CRAN Package Check Results for Package model4you

Last updated on 2019-12-18 05:47:36 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.9-3 9.75 161.96 171.71 ERROR
r-devel-linux-x86_64-debian-gcc 0.9-3 8.12 151.69 159.81 OK
r-devel-linux-x86_64-fedora-clang 0.9-3 242.32 OK
r-devel-linux-x86_64-fedora-gcc 0.9-3 255.95 OK
r-devel-windows-ix86+x86_64 0.9-3 30.00 202.00 232.00 OK
r-devel-windows-ix86+x86_64-gcc8 0.9-3 23.00 263.00 286.00 OK
r-patched-linux-x86_64 0.9-3 OK
r-patched-solaris-x86 0.9-3 357.50 OK
r-release-linux-x86_64 0.9-3 9.34 173.60 182.94 OK
r-release-windows-ix86+x86_64 0.9-3 17.00 181.00 198.00 OK
r-release-osx-x86_64 0.9-3 OK
r-oldrel-windows-ix86+x86_64 0.9-3 13.00 246.00 259.00 OK
r-oldrel-osx-x86_64 0.9-3 OK

Additional issues

MKL OpenBLAS

Check Details

Version: 0.9-3
Check: examples
Result: ERROR
    Running examples in 'model4you-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: pmforest
    > ### Title: Compute model-based forest from model.
    > ### Aliases: pmforest gettree.pmforest
    >
    > ### ** Examples
    >
    > library("model4you")
    >
    > if(require("mvtnorm") & require("survival")) {
    +
    + ## function to simulate the data
    + sim_data <- function(n = 500, p = 10, beta = 3, sd = 1){
    +
    + ## treatment
    + lev <- c("C", "A")
    + a <- rep(factor(lev, labels = lev, levels = lev), length = n)
    +
    + ## correlated z variables
    + sigma <- diag(p)
    + sigma[sigma == 0] <- 0.2
    + ztemp <- rmvnorm(n, sigma = sigma)
    + z <- (pnorm(ztemp) * 2 * pi) - pi
    + colnames(z) <- paste0("z", 1:ncol(z))
    + z1 <- z[,1]
    +
    + ## outcome
    + y <- 7 + 0.2 * (a %in% "A") + beta * cos(z1) * (a %in% "A") + rnorm(n, 0, sd)
    +
    + data.frame(y = y, a = a, z)
    + }
    +
    + ## simulate data
    + set.seed(123)
    + beta <- 3
    + ntrain <- 500
    + ntest <- 50
    + simdata <- simdata_s <- sim_data(p = 5, beta = beta, n = ntrain)
    + tsimdata <- tsimdata_s <- sim_data(p = 5, beta = beta, n = ntest)
    + simdata_s$cens <- rep(1, ntrain)
    + tsimdata_s$cens <- rep(1, ntest)
    +
    + ## base model
    + basemodel_lm <- lm(y ~ a, data = simdata)
    +
    + ## forest
    + frst_lm <- pmforest(basemodel_lm, ntree = 20,
    + perturb = list(replace = FALSE, fraction = 0.632),
    + control = ctree_control(mincriterion = 0))
    +
    + ## personalised models
    + # (1) return the model objects
    + pmodels_lm <- pmodel(x = frst_lm, newdata = tsimdata, fun = identity)
    + class(pmodels_lm)
    + # (2) return coefficients only (default)
    + coefs_lm <- pmodel(x = frst_lm, newdata = tsimdata)
    +
    + # compare predictive objective functions of personalised models versus
    + # base model
    + sum(objfun(pmodels_lm)) # -RSS personalised models
    + sum(objfun(basemodel_lm, newdata = tsimdata)) # -RSS base model
    +
    +
    + if(require("ggplot2")) {
    + ## dependence plot
    + dp_lm <- cbind(coefs_lm, tsimdata)
    + ggplot(tsimdata) +
    + stat_function(fun = function(z1) 0.2 + beta * cos(z1),
    + aes(color = "true treatment\neffect")) +
    + geom_point(data = dp_lm,
    + aes(y = aA, x = z1, color = "estimates lm"),
    + alpha = 0.5) +
    + ylab("treatment effect") +
    + xlab("patient characteristic z1")
    + }
    + }
    Loading required package: survival
    No data given. I'm using data set simdata from the current environment parent.frame(). Please check if that is what you want.
