Last updated on 2019-12-21 10:48:00 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1.0 | 28.77 | 233.46 | 262.23 | WARN | |
r-devel-linux-x86_64-debian-gcc | 0.1.0 | 24.32 | 195.17 | 219.49 | WARN | |
r-devel-linux-x86_64-fedora-clang | 0.1.0 | 394.83 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 0.1.0 | 362.55 | NOTE | |||
r-devel-windows-ix86+x86_64 | 0.1.0 | 66.00 | 382.00 | 448.00 | OK | |
r-devel-windows-ix86+x86_64-gcc8 | 0.1.0 | 64.00 | 402.00 | 466.00 | OK | |
r-patched-linux-x86_64 | 0.1.0 | OK | ||||
r-patched-solaris-x86 | 0.1.0 | 476.50 | NOTE | |||
r-release-linux-x86_64 | 0.1.0 | 22.54 | 265.58 | 288.12 | OK | |
r-release-windows-ix86+x86_64 | 0.1.0 | 44.00 | 281.00 | 325.00 | OK | |
r-release-osx-x86_64 | 0.1.0 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 0.1.0 | 25.00 | 343.00 | 368.00 | OK | |
r-oldrel-osx-x86_64 | 0.1.0 | NOTE |
Version: 0.1.0
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building 'Corr_Cont_System.Rmd' using rmarkdown
Loading required package: SimMultiCorrData
Attaching package: 'SimMultiCorrData'
The following object is masked from 'package:stats':
poly
Loading required package: SimCorrMix
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
SimRepeat
--- call from context ---
checkpar(M, method, error_type, means, vars, skews, skurts, fifths,
sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, same.var = same.var, betas.0 = betas.0,
corr.x = corr.x, corr.yx = corr.yx, corr.e = corr.e, quiet = TRUE)
--- call from argument ---
if (class(same.var) == "matrix") {
if (ncol(same.var) != 4)
stop("same.var should be matrix with 4 columns.")
} else if (class(same.var) == "numeric") {
if (length(same.var) > ncol(corr.x[[1]][[1]]))
stop("same.var should be vector with at most ncol(corr.x[[1]][[1]])\n elements.")
} else stop("same.var should be vector or matrix.")
--- R stacktrace ---
where 1: checkpar(M, method, error_type, means, vars, skews, skurts, fifths,
sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, same.var = same.var, betas.0 = betas.0,
corr.x = corr.x, corr.yx = corr.yx, corr.e = corr.e, quiet = TRUE)
where 2: eval(expr, envir, enclos)
where 3: eval(expr, envir, enclos)
where 4: withVisible(eval(expr, envir, enclos))
where 5: withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
error = eHandler, message = mHandler)
where 6: handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
enclos)), warning = wHandler, error = eHandler, message = mHandler))
where 7: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
where 8: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
debug = debug, last = i == length(out), use_try = stop_on_error !=
2L, keep_warning = keep_warning, keep_message = keep_message,
output_handler = output_handler, include_timing = include_timing)
where 9: evaluate::evaluate(...)
where 10: evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
options$include) 0L else 2L, output_handler = knit_handlers(options$render,
options))
where 11: in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
stop_on_error = if (options$error && options$include) 0L else 2L,
output_handler = knit_handlers(options$render, options)))
where 12: block_exec(params)
where 13: call_block(x)
where 14: process_group.block(group)
where 15: process_group(group)
where 16: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
error = function(e) {
setwd(wd)
cat(res, sep = "\n", file = output %n% "")
message("Quitting from lines ", paste(current_lines(i),
collapse = "-"), " (", knit_concord$get("infile"),
") ")
})
where 17: process_file(text, output)
where 18: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet)
where 19: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(),
...)
where 20: vweave_rmarkdown(...)
