Last updated on 2019-12-02 06:50:55 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.4.4 | 77.58 | 464.88 | 542.46 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.4.4 | 65.71 | 341.54 | 407.25 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.4.4 | 620.09 | WARN | |||
r-devel-linux-x86_64-fedora-gcc | 1.4.4 | 621.32 | WARN | |||
r-devel-windows-ix86+x86_64 | 1.4.4 | 95.00 | 504.00 | 599.00 | OK | |
r-devel-windows-ix86+x86_64-gcc8 | 1.4.4 | 110.00 | 497.00 | 607.00 | OK | |
r-patched-linux-x86_64 | 1.4.4 | 70.09 | 479.34 | 549.43 | OK | |
r-patched-solaris-x86 | 1.4.4 | 699.90 | WARN | |||
r-release-linux-x86_64 | 1.4.4 | 71.62 | 476.46 | 548.08 | OK | |
r-release-windows-ix86+x86_64 | 1.4.4 | 93.00 | 450.00 | 543.00 | OK | |
r-release-osx-x86_64 | 1.4.4 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 1.4.4 | 117.00 | 549.00 | 666.00 | OK | |
r-oldrel-osx-x86_64 | 1.4.4 | NOTE |
Version: 1.4.4
Check: examples
Result: ERROR
Running examples in 'MXM-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: BIC based forward selection
> ### Title: Variable selection in regression models with forward selection
> ### using BIC
> ### Aliases: bic.fsreg
> ### Keywords: Markov Blanket Variable Selection
>
> ### ** Examples
>
> set.seed(123)
> dataset <- matrix( runif(500 * 20, 1, 100), ncol = 20 )
> target <- 3 * dataset[, 10] + 2 * dataset[, 15] + 3 * dataset[, 20] + rnorm(500, 0, 5)
>
> a1 <- bic.fsreg(target, dataset, tol = 4, ncores = 1, test = "testIndReg" )
> a3 <- MMPC(target, dataset, ncores = 1)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
MXM
--- call from context ---
MMPC(target, dataset, ncores = 1)
--- call from argument ---
if (class(dataset) == "matrix") {
test <- "testIndFisher"
} else if (class(dataset) == "data.frame") {
if (length(Rfast::which.is(dataset)) > 0) {
test <- "testIndReg"
}
else test <- "testIndFisher"
}
--- R stacktrace ---
where 1: MMPC(target, dataset, ncores = 1)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (target, dataset, max_k = 3, threshold = 0.05, test = NULL,
ini = NULL, wei = NULL, user_test = NULL, hash = FALSE, hashObject = NULL,
ncores = 1, backward = FALSE)
{
runtime <- proc.time()
stat_hash <- NULL
pvalue_hash <- NULL
if (hash) {
if (is.null(hashObject)) {
stat_hash <- Rfast::Hash()
pvalue_hash <- Rfast::Hash()
}
else if (class(hashObject) == "list") {
stat_hash <- hashObject$stat_hash
pvalue_hash <- hashObject$pvalue_hash
}
else stop("hashObject must be a list of two hash objects (stat_hash, pvalue_hash)")
}
if (!is.null(dataset)) {
if (sum(class(target) == "matrix") == 1) {
if (sum(class(target) == "Surv") == 1)
stop("Invalid dataset class. For survival analysis provide a dataframe-class dataset")
}
}
if (is.null(dataset) || is.null(target)) {
stop("invalid dataset or target (class feature) arguments.")