    Warning in model.frame.default(object$predictf, data = newdata, na.action = na.pass, :
     variable 'a' is not a factor
    Warning in model.frame.default(object$predictf, data = newdata, na.action = na.pass, :
     variable 'a' is not a factor
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    model4you
     --- call from context ---
    pmodel(x = frst_lm, newdata = tsimdata)
     --- call from argument ---
    if (class(ret) == "matrix") ret <- t(ret)
     --- R stacktrace ---
    where 1: pmodel(x = frst_lm, newdata = tsimdata)
    
     --- value of length: 2 type: logical ---
    [1] TRUE FALSE
     --- function from context ---
    function (x = NULL, model = NULL, newdata = NULL, OOB = TRUE,
     fun = coef, return_attr = c("modelcall", "data", "similarity"))
    {
     if (is.matrix(x)) {
     if (is.null(model))
     stop("When x is a matrix, model must not be NULL. Please enter a model object.")
     pweights <- x
     }
     else {
     if (is.null(model))
     model <- x$info$model
     pweights <- predict(x, type = "weights", newdata = newdata,
     OOB = OOB)
     }
     get_pmod <- function(w) {
     if (sum(w) == 0)
     stop("The weights for one observation are all 0. A solution may be increasing ntree.")
     dat <- x$data
     dat$w <- w
     pmod <- update(model, weights = w, subset = w > 0, data = dat)
     fun(pmod)
     }
     ret <- apply(pweights, 2, get_pmod)
     if (class(ret) == "matrix")
     ret <- t(ret)
     if (all.equal(fun, identity) == TRUE)
     class(ret) <- c("pmodel_identity", class(ret))
     class(ret) <- c("pmodel", class(ret))
     if ("modelcall" %in% return_attr)
     attr(ret, "modelcall") <- getCall(model)
     if ("data" %in% return_attr)
     if (is.null(newdata))
     attr(ret, "data") <- x$data
     else attr(ret, "data") <- newdata
     if ("similarity" %in% return_attr)
     attr(ret, "similarity") <- pweights
     return(ret)
    }
    <bytecode: 0x1015e318>
    <environment: namespace:model4you>
     --- function search by body ---
    Function pmodel in namespace model4you has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(ret) == "matrix") ret <- t(ret) :
     the condition has length > 1
    Calls: pmodel
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.9-3
Check: tests
Result: ERROR
     Running 'test-pmodel-test.R' [25s/29s]
     Running 'test-pmodel.R' [21s/25s]
     Running 'test-pmtree.R' [26s/28s]
     Comparing 'test-pmtree.Rout' to 'test-pmtree.Rout.save' ...95c95,102
    < | [2] age <= 50: n = 502
    ---
    > | [2] age <= 50
    > | | [3] age <= 42: n = 153
    > | | (Intercept) trt2
    > | | -0.1300531 0.5027284
    > | | [4] age > 42: n = 371
    > | | (Intercept) trt2
    > | | -0.9932518 0.7773634
    > | [5] age > 50: n = 476
    97,100c104
    < | -1.162126 1.162126
    < | [3] age > 50: n = 498
    < | (Intercept) trt2
    < | -1.034074 1.980880
    ---
    > | -0.7958013 1.9056497
    102,103c106,107
    < Number of inner nodes: 1
    < Number of terminal nodes: 2
    ---
    > Number of inner nodes: 2
    > Number of terminal nodes: 3
    105c109
    < Objective function: 601.9864
    ---
    > Objective function: 621.198
    108c112,119
    < | [2] age <= 50: n = 502
    ---
    > | [2] age <= 50
    > | | [3] age <= 42: n = 153
    > | | (Intercept) trt2
    > | | -0.1300531 0.5027284
    > | | [4] age > 42: n = 371
    > | | (Intercept) trt2
    > | | -0.9932518 0.7773634
    > | [5] age > 50: n = 476