where 21: engine$weave(file, quiet = quiet, encoding = enc)
where 22: doTryCatch(return(expr), name, parentenv, handler)
where 23: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 24: tryCatchList(expr, classes, parentenv, handlers)
where 25: tryCatch({
engine$weave(file, quiet = quiet, encoding = enc)
setwd(startdir)
output <- find_vignette_product(name, by = "weave", engine = engine)
if (!have.makefile && vignette_is_tex(output)) {
texi2pdf(file = output, clean = FALSE, quiet = quiet)
output <- find_vignette_product(name, by = "texi2pdf",
engine = engine)
}
}, error = function(e) {
OK <<- FALSE
message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s",
file, conditionMessage(e)))
})
where 26: tools:::.buildOneVignette("Corr_Cont_System.Rmd", "/home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/SimRepeat.Rcheck/vign_test/SimRepeat",
TRUE, FALSE, "Corr_Cont_System", "UTF-8", "/tmp/Rtmp4qvEIV/file5922651ce0b6.rds")
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (M = NULL, method = c("Fleishman", "Polynomial"), error_type = c("non_mix",
"mix"), means = list(), vars = list(), skews = list(), skurts = list(),
fifths = list(), sixths = list(), Six = list(), mix_pis = list(),
mix_mus = list(), mix_sigmas = list(), mix_skews = list(),
mix_skurts = list(), mix_fifths = list(), mix_sixths = list(),
mix_Six = list(), marginal = list(), support = list(), lam = list(),
p_zip = list(), pois_eps = list(), size = list(), prob = list(),
mu = list(), p_zinb = list(), nb_eps = list(), corr.x = list(),
corr.yx = list(), corr.e = NULL, same.var = NULL, subj.var = NULL,
int.var = NULL, tint.var = NULL, betas.0 = NULL, betas = list(),
betas.subj = list(), betas.int = list(), betas.t = NULL,
betas.tint = list(), rand.int = c("none", "non_mix", "mix"),
rand.tsl = c("none", "non_mix", "mix"), rand.var = NULL,
corr.u = list(), quiet = FALSE)
{
if (length(error_type) != 1)
stop("Please choose one type of distribution for all of the error terms:\n mix if all errors have continuous mixture distributions,\n non_mix if all errors have continuous non-mixture distributions.")
if (length(method) != 1)
stop("Choose a PMT method for the continuous variables.")
K.cat <- rep(0, M)
K.pois <- rep(0, M)
K.nb <- rep(0, M)
if (length(marginal) > 0)
K.cat <- lengths(marginal)
if (max(K.cat) > 0) {
if (!all(unlist(lapply(marginal, function(x) unlist(lapply(x,
function(y) (sort(y) == y & min(y) > 0 & max(y) <
1)))))))
stop("Error in given marginal distributions.")
if (length(support) > 0) {
if (!all(K.cat %in% lengths(support)))
stop("Lengths of support do not match lengths of marginal.")
k.cat <- unlist(lapply(marginal, function(x) lengths(x) +
1))
k.cat2 <- unlist(lapply(support, function(x) lengths(x)))
if (!all(mapply(function(x, y) (if (y == 0 | y ==
x) TRUE else FALSE), k.cat, k.cat2)))
stop("Error in given support values.")
}
}
if (length(lam) > 0)
K.pois <- lengths(lam)
if (max(K.pois) > 0) {
if (sum(sapply(lam, function(x) sum(x < 0)) > 0) > 0)
stop("Lambda values cannot be negative.")
if (class(p_zip) == "numeric" & length(p_zip) == 1 &
quiet == FALSE) {
message("All p_zip values will be set at p_zip.")
}
else if (class(p_zip) == "numeric" & length(p_zip) ==
M & quiet == FALSE) {
message("All p_zip[[p]] values will be set at p_zip[p].")
}
else if (class(p_zip) == "list" & length(p_zip) == M &
quiet == FALSE) {
for (p in 1:M) {
if (length(p_zip[[p]]) != K.pois[p])
message(paste("Missing value of p_zip for equation ",
p, " will be set at 0.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All p_zip values will be set at 0.")
}
if (class(pois_eps) == "numeric" & length(pois_eps) ==
1 & quiet == FALSE) {
message("All pois_eps values will be set at pois_eps.")
}
else if (class(pois_eps) == "numeric" & length(pois_eps) ==
M & quiet == FALSE) {
message("All pois_eps[[p]] values will be set at pois_eps[p].")
}
else if (class(pois_eps) == "list" & length(pois_eps) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(pois_eps[[p]]) != K.pois[p])
message(paste("Missing value of pois_eps for equation ",
p, " will be set at 0.0001.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All pois_eps values will be set at 0.0001.")
}
}
if (length(size) > 0)
K.nb <- lengths(size)
if (max(K.nb) > 0) {
if (sum(sapply(size, function(x) sum(x < 0)) > 0) > 0)
stop("Size values cannot be negative.")
if (length(prob) > 0) {
if (sum(sapply(prob, function(x) sum(x < 0)) > 0) >
0)
stop("Prob values cannot be negative.")
if (!all(lengths(prob) %in% K.nb))
stop("Check lengths of prob vectors.")
}
if (length(mu) > 0) {
if (sum(sapply(mu, function(x) sum(x < 0)) > 0) >
0)
stop("mu values cannot be negative.")
if (!all(lengths(mu) %in% K.nb))
stop("Check lengths of mu vectors.")