}
else target <- target
if (any(is.na(dataset))) {
warning("The dataset contains missing values (NA) and they were replaced automatically by the variable (column) median (for numeric) or by the most frequent level (mode) if the variable is factor")
if (is.matrix(dataset)) {
dataset <- apply(dataset, 2, function(x) {
x[which(is.na(x))] = median(x, na.rm = TRUE)
return(x)
})
}
else {
poia <- unique(which(is.na(dataset), arr.ind = TRUE)[,
2])
for (i in poia) {
xi <- dataset[, i]
if (is.numeric(xi)) {
xi[which(is.na(xi))] <- median(xi, na.rm = TRUE)
}
else if (is.factor(xi)) {
xi[which(is.na(xi))] <- levels(xi)[which.max(as.vector(table(xi)))]
}
dataset[, i] <- xi
}
}
}
targetID <- -1
if (is.character(target) & length(target) == 1) {
findingTarget <- target == colnames(dataset)
if (!sum(findingTarget) == 1) {
warning("Target name not in colnames or it appears multiple times")
return(NULL)
}
targetID <- which(findingTarget)
target <- dataset[, targetID]
}
if (is.numeric(target) & length(target) == 1) {
if (targetID > dim(dataset)[2]) {
warning("Target index larger than the number of variables")
return(NULL)
}
targetID <- target
target <- dataset[, targetID]
}
if (sum(class(target) == "matrix") == 1) {
if (ncol(target) >= 2 & class(target) != "Surv") {
if ((is.null(test) || test == "auto") & (is.null(user_test))) {
test <- "testIndMVreg"
}
}
}
la <- length(unique(as.numeric(target)))
if (typeof(user_test) == "closure") {
test <- user_test
}
else {
if (is.null(test) || test == "auto") {
if (la == 2)
target <- as.factor(target)
if (sum(class(target) == "matrix") == 1)
test = "testIndMVreg"
if ("factor" %in% class(target)) {
if (is.ordered(target) & length(unique(target)) >
2) {
test <- "testIndOrdinal"
}
else if (!is.ordered(target) & length(unique(target)) >
2) {
test <- "testIndMultinom"
}
else test <- "testIndLogistic"
}
else if ((is.numeric(target) || is.integer(target)) &
survival::is.Surv(target) == FALSE) {
if (sum(floor(target) - target) == 0 & la > 2) {
test <- "testIndQPois"
}
else {
if (class(dataset) == "matrix") {
test <- "testIndFisher"
}
else if (class(dataset) == "data.frame") {
if (length(Rfast::which.is(dataset)) > 0) {
test <- "testIndReg"
}
else test <- "testIndFisher"
}
}
}
else if (survival::is.Surv(target)) {
test <- "censIndCR"
}
else stop("Target must be a factor, vector, matrix with at least 2 columns column or a Surv object")
}
av_tests <- c("testIndFisher", "testIndSpearman", "testIndReg",
"testIndRQ", "testIndBeta", "censIndCR", "censIndWR",
"censIndER", "censIndLLR", "testIndClogit", "testIndLogistic",
"testIndPois", "testIndNB", "testIndBinom", "gSquare",
"auto", "testIndZIP", "testIndMVreg", "testIndIGreg",
"testIndGamma", "testIndNormLog", "testIndTobit",
"testIndQPois", "testdIndQBinom", "testIndMMReg",
"testIndMMFisher", "testIndMultinom", "testIndOrdinal",
"testIndSPML", NULL)
ci_test <- test
if (length(test) == 1) {
test <- match.arg(test, av_tests, TRUE)
if (test == "testIndFisher") {
test <- testIndFisher
}
else if (test == "testIndMMFisher") {
test <- testIndMMFisher
}
else if (test == "testIndMMReg") {
test <- testIndMMReg
}
else if (test == "testIndSpearman") {
target <- rank(target)