    110,113c121
    < | -1.162126 1.162126
    < | [3] age > 50: n = 498
    < | (Intercept) trt2
    < | -1.034074 1.980880
    ---
    > | -0.7958013 1.9056497
    115,116c123,124
    < Number of inner nodes: 1
    < Number of terminal nodes: 2
    ---
    > Number of inner nodes: 2
    > Number of terminal nodes: 3
    118c126
    < Objective function: 601.9864
    ---
    > Objective function: 621.198
    122c130,137
    < | [2] age <= 50: n = 502
    ---
    > | [2] age <= 50
    > | | [3] age <= 42: n = 153
    > | | (Intercept) trt2
    > | | -0.1300531 0.5027284
    > | | [4] age > 42: n = 371
    > | | (Intercept) trt2
    > | | -0.9932518 0.7773634
    > | [5] age > 50: n = 476
    124,127c139
    < | -1.162126 1.162126
    < | [3] age > 50: n = 498
    < | (Intercept) trt2
    < | -1.034074 1.980880
    ---
    > | -0.7958013 1.9056497
    129,130c141,142
    < Number of inner nodes: 1
    < Number of terminal nodes: 2
    ---
    > Number of inner nodes: 2
    > Number of terminal nodes: 3
    132c144
    < Objective function: 601.9864
    ---
    > Objective function: 621.198
    136c148,155
    < | [2] age <= 50: n = 22
    ---
    > | [2] age <= 50
    > | | [3] age <= 43: n = 8
    > | | (Intercept) trt2
    > | | -0.4367177 0.7420993
    > | | [4] age > 43: n = 14
    > | | (Intercept) trt2
    > | | -0.9253406 0.6662319
    > | [5] age > 50: n = 20
    138,141c157
    < | -1.162126 1.162126
    < | [3] age > 50: n = 20
    < | (Intercept) trt2
    < | -1.034074 1.980880
    ---
    > | -0.7958013 1.9056497
    143,144c159,160
    < Number of inner nodes: 1
    < Number of terminal nodes: 2
    ---
    > Number of inner nodes: 2
    > Number of terminal nodes: 3
    146c162
    < Objective function: 91.09863
    ---
    > Objective function: 94.40128
    156,159c172,179
    < | [2] age <= 50: n = 502
    < | (Intercept) trt2
    < | -1.162126 1.162126
    < | [3] age > 50: n = 498
    ---
    > | [2] age <= 50
    > | | [3] age <= 42: n = 153
    > | | (Intercept) trt2
    > | | -0.1300531 0.5027284
    > | | [4] age > 42: n = 371
    > | | (Intercept) trt2
    > | | -0.9932518 0.7773634
    > | [5] age > 50: n = 476
    161c181
    < | -1.034074 1.980880
    ---
    > | -0.7958013 1.9056497
    163,164c183,184
    < Number of inner nodes: 1
    < Number of terminal nodes: 2
    ---
    > Number of inner nodes: 2
    > Number of terminal nodes: 3
    166c186
    < Objective function (negative log-likelihood): 601.9864
    ---
    > Objective function (negative log-likelihood): 621.198
    180,181c200,201
    < statistic 1.446675e+01
    < p.value 7.220786e-04
    ---
    > statistic 1.754685e+01
    > p.value 1.547928e-04
    185,186c205,206
    < statistic 2.0885768
    < p.value 0.3519422
    ---
    > statistic 9.609115153
    > p.value 0.008192325
    190,191c210,221
    < statistic 4.1541909
    < p.value 0.1252936
    ---
    > statistic 0.7184773
    > p.value 0.6982077
    >
    > $`4`
    > age
    > statistic 2.0024795
    > p.value 0.3674237
    >
    > $`5`
    > age
    > statistic 1.1781017
    > p.value 0.5548537
    196,197c226,227
    < statistic 7.19313420
    < p.value 0.02741768
    ---
    > statistic 7.40146997
    > p.value 0.02470536
    201,202c231,232
    < statistic 2.7056665
    < p.value 0.2585068
    ---
    > statistic 8.03869435
    > p.value 0.01796469
    204a235,240
    > NULL
    >
    > $`4`
    > NULL
    >
    > $`5`
    206,207c242,243