}
if (class(p_zinb) == "numeric" & length(p_zinb) == 1 &
quiet == FALSE) {
message("All p_zinb values will be set at p_zinb.")
}
else if (class(p_zinb) == "numeric" & length(p_zinb) ==
M & quiet == FALSE) {
message("All p_zinb[[p]] values will be set at p_zinb[p].")
}
else if (class(p_zinb) == "list" & length(p_zinb) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(p_zinb[[p]]) != K.nb[p])
message(paste("Missing value of p_zinb for equation ",
p, " will be set at 0.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All p_zinb values will be set at 0.")
}
if (class(nb_eps) == "numeric" & length(nb_eps) == 1 &
quiet == FALSE) {
message("All nb_eps values will be set at nb_eps.")
}
else if (class(nb_eps) == "numeric" & length(nb_eps) ==
M & quiet == FALSE) {
message("All nb_eps[[p]] values will be set at nb_eps[p].")
}
else if (class(nb_eps) == "list" & length(nb_eps) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(nb_eps[[p]]) != K.nb[p])
message(paste("Missing value of nb_eps for equation ",
p, " will be set at 0.0001.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All nb_eps values will be set at 0.0001.")
}
}
if (!(length(means) %in% c(M, 1 + M, 2 * M)) | !(length(vars) %in%
c(M, 1 + M, 2 * M)))
stop("Each equation must have a continuous error term with means given in\n means and variances in vars. Length of means and vars\n should be M, 1 + M, or 2 * M.")
M0 <- length(means)
K.mix <- rep(0, M0)
K.comp <- rep(0, M0)
if (length(mix_pis) > 0) {
if (length(mix_pis) == M0) {
K.mix <- lengths(mix_pis)
K.comp <- lengths(lapply(mix_pis, unlist))
}
else {
K.mix <- c(lengths(mix_pis), rep(0, M0 - M))
K.comp <- c(lengths(lapply(mix_pis, unlist)), rep(0,
M0 - M))
}
}
K.cont <- lengths(vars) - K.mix
if (!all(lengths(means) %in% (K.cont + K.mix)))
stop("Lengths of mean vectors should be same as lengths of vars vectors.")
if (max(K.cont) > 0) {
if (!all(lengths(skews) %in% K.cont) | !all(lengths(skurts) %in%
K.cont))
stop("Lengths of continuous non-mixture lists should equal lengths of\n vars minus the number of continuous mixture variables.")
if (method == "Polynomial") {
if (!all(lengths(fifths) %in% K.cont) | !all(lengths(sixths) %in%
K.cont))
stop("Lengths of continuous non-mixture lists should equal lengths of\n vars minus the number of continuous mixture variables.")
if (!(length(Six) %in% c(0, M, 1 + M, 2 * M)))
stop("Six should be either list() or a list of length M, M + 1,\n or 2 * M.")
if (length(Six) != 0) {
for (i in 1:length(Six)) {
if (!(length(Six[[i]]) %in% c(0, K.cont[i])))
stop("The i-th element of Six should be either NULL or a list of\n the same length as the i-th element of sixths.")
}
}
}
}
if (length(mix_pis) > 0) {
if (!all(lengths(mix_mus) %in% K.mix) | !all(lengths(mix_sigmas) %in%
K.mix) | !all(lengths(mix_skews) %in% K.mix) | !all(lengths(mix_skurts) %in%
K.mix))
stop("Lengths of mixing parameter lists should be equal to the number\n of mixture variables.")
if (method == "Polynomial") {
if (!all(lengths(mix_fifths) %in% K.mix) | !all(lengths(mix_sixths) %in%
K.mix))
stop("Lengths of mixing parameter lists should be equal to the number\n of mixture variables.")
if (!(length(mix_Six) %in% c(0, M, M + 1, 2 * M)))
stop("mix_Six should be either list() or a list of length M, M + 1,\n or 2 * M.")
if (length(mix_Six) != 0) {
for (i in 1:length(mix_Six)) {
if (!(length(mix_Six[[i]]) %in% c(0, K.comp[i])))
stop("The i-th element of mix_Six should be either NULL or a list\n of the same length as the i-th element of mix_sixths.")
