
    See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’
    manual.
Flavor: r-patched-solaris-x86