dataset <- Rfast::colRanks(dataset)
test <- testIndSpearman
}
else if (test == "testIndReg") {
test <- testIndReg
}
else if (test == "testIndMVreg") {
if (min(target) > 0 & sd(Rfast::rowsums(target)) ==
0)
target = log(target[, -1]/target[, 1])
test <- testIndMVreg
}
else if (test == "testIndBeta") {
test <- testIndBeta
}
else if (test == "testIndRQ") {
test <- testIndRQ
}
else if (test == "testIndIGreg") {
test <- testIndIGreg
}
else if (test == "testIndPois") {
test <- testIndPois
}
else if (test == "testIndNB") {
test <- testIndNB
}
else if (test == "testIndGamma") {
test <- testIndGamma
}
else if (test == "testIndNormLog") {
test <- testIndNormLog
}
else if (test == "testIndZIP") {
test <- testIndZIP
}
else if (test == "testIndTobit") {
test <- testIndTobit
}
else if (test == "censIndCR") {
test <- censIndCR
}
else if (test == "censIndWR") {
test <- censIndWR
}
else if (test == "censIndER") {
test <- censIndER
}
else if (test == "censIndLLR") {
test <- censIndLLR
}
else if (test == "testIndClogit") {
test <- testIndClogit
}
else if (test == "testIndBinom") {
test <- testIndBinom
}
else if (test == "testIndLogistic") {
test <- testIndLogistic
}
else if (test == "testIndMultinom") {
test <- testIndMultinom
}
else if (test == "testIndOrdinal") {
test <- testIndOrdinal
}
else if (test == "testIndQBinom") {
test <- testIndQBinom
}
else if (test == "testIndQPois") {
test <- testIndQPois
}
else if (test == "gSquare") {
test <- gSquare
}
else if (test == "testIndSPML") {
test <- testIndSPML
if (!is.matrix(target))
target <- cbind(cos(target), sin(target))
}
}
else {
stop("invalid test option")
}
}
max_k <- floor(max_k)
varsize <- ncol(dataset)
if ((typeof(max_k) != "double") || max_k < 1)
stop("invalid max_k option")
if (max_k > varsize)
max_k = varsize
if ((typeof(threshold) != "double") || threshold < 0 || threshold >=
1)
stop("invalid threshold option")
if (!is.null(user_test))
ci_test <- "user_test"
if (identical(ci_test, "testIndFisher")) {
oop <- options(warn = -1)
on.exit(options(oop))
if (!is.matrix(dataset))
dataset <- as.matrix(dataset)
if (!is.null(hashObject) & length(hashObject) == 0)
hashObject <- NULL
if (targetID != -1) {
a <- as.vector(cor(target, dataset))
dof <- dim(dataset)[1] - 3
wa <- 0.5 * log((1 + a)/(1 - a)) * sqrt(dof)
id <- which(is.na(a))
if (length(id) > 0)
wa[id] <- 0
wa[targetID] <- 0
ini <- list()
ini$stat <- wa
ini$pvalue <- log(2) + pt(abs(wa), dof, lower.tail = FALSE,
log.p = TRUE)
}
results <- Rfast2::mmpc(target, dataset, max_k = max_k,
alpha = threshold, method = "pearson", ini = ini,
hash = hash, hashobject = hashObject)
results$selectedVarsOrder <- results$selected
results$selectedVars <- sort(results$selected)
results$selected <- NULL
lista <- as.list.environment(results$hashobject$pvalue_hash)
results$hashObject <- list()
if (length(lista) > 0) {
results$hashObject$stat_hash <- results$hashobject$stat_hash
results$hashobject$stat_hash <- NULL
results$hashObject$pvalue_hash <- results$hashobject$pvalue_hash
results$hashobject$pvalue_hash <- NULL
results$hashobject <- NULL
}
else {
results$hashobject <- NULL
results$hashObject$stat_hash <- NULL
