CRAN Package Check Results for Package ck37r

Last updated on 2019-11-02 07:49:00 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.0 12.06 124.03 136.09 ERROR
r-devel-linux-x86_64-debian-gcc 1.0.0 11.31 93.61 104.92 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.0 158.90 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.0 155.42 ERROR
r-devel-windows-ix86+x86_64 1.0.0 46.00 131.00 177.00 ERROR
r-patched-linux-x86_64 1.0.0 11.87 114.34 126.21 ERROR
r-patched-solaris-x86 1.0.0 239.60 ERROR
r-release-linux-x86_64 1.0.0 13.48 116.34 129.82 ERROR
r-release-windows-ix86+x86_64 1.0.0 26.00 186.00 212.00 ERROR
r-release-osx-x86_64 1.0.0 OK
r-oldrel-windows-ix86+x86_64 1.0.0 29.00 225.00 254.00 ERROR
r-oldrel-osx-x86_64 1.0.0 OK

Check Details

Version: 1.0.0
Check: tests
Result: ERROR
     Running 'testthat.R' [15s/16s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in install.packages(pkgs[!result], ...) :
     unable to install packages
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.174 0.000 0.175
    
     $train
     user system elapsed
     0.137 0.000 0.137
    
     $predict
     user system elapsed
     0.032 0.000 0.033
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.151 0.004 0.170
    
     $train
     user system elapsed
     0.110 0.004 0.130
    
     $predict
     user system elapsed
     0.035 0.000 0.034
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     -- 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     -- 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.165 0.000 0.166
    
     $train
     user system elapsed
     0.130 0.000 0.132
    
     $predict
     user system elapsed
     0.029 0.000 0.029
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.140 0.036 0.176
    
     $train
     user system elapsed
     0.110 0.032 0.142
    
     $predict
     user system elapsed
     0.025 0.004 0.029
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     == testthat results ===========================================================
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [11s/14s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in install.packages(pkgs[!result], ...) :
     unable to install packages
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.118 0.003 0.160
    
     $train
     user system elapsed
     0.094 0.000 0.133
    
     $predict
     user system elapsed
     0.019 0.003 0.023
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.112 0.001 0.113
    
     $train
     user system elapsed
     0.082 0.001 0.083
    
     $predict
     user system elapsed
     0.025 0.000 0.026
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.110 0.000 0.148
    
     $train
     user system elapsed
     0.088 0.000 0.125
    
     $predict
     user system elapsed
     0.018 0.000 0.019
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.103 0.000 0.104
    
     $train
     user system elapsed
     0.080 0.000 0.081
    
     $predict
     user system elapsed
     0.019 0.000 0.018
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [17s/18s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, type) :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 12
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 12
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 12
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.208 0.006 0.216
    
     $train
     user system elapsed
     0.158 0.005 0.164
    
     $predict
     user system elapsed
     0.043 0.001 0.046
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.179 0.000 0.181
    
     $train
     user system elapsed
     0.140 0.000 0.143
    
     $predict
     user system elapsed
     0.032 0.000 0.032
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.195 0.000 0.260
    
     $train
     user system elapsed
     0.156 0.000 0.220
    
     $predict
     user system elapsed
     0.033 0.000 0.034
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.184 0.006 0.191
    
     $train
     user system elapsed
     0.144 0.005 0.150
    
     $predict
     user system elapsed
     0.033 0.001 0.035
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [15s/17s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, type) :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 12
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 12
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 12
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.196 0.005 0.210
    
     $train
     user system elapsed
     0.151 0.003 0.160
    
     $predict
     user system elapsed
     0.039 0.001 0.042
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.170 0.000 0.248
    
     $train
     user system elapsed
     0.134 0.000 0.208
    
     $predict
     user system elapsed
     0.029 0.000 0.033
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.186 0.000 0.191
    
     $train
     user system elapsed
     0.148 0.000 0.151
    
     $predict
     user system elapsed
     0.032 0.000 0.032
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.164 0.000 0.167
    
     $train
     user system elapsed
     0.128 0.000 0.131
    
     $predict
     user system elapsed
     0.029 0.000 0.029
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0.0
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: 'doMC'
Flavors: r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 1.0.0
Check: tests
Result: ERROR
     Running 'testthat.R' [17s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, "source") :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.27 0.00 0.26
    
     $train
     user system elapsed
     0.18 0.00 0.18
    
     $predict
     user system elapsed
     0.05 0.00 0.05
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.18 0.02 0.18
    
     $train
     user system elapsed
     0.13 0.02 0.14
    
     $predict
     user system elapsed
     0.05 0.00 0.04
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     -- 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     -- 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.22 0.00 0.22
    
     $train
     user system elapsed
     0.17 0.00 0.17
    
     $predict
     user system elapsed
     0.03 0.00 0.03
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.2 0.0 0.2
    
     $train
     user system elapsed
     0.14 0.00 0.14
    
     $predict
     user system elapsed
     0.05 0.00 0.05
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     == testthat results ===========================================================
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-windows-ix86+x86_64

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [13s/14s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in install.packages(pkgs[!result], ...) :
     unable to install packages
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.161 0.004 0.182
    
     $train
     user system elapsed
     0.127 0.004 0.131
    
     $predict
     user system elapsed
     0.028 0.000 0.028
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.147 0.000 0.160
    
     $train
     user system elapsed
     0.108 0.000 0.121
    
     $predict
     user system elapsed
     0.033 0.000 0.033
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.165 0.000 0.165
    
     $train
     user system elapsed
     0.124 0.000 0.123
    
     $predict
     user system elapsed
     0.036 0.000 0.036
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.146 0.001 0.148
    
     $train
     user system elapsed
     0.115 0.000 0.117
    
     $predict
     user system elapsed
     0.026 0.000 0.026
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-patched-linux-x86_64

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [26s/32s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, type) :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 1
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 1
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 1
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.420 0.003 0.435
    
     $train
     user system elapsed
     0.331 0.002 0.344
    
     $predict
     user system elapsed
     0.073 0.000 0.075
    
    
     Q object size: 3.1 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.369 0.002 0.395
    
     $train
     user system elapsed
     0.287 0.002 0.313
    
     $predict
     user system elapsed
     0.068 0.000 0.068
    
    
     g object size: 3 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.415 0.001 0.422
    
     $train
     user system elapsed
     0.304 0.001 0.310
    
     $predict
     user system elapsed
     0.097 0.000 0.098
    
    
     Q object size: 3.1 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.365 0.003 0.381
    
     $train
     user system elapsed
     0.283 0.003 0.299
    
     $predict
     user system elapsed
     0.067 0.000 0.068
    
    
     g object size: 3 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.2 Mb
     0.5 Mb
     6.6 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-patched-solaris-x86

Version: 1.0.0
Check: tests
Result: ERROR
     Running ‘testthat.R’ [13s/14s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in install.packages(pkgs[!result], ...) :
     unable to install packages
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.157 0.000 0.179
    
     $train
     user system elapsed
     0.125 0.000 0.146
    
     $predict
     user system elapsed
     0.027 0.000 0.028
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.142 0.000 0.142
    
     $train
     user system elapsed
     0.104 0.000 0.105
    
     $predict
     user system elapsed
     0.032 0.000 0.032
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     ── 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     ── 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.149 0.000 0.150
    
     $train
     user system elapsed
     0.109 0.000 0.110
    
     $predict
     user system elapsed
     0.035 0.000 0.035
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.137 0.001 0.138
    
     $train
     user system elapsed
     0.107 0.001 0.108
    
     $predict
     user system elapsed
     0.025 0.000 0.025
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-release-linux-x86_64

Version: 1.0.0
Check: tests
Result: ERROR
     Running 'testthat.R' [18s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, "source") :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.24 0.01 0.25
    
     $train
     user system elapsed
     0.17 0.01 0.18
    
     $predict
     user system elapsed
     0.05 0.00 0.05
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.19 0.00 0.19
    
     $train
     user system elapsed
     0.16 0.00 0.16
    
     $predict
     user system elapsed
     0.03 0.00 0.03
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     -- 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00475
    
     -- 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.64e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386825 0.008542372
     SL.glm_All 0.1761028 0.991457628
    
     Q init times:
     $everything
     user system elapsed
     0.24 0.00 0.20
    
     $train
     user system elapsed
     0.15 0.00 0.17
    
     $predict
     user system elapsed
     0.05 0.00 0.03
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2336885 0.0004017322
     SL.glm_All 0.1268937 0.9995982678
    
     g times:
     $everything
     user system elapsed
     0.21 0.00 0.20
    
     $train
     user system elapsed
     0.16 0.00 0.15
    
     $predict
     user system elapsed
     0.03 0.00 0.03
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     == testthat results ===========================================================
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 3 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-release-windows-ix86+x86_64

Version: 1.0.0
Check: tests
Result: ERROR
     Running 'testthat.R' [20s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(testthat)
     > library(ck37r)
     >
     > test_check("ck37r")
     Running SL via snow
     Found 0 text files in "inst/extdata" to import.
     Found 0 text files in "inst/extdata../" to import.
    
    
     These packages need to be installed: ck37_blah123
     install.packages(c("ck37_blah123"))
     Auto-installing from repository: @CRAN@
     Error in contrib.url(repos, "source") :
     trying to use CRAN without setting a mirror
     Removing 3 indicators that are constant.
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     Local physical cores detected: 16
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     'data.frame': 5000 obs. of 6 variables:
     $ W1: int 1 1 0 1 1 0 0 1 0 0 ...
     $ W2: int 1 1 1 1 1 1 1 0 0 1 ...
     $ W3: num 0.7887 0.9758 0.951 0.6037 0.0303 ...
     $ W4: int 3 2 1 3 2 1 2 1 2 0 ...
     $ A : int 0 0 0 1 0 0 0 1 1 1 ...
     $ Y : int 1 1 1 1 1 0 1 1 0 0 ...
     Local physical cores detected: 16
     Restricting usage to 2 cores.
     Our BLAS is setup for 1 threads and OMP is 1 threads.
     doPar backend registered: doSEQ
     Workers enabled: 1
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386647 0.008052134
     SL.glm_All 0.1760507 0.991947866
    
     Q init times:
     $everything
     user system elapsed
     0.19 0.01 0.25
    
     $train
     user system elapsed
     0.14 0.01 0.19
    
     $predict
     user system elapsed
     0.03 0.00 0.03
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2337076 0.00026338
     SL.glm_All 0.1269375 0.99973662
    
     g times:
     $everything
     user system elapsed
     0.19 0.00 0.19
    
     $train
     user system elapsed
     0.14 0.00 0.14
    
     $predict
     user system elapsed
     0.03 0.00 0.04
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     -- 1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$psi - result$estimates$ATE$psi) is not less than .Machine$double.eps * 2. Difference: 0.00561
    
     -- 2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parall
     abs(tmle$estimates$ATE$var.psi - result$estimates$ATE$var.psi) is not less than .Machine$double.eps * 2. Difference: 1.66e-05
    
     X dataframe object size: 0.1 MB
     Stacked df dimensions: 10,000 5
     Stacked dataframe object size: 0.3 MB
     Estimating Q using custom SuperLearner.
     Q init fit:
    
    
     Call:
     sl_fn(Y = Y, X = X, family = family, SL.library = Q.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2386647 0.008052134
     SL.glm_All 0.1760507 0.991947866
    
     Q init times:
     $everything
     user system elapsed
     0.22 0.00 0.22
    
     $train
     user system elapsed
     0.18 0.00 0.19
    
     $predict
     user system elapsed
     0.04 0.00 0.03
    
    
     Q object size: 4.3 Mb
     Estimating g using custom SuperLearner.
     g fit:
    
    
     Call:
     sl_fn(Y = A, X = W, family = "binomial", SL.library = g.SL.library, id = id,
     verbose = verbose, cvControl = list(V = V))
    
    
     Risk Coef
     SL.mean_All 0.2337076 0.00026338
     SL.glm_All 0.1269375 0.99973662
    
     g times:
     $everything
     user system elapsed
     0.21 0.00 0.22
    
     $train
     user system elapsed
     0.17 0.00 0.17
    
     $predict
     user system elapsed
     0.04 0.00 0.05
    
    
     g object size: 4.2 Mb
     Passing results to tmle.
     Estimating missingness mechanism
     1.4 Mb
     0.5 Mb
     9.1 Mb
     == testthat results ===========================================================
     [ OK: 0 | SKIPPED: 0 | WARNINGS: 2 | FAILED: 2 ]
     1. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#42)
     2. Failure: Confirm replicability compared to tmle::tmle() (@test-tmle_parallel.R#45)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-oldrel-windows-ix86+x86_64