    < statistic 3.6772322
    < p.value 0.1590374
    ---
    > statistic 1.1198024
    > p.value 0.5712655
    212c248
    < 'log Lik.' -601.9864 (df=5)
    ---
    > 'log Lik.' -621.198 (df=8)
    214c250
    < 'log Lik.' -601.9864 (df=4)
    ---
    > 'log Lik.' -621.198 (df=6)
    217c253
    < [1] -601.9864
    ---
    > [1] -621.198
    219c255
    < [1] -601.9864
    ---
    > [1] -621.198
    221c257
    < [1] -601.9864
    ---
    > [1] -621.198
    223c259
    < [1] -601.9864
    ---
    > [1] -621.198
    228c264
    < 'log Lik.' -601.9864 (df=4)
    ---
    > 'log Lik.' -621.198 (df=6)
    230c266
    < 'log Lik.' -623.9381 (df=NA)
    ---
    > 'log Lik.' -674.0438 (df=NA)
    236c272
    < 'log Lik.' 24.60555 (df=4)
    ---
    > 'log Lik.' 55.4331 (df=6)
    343c379
    < | | [3] tests <= 57.69231: n = 124
    ---
    > | | [3] tests <= 57.69231: n = 123
    345c381
    < | | 42.603550 -6.488818
    ---
    > | | 41.586538 -5.471806
    348c384
    < | | 54.967949 -1.729082
    ---
    > | | 54.807692 -1.568826
    353c389
    < | | [7] tests > 92.30769: n = 88
    ---
    > | | [7] tests > 92.30769: n = 89
    355c391
    < | | 87.73389 -10.65998
    ---
    > | | 89.06883 -11.99492
    360c396
    < Objective function: -282919.6
    ---
    > Objective function: -276926.2
    401c437
    < 184270
    ---
    > 167022.9
    413c449
    < 247262.1814 67543.0073 18595.5202 3297.5797 959.4839
    ---
    > 269734.5165 72661.7239 15878.6172 2973.8659 932.7745
    507,516c543,550
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 4: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 5: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 3: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 4: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    520,525c554,557
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    529,538c561,568
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 4: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 5: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,3 ; beta may be infinite.
    > 3: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 4: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    542,549c572,577
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 4: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 3: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    553,562c581,588
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 4: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 5: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,3 ; beta may be infinite.
    > 3: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 4: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    566,573c592,597
    < 1: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 2: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 3: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < Ran out of iterations and did not converge
    < 4: In fitter(X, Y, istrat, offset, init, control, weights = weights, :
    < one or more coefficients may be infinite
    ---
    > 1: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 2: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2 ; beta may be infinite.
    > 3: In fitter(X, Y, strats, offset, init, control, weights = weights, :
    > Loglik converged before variable 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269 ; beta may be infinite.
    Running the tests in 'tests/test-pmodel.R' failed.