}
}
}
}
if (length(means) %in% c(2 * M, M + 1)) {
means <- means[1:M]
vars <- vars[1:M]
}
if (length(mix_pis) %in% c(2 * M, M + 1))
mix_pis <- mix_pis[1:M]
K.mix <- rep(0, M)
K.comp <- rep(0, M)
K.error <- rep(0, M)
if (length(mix_pis) > 0) {
K.mix <- lengths(mix_pis)
K.comp <- sapply(lapply(mix_pis, unlist), length)
}
K.cont <- lengths(vars) - K.mix
k.mix <- c(0, cumsum(K.mix))
if (error_type == "mix") {
K.error <- sapply(mix_pis, function(x) lengths(x[length(x)]))
K.x <- K.cont + K.comp - K.error + K.cat + K.pois + K.nb
K.cont2 <- K.cont
K.mix2 <- K.mix - 1
}
else {
K.x <- K.cont + K.comp - 1 + K.cat + K.pois + K.nb
K.cont2 <- K.cont - 1
K.mix2 <- K.mix
}
if (sum(lengths(means) == 0) > 0 | sum(lengths(vars) == 0) >
0)
stop("Each equation must have a continuous error term with means given in\n means and variances in vars.")
if (length(corr.x) > 0) {
if (length(corr.x) != M)
stop("corr.x should be list of length M.")
if (!all(lengths(corr.x) %in% c(0, M)))
stop("corr.x should be list of lists of length M.")
for (i in 1:M) {
if (K.x[i] == 0)
next
if (!all(sapply(corr.x[[i]], function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, K.x[i])))
stop("corr.x[[i]] should be list of matrices with number of rows equal\n to number of independent variables for equation i.")
for (j in 1:M) {
if (K.x[j] == 0)
next
if (ncol(corr.x[[i]][[j]]) != K.x[j])
stop("corr.x[[i]][[j]] should be matrix with number of cols equal\n to number of independent variables for equation j.")
}
}
}
if (length(corr.yx) > 0) {
if (length(corr.yx) != M)
stop("corr.yx should be a list of length M.")
if (!all(sapply(corr.yx, function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, 1)))
stop("corr.yx should be a list of matrices with 1 row each.")
if (!all(sapply(corr.yx, function(x) if (is.null(x)) 0 else ncol(x)) %in%
K.x) & !all(sapply(corr.yx, function(x) if (is.null(x)) 0 else ncol(x)) %in%
(K.cont2 + K.mix2)))
stop("corr.yx should be a list of matrices with 1 row each.\n The number of columns should either equal the number of non-mixture\n plus components of mixture variables or the number of non-mixture\n plus mixture variables.")
}
K.r <- rep(0, M)
if (class(corr.u) == "list" & length(corr.u) > 0) {
K.r <- sapply(mapply("[", corr.u, lengths(corr.u), SIMPLIFY = FALSE),
function(x) if (is.null(x))
0
else nrow(x[[1]]))
if (length(corr.u) != M)
stop("corr.u should be list of length M.")
if (!all(lengths(corr.u) %in% c(0, M)))
stop("corr.u should be list of lists of length M.")
for (i in 1:M) {
if (K.r[i] == 0)
next
if (!all(sapply(corr.u[[i]], function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, K.r[i])))
stop("corr.u[[i]] should be list of matrices with number of rows equal\n to number of random effects for equation i.")
for (j in 1:M) {
if (K.r[j] == 0)
next
if (ncol(corr.u[[i]][[j]]) != K.r[j])
stop("corr.u[[i]][[j]] should be matrix with number of cols equal\n to number of random effects for equation j.")
}
}
}
if (max(K.r) > 0) {
if (length(rand.int) != M & quiet == FALSE)
message("The random intercept for all equations will be set at\n rand.int[1].")
if (length(rand.tsl) != M & quiet == FALSE)
message("The random time slope for all equations will be set at\n rand.tsl[1].")
if (!is.null(rand.var)) {
if (ncol(rand.var) != 2)
stop("rand.var should be matrix with 2 columns.")
}
}
if (quiet == FALSE) {
if (is.null(betas.0))
message("The intercepts will all be set at 0.")
if (length(betas.0) < M & length(betas.0) > 0)
message("The intercepts will all be set at betas.0[1].")
if (length(corr.yx) == 0 & is.null(betas.t))
message("The time slopes will all be set at 1.")
if (length(betas.t) < M & length(betas.t) > 0)
message("The time slopes will all be set at betas.t[1].")
}
if (!is.null(same.var)) {
if (class(same.var) == "matrix") {
if (ncol(same.var) != 4)
stop("same.var should be matrix with 4 columns.")
}
else if (class(same.var) == "numeric") {
if (length(same.var) > ncol(corr.x[[1]][[1]]))
stop("same.var should be vector with at most ncol(corr.x[[1]][[1]])\n elements.")
}
else stop("same.var should be vector or matrix.")