results$hashObject$pvalue_hash <- NULL
}
results$threshold <- results$alpha
results$alpha <- NULL
}
else {
results <- InternalMMPC(target, dataset, max_k, log(threshold),
test, ini, wei, user_test, hash, varsize, stat_hash,
pvalue_hash, targetID, ncores = ncores)
}
varsToIterate <- results$selectedVarsOrder
if (backward & length(varsToIterate) > 0) {
varsOrder <- results$selectedVarsOrder
bc <- MXM::mmpcbackphase(target, dataset[, varsToIterate,
drop = FALSE], test = test, wei = wei, max_k = max_k,
threshold = threshold)
met <- bc$met
results$selectedVars <- varsOrder[met]
results$selectedVarsOrder <- varsOrder[met]
results$pvalues[varsToIterate] <- bc$pvalues
results$n.tests <- results$n.tests + bc$counter
}
runtime <- proc.time() - runtime
MMPCoutput <- new("MMPCoutput", selectedVars = results$selectedVars,
selectedVarsOrder = results$selectedVarsOrder, hashObject = results$hashObject,
pvalues = results$pvalues, stats = results$stats, univ = results$univ,
max_k = results$max_k, threshold = results$threshold,
n.tests = results$n.tests, runtime = runtime, test = ci_test)
return(MMPCoutput)
}
<bytecode: 0x9f1f1c0>
<environment: namespace:MXM>
--- function search by body ---
Function MMPC in namespace MXM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.4.4
Check: examples
Result: ERROR
Running examples in ‘MXM-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: BIC based forward selection
> ### Title: Variable selection in regression models with forward selection
> ### using BIC
> ### Aliases: bic.fsreg
> ### Keywords: Markov Blanket Variable Selection
>
> ### ** Examples
>
> set.seed(123)
> dataset <- matrix( runif(500 * 20, 1, 100), ncol = 20 )
> target <- 3 * dataset[, 10] + 2 * dataset[, 15] + 3 * dataset[, 20] + rnorm(500, 0, 5)
>
> a1 <- bic.fsreg(target, dataset, tol = 4, ncores = 1, test = "testIndReg" )
> a3 <- MMPC(target, dataset, ncores = 1)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
MXM
--- call from context ---
MMPC(target, dataset, ncores = 1)
--- call from argument ---
if (class(dataset) == "matrix") {
test <- "testIndFisher"
} else if (class(dataset) == "data.frame") {
if (length(Rfast::which.is(dataset)) > 0) {
test <- "testIndReg"
}
else test <- "testIndFisher"
}
--- R stacktrace ---
where 1: MMPC(target, dataset, ncores = 1)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (target, dataset, max_k = 3, threshold = 0.05, test = NULL,
ini = NULL, wei = NULL, user_test = NULL, hash = FALSE, hashObject = NULL,
ncores = 1, backward = FALSE)
{
runtime <- proc.time()
stat_hash <- NULL
pvalue_hash <- NULL
if (hash) {
if (is.null(hashObject)) {
stat_hash <- Rfast::Hash()
pvalue_hash <- Rfast::Hash()
}
else if (class(hashObject) == "list") {
stat_hash <- hashObject$stat_hash
pvalue_hash <- hashObject$pvalue_hash
}
else stop("hashObject must be a list of two hash objects (stat_hash, pvalue_hash)")
}
if (!is.null(dataset)) {
if (sum(class(target) == "matrix") == 1) {
if (sum(class(target) == "Surv") == 1)
stop("Invalid dataset class. For survival analysis provide a dataframe-class dataset")
}
}
if (is.null(dataset) || is.null(target)) {
stop("invalid dataset or target (class feature) arguments.")