    Complete output:
     > library("model4you")
     Loading required package: partykit
     Loading required package: grid
     Loading required package: libcoin
     Loading required package: mvtnorm
     > library("mvtnorm")
     > library("survival")
     > set.seed(123)
     >
     > ## function to simulate the data
     > sim_data <- function(n = 500, p = 10, beta = 3, sd = 1){
     +
     + ## treatment
     + lev <- c("C", "A")
     + a <- rep(factor(lev, labels = lev, levels = lev), length = n)
     +
     + ## correlated z variables
     + sigma <- diag(p)
     + sigma[sigma == 0] <- 0.2
     + ztemp <- rmvnorm(n, sigma = sigma)
     + z <- (pnorm(ztemp) * 2 * pi) - pi
     + colnames(z) <- paste0("z", 1:ncol(z))
     + z1 <- z[,1]
     +
     + ## outcome
     + y <- 7 + 0.2 * (a %in% "A") + beta * cos(z1) * (a %in% "A") + rnorm(n, 0, sd)
     +
     + data.frame(y = y, a = a, z)
     + }
     >
     > ## simulate data
     > beta <- 3
     > ntrain <- 500
     > ntest <- 100
     > simdata <- simdata_s <- sim_data(p = 5, beta = beta, n = ntrain)
     > tsimdata <- tsimdata_s <- sim_data(p = 5, beta = beta, n = ntest)
     > simdata_s$cens <- rep(1, ntrain)
     > tsimdata_s$cens <- rep(1, ntest)
     >
     > ## base model
     > basemodel_lm <- lm(y ~ a, data = simdata)
     > basemodel_wb <- survreg(Surv(y, cens) ~ a, data = simdata_s)
     >
     > ## forest
     > frst_lm <- pmforest(basemodel_lm, ntree = 10,
     + perturb = list(replace = FALSE, fraction = 0.632),
     + control = ctree_control(mincriterion = 0, lookahead = TRUE))
     No data given. I'm using data set simdata from the current environment parent.frame(). Please check if that is what you want.
     > frst_wb <- pmforest(basemodel_wb, ntree = 10,
     + perturb = list(replace = FALSE, fraction = 0.632),
     + control = ctree_control(mincriterion = 0, lookahead = TRUE))
     No data given. I'm using data set simdata_s from the current environment parent.frame(). Please check if that is what you want.
     >
     > ## personalised models
     > coefs_lm <- pmodel(x = frst_lm, newdata = tsimdata)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
     :
     --- package (from environment) ---
     model4you
     --- call from context ---
     pmodel(x = frst_lm, newdata = tsimdata)
     --- call from argument ---
     if (class(ret) == "matrix") ret <- t(ret)
     --- R stacktrace ---
     where 1: pmodel(x = frst_lm, newdata = tsimdata)
    
     --- value of length: 2 type: logical ---
     [1] TRUE FALSE
     --- function from context ---
     function (x = NULL, model = NULL, newdata = NULL, OOB = TRUE,
     fun = coef, return_attr = c("modelcall", "data", "similarity"))
     {
     if (is.matrix(x)) {
     if (is.null(model))
     stop("When x is a matrix, model must not be NULL. Please enter a model object.")
     pweights <- x
     }
     else {
     if (is.null(model))
     model <- x$info$model
     pweights <- predict(x, type = "weights", newdata = newdata,
     OOB = OOB)
     }
     get_pmod <- function(w) {
     if (sum(w) == 0)
     stop("The weights for one observation are all 0. A solution may be increasing ntree.")
     dat <- x$data
     dat$w <- w
     pmod <- update(model, weights = w, subset = w > 0, data = dat)
     fun(pmod)
     }
     ret <- apply(pweights, 2, get_pmod)
     if (class(ret) == "matrix")
     ret <- t(ret)
     if (all.equal(fun, identity) == TRUE)
     class(ret) <- c("pmodel_identity", class(ret))
     class(ret) <- c("pmodel", class(ret))
     if ("modelcall" %in% return_attr)
     attr(ret, "modelcall") <- getCall(model)
     if ("data" %in% return_attr)
     if (is.null(newdata))
     attr(ret, "data") <- x$data
     else attr(ret, "data") <- newdata
     if ("similarity" %in% return_attr)
     attr(ret, "similarity") <- pweights
     return(ret)
     }
     <bytecode: 0xa5bd6d0>
     <environment: namespace:model4you>
     --- function search by body ---
     Function pmodel in namespace model4you has this body.
     ----------- END OF FAILURE REPORT --------------
     Error in if (class(ret) == "matrix") ret <- t(ret) :
     the condition has length > 1
     Calls: pmodel
     In addition: Warning message:
     In model.frame.default(object$predictf, data = newdata, na.action = na.pass, :
     variable 'a' is not a factor
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang