Last updated on 2019-11-25 05:47:38 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0.2 | 2.11 | 26.20 | 28.31 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.0.2 | 1.73 | 21.15 | 22.88 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.0.2 | 35.28 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.0.2 | 35.39 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.0.2 | 8.00 | 50.00 | 58.00 | ERROR | |
r-devel-windows-ix86+x86_64-gcc8 | 1.0.2 | 5.00 | 37.00 | 42.00 | ERROR | |
r-patched-linux-x86_64 | 1.0.2 | 1.71 | 25.07 | 26.78 | ERROR | |
r-patched-solaris-x86 | 1.0.2 | 53.90 | ERROR | |||
r-release-linux-x86_64 | 1.0.2 | 1.80 | 26.77 | 28.57 | ERROR | |
r-release-windows-ix86+x86_64 | 1.0.2 | 7.00 | 38.00 | 45.00 | ERROR | |
r-release-osx-x86_64 | 1.0.2 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.0.2 | 2.00 | 77.00 | 79.00 | OK | |
r-oldrel-osx-x86_64 | 1.0.2 | OK |
Version: 1.0.2
Check: dependencies in R code
Result: NOTE
Missing or unexported objects:
'glmnet::coef.cv.glmnet' 'glmnet::predict.cv.glmnet'
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64
Version: 1.0.2
Check: examples
Result: ERROR
Running examples in 'TANDEM-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: coef.tandem
> ### Title: Returns the regression coefficients from a TANDEM fit
> ### Aliases: coef.tandem
>
> ### ** Examples
>
> # unpack example data
> x = example_data$x
> y = example_data$y
> upstream = example_data$upstream
>
> # fit a tandem model, determine the coefficients and create a prediction
> fit = tandem(x, y, upstream, alpha=0.5)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
TANDEM
--- call from context ---
tandem(x, y, upstream, alpha = 0.5)
--- call from argument ---
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer")) stop("x needs to be a numeric matrix")
--- R stacktrace ---
where 1: tandem(x, y, upstream, alpha = 0.5)
--- value of length: 2 type: logical ---
[1] FALSE TRUE
--- function from context ---
function (x, y, upstream, family = "gaussian", nfolds = 10, foldid = NULL,
lambda_upstream = "lambda.1se", lambda_downstream = "lambda.1se",
...)
{
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer"))
stop("x needs to be a numeric matrix")
if (!class(y) %in% c("numeric", "integer"))
stop("y needs to be a numeric vector")
if (class(upstream) != "logical")
stop("upstream needs to a logical index vector, integer index vectors are currently not supported")
if (nrow(x) != length(y))
stop("Number of samples in x and y don't match")
if (ncol(x) != length(upstream))
stop("Number of features in x and upstream don't match")
if (family != "gaussian")
stop("Currently only the glmnet family='guassian' is supported")
if (any(is.na(x)))
stop("NAs in x are not allowed")
if (any(is.na(y)))
stop("NAs in y are not allowed")
if (nrow(x) < nfolds)
stop("nfolds should be smaller than the number of samples")
if (!lambda_upstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_upstream should be either lambda.1se or lambda.min")
if (!lambda_downstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_downstream should be either lambda.1se or lambda.min")
if (is.null(foldid)) {
n = length(y)
foldid = ceiling(sample(1:n)/n * nfolds)
}
fit1 = glmnet::cv.glmnet(x[, upstream], y, foldid = foldid,
...)
residuals = y - glmnet::predict.cv.glmnet(fit1, newx = x[,
upstream], s = lambda_upstream)
fit2 = glmnet::cv.glmnet(x[, !upstream], residuals, foldid = foldid,
...)
beta0 = glmnet::coef.cv.glmnet(fit1, s = lambda_upstream)[1] +
glmnet::coef.cv.glmnet(fit2, s = lambda_downstream)[1]
beta = matrix(NA, ncol(x), 1)
beta[upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit1,
s = lambda_upstream)[-1, , drop = F])
beta[!upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit2,
s = lambda_downstream)[-1, , drop = F])
rownames(beta) = colnames(x)
beta = Matrix::Matrix(beta)
fit = list(beta0 = beta0, beta = beta)
class(fit) = "tandem"
return(fit)
}
<bytecode: 0x194fe60>
<environment: namespace:TANDEM>
--- function search by body ---
Function tandem in namespace TANDEM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0.2
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building 'my-vignette.Rmd' using rmarkdown
Loading required package: Matrix
Loaded glmnet 3.0-1
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
TANDEM
--- call from context ---
tandem(x, y, upstream, alpha = 0.5)
--- call from argument ---
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer")) stop("x needs to be a numeric matrix")
--- R stacktrace ---
where 1: tandem(x, y, upstream, alpha = 0.5)
where 2: eval(expr, envir, enclos)
where 3: eval(expr, envir, enclos)
where 4: withVisible(eval(expr, envir, enclos))
where 5: withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
error = eHandler, message = mHandler)
where 6: handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
enclos)), warning = wHandler, error = eHandler, message = mHandler))
where 7: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
where 8: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
debug = debug, last = i == length(out), use_try = stop_on_error !=
2L, keep_warning = keep_warning, keep_message = keep_message,
output_handler = output_handler, include_timing = include_timing)
where 9: evaluate::evaluate(...)
where 10: evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
options$include) 0L else 2L, output_handler = knit_handlers(options$render,
options))
where 11: in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
stop_on_error = if (options$error && options$include) 0L else 2L,
output_handler = knit_handlers(options$render, options)))
where 12: block_exec(params)
where 13: call_block(x)
where 14: process_group.block(group)
where 15: process_group(group)
where 16: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
error = function(e) {
setwd(wd)
cat(res, sep = "\n", file = output %n% "")
message("Quitting from lines ", paste(current_lines(i),
collapse = "-"), " (", knit_concord$get("infile"),
") ")
})
where 17: process_file(text, output)
where 18: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
encoding = encoding)
where 19: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(),
...)
where 20: vweave_rmarkdown(...)
where 21: engine$weave(file, quiet = quiet, encoding = enc)
where 22: doTryCatch(return(expr), name, parentenv, handler)
where 23: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 24: tryCatchList(expr, classes, parentenv, handlers)
where 25: tryCatch({
engine$weave(file, quiet = quiet, encoding = enc)
setwd(startdir)
output <- find_vignette_product(name, by = "weave", engine = engine)
if (!have.makefile && vignette_is_tex(output)) {
texi2pdf(file = output, clean = FALSE, quiet = quiet)
output <- find_vignette_product(name, by = "texi2pdf",
engine = engine)
}
outputs <- c(outputs, output)
}, error = function(e) {
thisOK <<- FALSE
fails <<- c(fails, file)
message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s",
file, conditionMessage(e)))
})
where 26: tools:::buildVignettes(dir = "/home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/TANDEM.Rcheck/vign_test/TANDEM",
ser_elibs = "/tmp/RtmppXkB4c/file192325fff72.rds")
--- value of length: 2 type: logical ---
[1] FALSE TRUE
--- function from context ---
function (x, y, upstream, family = "gaussian", nfolds = 10, foldid = NULL,
lambda_upstream = "lambda.1se", lambda_downstream = "lambda.1se",
...)
{
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer"))
stop("x needs to be a numeric matrix")
if (!class(y) %in% c("numeric", "integer"))
stop("y needs to be a numeric vector")
if (class(upstream) != "logical")
stop("upstream needs to a logical index vector, integer index vectors are currently not supported")
if (nrow(x) != length(y))
stop("Number of samples in x and y don't match")
if (ncol(x) != length(upstream))
stop("Number of features in x and upstream don't match")
if (family != "gaussian")
stop("Currently only the glmnet family='guassian' is supported")
if (any(is.na(x)))
stop("NAs in x are not allowed")
if (any(is.na(y)))
stop("NAs in y are not allowed")
if (nrow(x) < nfolds)
stop("nfolds should be smaller than the number of samples")
if (!lambda_upstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_upstream should be either lambda.1se or lambda.min")
if (!lambda_downstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_downstream should be either lambda.1se or lambda.min")
if (is.null(foldid)) {
n = length(y)
foldid = ceiling(sample(1:n)/n * nfolds)
}
fit1 = glmnet::cv.glmnet(x[, upstream], y, foldid = foldid,
...)
residuals = y - glmnet::predict.cv.glmnet(fit1, newx = x[,
upstream], s = lambda_upstream)
fit2 = glmnet::cv.glmnet(x[, !upstream], residuals, foldid = foldid,
...)
beta0 = glmnet::coef.cv.glmnet(fit1, s = lambda_upstream)[1] +
glmnet::coef.cv.glmnet(fit2, s = lambda_downstream)[1]
beta = matrix(NA, ncol(x), 1)
beta[upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit1,
s = lambda_upstream)[-1, , drop = F])
beta[!upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit2,
s = lambda_downstream)[-1, , drop = F])
rownames(beta) = colnames(x)
beta = Matrix::Matrix(beta)
fit = list(beta0 = beta0, beta = beta)
class(fit) = "tandem"
return(fit)
}
<bytecode: 0xd872770>
<environment: namespace:TANDEM>
--- function search by body ---
Function tandem in namespace TANDEM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0.2
Check: examples
Result: ERROR
Running examples in ‘TANDEM-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: coef.tandem
> ### Title: Returns the regression coefficients from a TANDEM fit
> ### Aliases: coef.tandem
>
> ### ** Examples
>
> # unpack example data
> x = example_data$x
> y = example_data$y
> upstream = example_data$upstream
>
> # fit a tandem model, determine the coefficients and create a prediction
> fit = tandem(x, y, upstream, alpha=0.5)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
TANDEM
--- call from context ---
tandem(x, y, upstream, alpha = 0.5)
--- call from argument ---
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer")) stop("x needs to be a numeric matrix")
--- R stacktrace ---
where 1: tandem(x, y, upstream, alpha = 0.5)
--- value of length: 2 type: logical ---
[1] FALSE TRUE
--- function from context ---
function (x, y, upstream, family = "gaussian", nfolds = 10, foldid = NULL,
lambda_upstream = "lambda.1se", lambda_downstream = "lambda.1se",
...)
{
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer"))
stop("x needs to be a numeric matrix")
if (!class(y) %in% c("numeric", "integer"))
stop("y needs to be a numeric vector")
if (class(upstream) != "logical")
stop("upstream needs to a logical index vector, integer index vectors are currently not supported")
if (nrow(x) != length(y))
stop("Number of samples in x and y don't match")
if (ncol(x) != length(upstream))
stop("Number of features in x and upstream don't match")
if (family != "gaussian")
stop("Currently only the glmnet family='guassian' is supported")
if (any(is.na(x)))
stop("NAs in x are not allowed")
if (any(is.na(y)))
stop("NAs in y are not allowed")
if (nrow(x) < nfolds)
stop("nfolds should be smaller than the number of samples")
if (!lambda_upstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_upstream should be either lambda.1se or lambda.min")
if (!lambda_downstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_downstream should be either lambda.1se or lambda.min")
if (is.null(foldid)) {
n = length(y)
foldid = ceiling(sample(1:n)/n * nfolds)
}
fit1 = glmnet::cv.glmnet(x[, upstream], y, foldid = foldid,
...)
residuals = y - glmnet::predict.cv.glmnet(fit1, newx = x[,
upstream], s = lambda_upstream)
fit2 = glmnet::cv.glmnet(x[, !upstream], residuals, foldid = foldid,
...)
beta0 = glmnet::coef.cv.glmnet(fit1, s = lambda_upstream)[1] +
glmnet::coef.cv.glmnet(fit2, s = lambda_downstream)[1]
beta = matrix(NA, ncol(x), 1)
beta[upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit1,
s = lambda_upstream)[-1, , drop = F])
beta[!upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit2,
s = lambda_downstream)[-1, , drop = F])
rownames(beta) = colnames(x)
beta = Matrix::Matrix(beta)
fit = list(beta0 = beta0, beta = beta)
class(fit) = "tandem"
return(fit)
}
<bytecode: 0x5570124bed28>
<environment: namespace:TANDEM>
--- function search by body ---
Function tandem in namespace TANDEM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0.2
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘my-vignette.Rmd’ using rmarkdown
Loading required package: Matrix
Loaded glmnet 3.0-1
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
TANDEM
--- call from context ---
tandem(x, y, upstream, alpha = 0.5)
--- call from argument ---
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer")) stop("x needs to be a numeric matrix")
--- R stacktrace ---
where 1: tandem(x, y, upstream, alpha = 0.5)
where 2: eval(expr, envir, enclos)
where 3: eval(expr, envir, enclos)
where 4: withVisible(eval(expr, envir, enclos))
where 5: withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
error = eHandler, message = mHandler)
where 6: handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
enclos)), warning = wHandler, error = eHandler, message = mHandler))
where 7: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
where 8: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
debug = debug, last = i == length(out), use_try = stop_on_error !=
2L, keep_warning = keep_warning, keep_message = keep_message,
output_handler = output_handler, include_timing = include_timing)
where 9: evaluate::evaluate(...)
where 10: evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
options$include) 0L else 2L, output_handler = knit_handlers(options$render,
options))
where 11: in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
stop_on_error = if (options$error && options$include) 0L else 2L,
output_handler = knit_handlers(options$render, options)))
where 12: block_exec(params)
where 13: call_block(x)
where 14: process_group.block(group)
where 15: process_group(group)
where 16: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
error = function(e) {
setwd(wd)
cat(res, sep = "\n", file = output %n% "")
message("Quitting from lines ", paste(current_lines(i),
collapse = "-"), " (", knit_concord$get("infile"),
") ")
})
where 17: process_file(text, output)
where 18: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
encoding = encoding)
where 19: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(),
...)
where 20: vweave_rmarkdown(...)
where 21: engine$weave(file, quiet = quiet, encoding = enc)
where 22: doTryCatch(return(expr), name, parentenv, handler)
where 23: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 24: tryCatchList(expr, classes, parentenv, handlers)
where 25: tryCatch({
engine$weave(file, quiet = quiet, encoding = enc)
setwd(startdir)
output <- find_vignette_product(name, by = "weave", engine = engine)
if (!have.makefile && vignette_is_tex(output)) {
texi2pdf(file = output, clean = FALSE, quiet = quiet)
output <- find_vignette_product(name, by = "texi2pdf",
engine = engine)
}
outputs <- c(outputs, output)
}, error = function(e) {
thisOK <<- FALSE
fails <<- c(fails, file)
message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s",
file, conditionMessage(e)))
})
where 26: tools:::buildVignettes(dir = "/home/hornik/tmp/R.check/r-devel-gcc/Work/PKGS/TANDEM.Rcheck/vign_test/TANDEM",
ser_elibs = "/home/hornik/tmp/scratch/RtmpRCq3sT/file649e7c8f1412.rds")
--- value of length: 2 type: logical ---
[1] FALSE TRUE
--- function from context ---
function (x, y, upstream, family = "gaussian", nfolds = 10, foldid = NULL,
lambda_upstream = "lambda.1se", lambda_downstream = "lambda.1se",
...)
{
if (class(x) != "matrix" | !class(x[1, 1]) %in% c("numeric",
"integer"))
stop("x needs to be a numeric matrix")
if (!class(y) %in% c("numeric", "integer"))
stop("y needs to be a numeric vector")
if (class(upstream) != "logical")
stop("upstream needs to a logical index vector, integer index vectors are currently not supported")
if (nrow(x) != length(y))
stop("Number of samples in x and y don't match")
if (ncol(x) != length(upstream))
stop("Number of features in x and upstream don't match")
if (family != "gaussian")
stop("Currently only the glmnet family='guassian' is supported")
if (any(is.na(x)))
stop("NAs in x are not allowed")
if (any(is.na(y)))
stop("NAs in y are not allowed")
if (nrow(x) < nfolds)
stop("nfolds should be smaller than the number of samples")
if (!lambda_upstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_upstream should be either lambda.1se or lambda.min")
if (!lambda_downstream %in% c("lambda.1se", "lambda.min"))
stop("lambda_downstream should be either lambda.1se or lambda.min")
if (is.null(foldid)) {
n = length(y)
foldid = ceiling(sample(1:n)/n * nfolds)
}
fit1 = glmnet::cv.glmnet(x[, upstream], y, foldid = foldid,
...)
residuals = y - glmnet::predict.cv.glmnet(fit1, newx = x[,
upstream], s = lambda_upstream)
fit2 = glmnet::cv.glmnet(x[, !upstream], residuals, foldid = foldid,
...)
beta0 = glmnet::coef.cv.glmnet(fit1, s = lambda_upstream)[1] +
glmnet::coef.cv.glmnet(fit2, s = lambda_downstream)[1]
beta = matrix(NA, ncol(x), 1)
beta[upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit1,
s = lambda_upstream)[-1, , drop = F])
beta[!upstream, ] = as.matrix(glmnet::coef.cv.glmnet(fit2,
s = lambda_downstream)[-1, , drop = F])
rownames(beta) = colnames(x)
beta = Matrix::Matrix(beta)
fit = list(beta0 = beta0, beta = beta)
class(fit) = "tandem"
return(fit)
}
<bytecode: 0x55e690a8ac20>
<environment: namespace:TANDEM>
--- function search by body ---
Function tandem in namespace TANDEM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0.2
Check: examples
Result: ERROR
Running examples in ‘TANDEM-Ex.R’ failed
The error most likely occurred in:
> ### Name: coef.tandem
> ### Title: Returns the regression coefficients from a TANDEM fit
> ### Aliases: coef.tandem
>
> ### ** Examples
>
> # unpack example data
> x = example_data$x
> y = example_data$y
> upstream = example_data$upstream
>
> # fit a tandem model, determine the coefficients and create a prediction
> fit = tandem(x, y, upstream, alpha=0.5)
Error: 'predict.cv.glmnet' is not an exported object from 'namespace:glmnet'
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-solaris-x86, r-release-windows-ix86+x86_64
Version: 1.0.2
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building ‘my-vignette.Rmd’ using rmarkdown
Loading required package: Matrix
Loaded glmnet 3.0-1
Quitting from lines 27-31 (my-vignette.Rmd)
Error: processing vignette 'my-vignette.Rmd' failed with diagnostics:
'predict.cv.glmnet' is not an exported object from 'namespace:glmnet'
--- failed re-building ‘my-vignette.Rmd’
SUMMARY: processing the following file failed:
‘my-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-release-windows-ix86+x86_64
Version: 1.0.2
Check: examples
Result: ERROR
Running examples in ‘TANDEM-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: coef.tandem
> ### Title: Returns the regression coefficients from a TANDEM fit
> ### Aliases: coef.tandem
>
> ### ** Examples
>
> # unpack example data
> x = example_data$x
> y = example_data$y
> upstream = example_data$upstream
>
> # fit a tandem model, determine the coefficients and create a prediction
> fit = tandem(x, y, upstream, alpha=0.5)
Error: 'predict.cv.glmnet' is not an exported object from 'namespace:glmnet'
Execution halted
Flavors: r-patched-linux-x86_64, r-release-linux-x86_64
Version: 1.0.2
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘my-vignette.Rmd’ using rmarkdown
Loading required package: Matrix
Loaded glmnet 3.0-1
Quitting from lines 27-31 (my-vignette.Rmd)
Error: processing vignette 'my-vignette.Rmd' failed with diagnostics:
'predict.cv.glmnet' is not an exported object from 'namespace:glmnet'
--- failed re-building ‘my-vignette.Rmd’
SUMMARY: processing the following file failed:
‘my-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavors: r-patched-linux-x86_64, r-release-linux-x86_64
Version: 1.0.2
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘my-vignette.Rmd’ using rmarkdown
Warning in engine$weave(file, quiet = quiet, encoding = enc) :
Pandoc (>= 1.12.3) and/or pandoc-citeproc not available. Falling back to R Markdown v1.
Loading required package: Matrix
Loaded glmnet 3.0-1
Quitting from lines 27-31 (my-vignette.Rmd)
Error: processing vignette 'my-vignette.Rmd' failed with diagnostics:
'predict.cv.glmnet' is not an exported object from 'namespace:glmnet'
--- failed re-building ‘my-vignette.Rmd’
SUMMARY: processing the following file failed:
‘my-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavor: r-patched-solaris-x86