}
else target <- target
if (any(is.na(dataset))) {
warning("The dataset contains missing values (NA) and they were replaced automatically by the variable (column) median (for numeric) or by the most frequent level (mode) if the variable is factor")
if (is.matrix(dataset)) {
dataset <- apply(dataset, 2, function(x) {
x[which(is.na(x))] = median(x, na.rm = TRUE)
return(x)
})
}
else {
poia <- unique(which(is.na(dataset), arr.ind = TRUE)[,
2])
for (i in poia) {
xi <- dataset[, i]
if (is.numeric(xi)) {
xi[which(is.na(xi))] <- median(xi, na.rm = TRUE)
}
else if (is.factor(xi)) {
xi[which(is.na(xi))] <- levels(xi)[which.max(as.vector(table(xi)))]
}
dataset[, i] <- xi
}
}
}
targetID <- -1
if (is.character(target) & length(target) == 1) {
findingTarget <- target == colnames(dataset)
if (!sum(findingTarget) == 1) {
warning("Target name not in colnames or it appears multiple times")
return(NULL)
}
targetID <- which(findingTarget)
target <- dataset[, targetID]
}
if (is.numeric(target) & length(target) == 1) {
if (targetID > dim(dataset)[2]) {
warning("Target index larger than the number of variables")
return(NULL)
}
targetID <- target
target <- dataset[, targetID]
}
if (sum(class(target) == "matrix") == 1) {
if (ncol(target) >= 2 & class(target) != "Surv") {
if ((is.null(test) || test == "auto") & (is.null(user_test))) {
test <- "testIndMVreg"
}
}
}
la <- length(unique(as.numeric(target)))
if (typeof(user_test) == "closure") {
test <- user_test
}
else {
if (is.null(test) || test == "auto") {
if (la == 2)
target <- as.factor(target)
if (sum(class(target) == "matrix") == 1)
test = "testIndMVreg"
if ("factor" %in% class(target)) {
if (is.ordered(target) & length(unique(target)) >
2) {
test <- "testIndOrdinal"
}
else if (!is.ordered(target) & length(unique(target)) >
2) {
test <- "testIndMultinom"
}
else test <- "testIndLogistic"
}
else if ((is.numeric(target) || is.integer(target)) &
survival::is.Surv(target) == FALSE) {
if (sum(floor(target) - target) == 0 & la > 2) {
test <- "testIndQPois"
}
else {
if (class(dataset) == "matrix") {
test <- "testIndFisher"
}
else if (class(dataset) == "data.frame") {
if (length(Rfast::which.is(dataset)) > 0) {
test <- "testIndReg"
}
else test <- "testIndFisher"
}
}
}
else if (survival::is.Surv(target)) {
test <- "censIndCR"
}
else stop("Target must be a factor, vector, matrix with at least 2 columns column or a Surv object")
}
av_tests <- c("testIndFisher", "testIndSpearman", "testIndReg",
"testIndRQ", "testIndBeta", "censIndCR", "censIndWR",
"censIndER", "censIndLLR", "testIndClogit", "testIndLogistic",
"testIndPois", "testIndNB", "testIndBinom", "gSquare",
"auto", "testIndZIP", "testIndMVreg", "testIndIGreg",
"testIndGamma", "testIndNormLog", "testIndTobit",
"testIndQPois", "testdIndQBinom", "testIndMMReg",
"testIndMMFisher", "testIndMultinom", "testIndOrdinal",
"testIndSPML", NULL)
ci_test <- test
if (length(test) == 1) {
test <- match.arg(test, av_tests, TRUE)
if (test == "testIndFisher") {
test <- testIndFisher
}
else if (test == "testIndMMFisher") {
test <- testIndMMFisher
}
else if (test == "testIndMMReg") {
test <- testIndMMReg
}
else if (test == "testIndSpearman") {
target <- rank(target)
dataset <- Rfast::colRanks(dataset)
test <- testIndSpearman
}
else if (test == "testIndReg") {
test <- testIndReg
}
else if (test == "testIndMVreg") {
if (min(target) > 0 & sd(Rfast::rowsums(target)) ==
0)
target = log(target[, -1]/target[, 1])
test <- testIndMVreg
}
else if (test == "testIndBeta") {
test <- testIndBeta
}
else if (test == "testIndRQ") {
test <- testIndRQ
}
else if (test == "testIndIGreg") {
test <- testIndIGreg
}
else if (test == "testIndPois") {
test <- testIndPois
}
else if (test == "testIndNB") {
test <- testIndNB
}
else if (test == "testIndGamma") {
test <- testIndGamma
}
else if (test == "testIndNormLog") {
test <- testIndNormLog
}
else if (test == "testIndZIP") {
test <- testIndZIP
}
else if (test == "testIndTobit") {
test <- testIndTobit
}
else if (test == "censIndCR") {
test <- censIndCR
}
else if (test == "censIndWR") {
test <- censIndWR
}
else if (test == "censIndER") {
test <- censIndER
}
else if (test == "censIndLLR") {
test <- censIndLLR
}
else if (test == "testIndClogit") {
test <- testIndClogit
}
else if (test == "testIndBinom") {
test <- testIndBinom
}
else if (test == "testIndLogistic") {
test <- testIndLogistic
}
else if (test == "testIndMultinom") {
test <- testIndMultinom
}
else if (test == "testIndOrdinal") {
test <- testIndOrdinal
}
else if (test == "testIndQBinom") {
test <- testIndQBinom
}
else if (test == "testIndQPois") {
test <- testIndQPois
}
else if (test == "gSquare") {
test <- gSquare
}
else if (test == "testIndSPML") {
test <- testIndSPML
if (!is.matrix(target))
target <- cbind(cos(target), sin(target))
}
}
else {
stop("invalid test option")
}
}
max_k <- floor(max_k)
varsize <- ncol(dataset)
if ((typeof(max_k) != "double") || max_k < 1)
stop("invalid max_k option")
if (max_k > varsize)
max_k = varsize
if ((typeof(threshold) != "double") || threshold < 0 || threshold >=
1)
stop("invalid threshold option")
if (!is.null(user_test))
ci_test <- "user_test"
if (identical(ci_test, "testIndFisher")) {
oop <- options(warn = -1)
on.exit(options(oop))
if (!is.matrix(dataset))
dataset <- as.matrix(dataset)
if (!is.null(hashObject) & length(hashObject) == 0)
hashObject <- NULL
if (targetID != -1) {
a <- as.vector(cor(target, dataset))
dof <- dim(dataset)[1] - 3
wa <- 0.5 * log((1 + a)/(1 - a)) * sqrt(dof)
id <- which(is.na(a))
if (length(id) > 0)
wa[id] <- 0
wa[targetID] <- 0
ini <- list()
ini$stat <- wa
ini$pvalue <- log(2) + pt(abs(wa), dof, lower.tail = FALSE,
log.p = TRUE)
}
results <- Rfast2::mmpc(target, dataset, max_k = max_k,
alpha = threshold, method = "pearson", ini = ini,
hash = hash, hashobject = hashObject)
results$selectedVarsOrder <- results$selected
results$selectedVars <- sort(results$selected)
results$selected <- NULL
lista <- as.list.environment(results$hashobject$pvalue_hash)
results$hashObject <- list()
if (length(lista) > 0) {
results$hashObject$stat_hash <- results$hashobject$stat_hash
results$hashobject$stat_hash <- NULL
results$hashObject$pvalue_hash <- results$hashobject$pvalue_hash
results$hashobject$pvalue_hash <- NULL
results$hashobject <- NULL
}
else {
results$hashobject <- NULL
results$hashObject$stat_hash <- NULL
results$hashObject$pvalue_hash <- NULL
}
results$threshold <- results$alpha
results$alpha <- NULL
}
else {
results <- InternalMMPC(target, dataset, max_k, log(threshold),
test, ini, wei, user_test, hash, varsize, stat_hash,
pvalue_hash, targetID, ncores = ncores)
}
varsToIterate <- results$selectedVarsOrder
if (backward & length(varsToIterate) > 0) {
varsOrder <- results$selectedVarsOrder
bc <- MXM::mmpcbackphase(target, dataset[, varsToIterate,
drop = FALSE], test = test, wei = wei, max_k = max_k,
threshold = threshold)
met <- bc$met
results$selectedVars <- varsOrder[met]
results$selectedVarsOrder <- varsOrder[met]
results$pvalues[varsToIterate] <- bc$pvalues
results$n.tests <- results$n.tests + bc$counter
}
runtime <- proc.time() - runtime
MMPCoutput <- new("MMPCoutput", selectedVars = results$selectedVars,
selectedVarsOrder = results$selectedVarsOrder, hashObject = results$hashObject,
pvalues = results$pvalues, stats = results$stats, univ = results$univ,
max_k = results$max_k, threshold = results$threshold,
n.tests = results$n.tests, runtime = runtime, test = ci_test)
return(MMPCoutput)
}
<bytecode: 0x5601f0b0b4e8>
<environment: namespace:MXM>
--- function search by body ---
Function MMPC in namespace MXM has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.4.4
Check: dependencies in R code
Result: NOTE
Namespace in Imports field not imported from: ‘knitr’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86, r-release-osx-x86_64, r-oldrel-osx-x86_64
Version: 1.4.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building ‘FS_guide.ltx’ using tex
Error: processing vignette 'FS_guide.ltx' failed with diagnostics:
Running 'texi2dvi' on 'FS_guide.ltx' failed.
BibTeX errors:
The top-level auxiliary file: FS_guide.aux
I couldn't open style file apa.bst
---line 80 of file FS_guide.aux
: \bibstyle{apa
: }
I'm skipping whatever remains of this command
I found no style file---while reading file FS_guide.aux
--- failed re-building ‘FS_guide.ltx’
--- re-building ‘article.ltx’ using tex
--- finished re-building ‘article.ltx’
--- re-building ‘guide.ltx’ using tex
Error: processing vignette 'guide.ltx' failed with diagnostics:
Running 'texi2dvi' on 'guide.ltx' failed.
BibTeX errors:
The top-level auxiliary file: guide.aux
I couldn't open style file apa.bst
---line 52 of file guide.aux
: \bibstyle{apa
: }
I'm skipping whatever remains of this command
I found no style file---while reading file guide.aux
--- failed re-building ‘guide.ltx’
--- re-building ‘FBED_KVerrou_2_5.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘FBED_KVerrou_2_5.Rmd’
--- re-building ‘MMPC_tutorial.Rmd’ using knitr
--- finished re-building ‘MMPC_tutorial.Rmd’
--- re-building ‘Networks_KVerrou.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘Networks_KVerrou.Rmd’
--- re-building ‘SES_KMVerrou_11_12.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘SES_KMVerrou_11_12.Rmd’
SUMMARY: processing the following files failed:
‘FS_guide.ltx’ ‘guide.ltx’
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 1.4.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘FS_guide.ltx’ using tex
Error: processing vignette 'FS_guide.ltx' failed with diagnostics:
Running 'texi2dvi' on 'FS_guide.ltx' failed.
BibTeX errors:
The top-level auxiliary file: FS_guide.aux
I couldn't open style file apa.bst
---line 80 of file FS_guide.aux
: \bibstyle{apa
: }
I'm skipping whatever remains of this command
I found no style file---while reading file FS_guide.aux
--- failed re-building ‘FS_guide.ltx’
--- re-building ‘article.ltx’ using tex
--- finished re-building ‘article.ltx’
--- re-building ‘guide.ltx’ using tex
Error: processing vignette 'guide.ltx' failed with diagnostics:
Running 'texi2dvi' on 'guide.ltx' failed.
BibTeX errors:
The top-level auxiliary file: guide.aux
I couldn't open style file apa.bst
---line 52 of file guide.aux
: \bibstyle{apa
: }
I'm skipping whatever remains of this command
I found no style file---while reading file guide.aux
--- failed re-building ‘guide.ltx’
--- re-building ‘FBED_KVerrou_2_5.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘FBED_KVerrou_2_5.Rmd’
--- re-building ‘MMPC_tutorial.Rmd’ using knitr
--- finished re-building ‘MMPC_tutorial.Rmd’
--- re-building ‘Networks_KVerrou.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘Networks_KVerrou.Rmd’
--- re-building ‘SES_KMVerrou_11_12.Rmd’ using knitr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
--- finished re-building ‘SES_KMVerrou_11_12.Rmd’
SUMMARY: processing the following files failed:
‘FS_guide.ltx’ ‘guide.ltx’
Error: Vignette re-building failed.
Execution halted
Flavor: r-patched-solaris-x86