}
if (!is.null(subj.var)) {
if (ncol(subj.var) != 2)
stop("subj.var should be matrix with 2 columns.")
}
if (!is.null(int.var)) {
if (ncol(int.var) != 3)
stop("int.var should be matrix with 3 columns.")
}
if (!is.null(tint.var)) {
if (ncol(tint.var) != 2)
stop("tint.var should be matrix with 2 columns.")
}
if (length(corr.yx) == 0 & length(betas) == 0 & quiet ==
FALSE)
message("All betas will be set to 0 if using corrsys or corrsys2.")
if (class(betas) == "list" & length(betas) == 1 & quiet ==
FALSE)
message("All betas will be set to betas[[1]].")
if (class(betas) != "list" | (class(betas) == "list" & !(length(betas) %in%
c(0, 1, M))))
stop("Betas should be list of length 0, 1 or M.")
if (length(betas.subj) == 0 & !is.null(subj.var) & quiet ==
FALSE)
message("All betas.subj will be set to 0 if using corrsys or corrsys2.")
if (class(betas.subj) == "list" & length(betas.subj) == 1 &
quiet == FALSE)
message("All betas.subj will be set to betas.subj[[1]] if using corrsys or\n corrsys2.")
if (class(betas.subj) != "list" | (class(betas.subj) == "list" &
!(length(betas.subj) %in% c(0, 1, M))))
stop("betas.subj should be list of length 0, 1 or M.")
if (length(betas.int) == 0 & !is.null(int.var) & quiet ==
FALSE)
message("All betas.int will be set to 0 if using corrsys or corrsys2.")
if (class(betas.int) == "list" & length(betas.int) == 1 &
quiet == FALSE)
message("All betas.int will be set to betas.int[[1]] if using corrsys or\n corrsys2.")
if (class(betas.int) != "list" | (class(betas.int) == "list" &
!(length(betas.int) %in% c(0, 1, M))))
stop("betas.int should be list of length 0, 1 or M.")
if (length(betas.tint) == 0 & !is.null(tint.var) & quiet ==
FALSE)
message("All betas.tint will be set to 0 if using corrsys or corrsys2.")
if (class(betas.tint) == "list" & length(betas.tint) == 1 &
quiet == FALSE)
message("All betas.tint will be set to betas.tint[[1]] if using corrsys or\n corrsys2.")
if (class(betas.tint) != "list" | (class(betas.tint) == "list" &
!(length(betas.tint) %in% c(0, 1, M))))
stop("betas.tint should be list of length 0, 1 or M.")
return(TRUE)
}
<bytecode: 0xafdcf10>
<environment: namespace:SimRepeat>
--- function search by body ---
Function checkpar in namespace SimRepeat has this body.
----------- END OF FAILURE REPORT --------------
Quitting from lines 541-545 (Corr_Cont_System.Rmd)
Error: processing vignette 'Corr_Cont_System.Rmd' failed with diagnostics:
the condition has length > 1
--- failed re-building 'Corr_Cont_System.Rmd'
--- re-building 'Corr_MultiVarType_System.Rmd' using rmarkdown
Loading required package: SimMultiCorrData
Attaching package: 'SimMultiCorrData'
The following object is masked from 'package:stats':
poly
Loading required package: SimCorrMix
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
SimRepeat
--- call from context ---
checkpar(M, method, error_type, means, vars, skews, skurts, fifths,
sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, marginal, support, lam,
p_zip, pois_eps = list(), size, prob, mu, p_zinb, nb_eps = list(),
corr.x, corr.yx = list(), corr.e, same.var, subj.var, int.var,
tint.var, betas.0, betas, betas.subj, betas.int, betas.t,
betas.tint, quiet = TRUE)
--- call from argument ---
if (class(same.var) == "matrix") {
if (ncol(same.var) != 4)
stop("same.var should be matrix with 4 columns.")
} else if (class(same.var) == "numeric") {
if (length(same.var) > ncol(corr.x[[1]][[1]]))
stop("same.var should be vector with at most ncol(corr.x[[1]][[1]])\n elements.")
} else stop("same.var should be vector or matrix.")
--- R stacktrace ---
where 1: checkpar(M, method, error_type, means, vars, skews, skurts, fifths,
sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, marginal, support, lam,
p_zip, pois_eps = list(), size, prob, mu, p_zinb, nb_eps = list(),
corr.x, corr.yx = list(), corr.e, same.var, subj.var, int.var,
tint.var, betas.0, betas, betas.subj, betas.int, betas.t,
betas.tint, quiet = TRUE)
where 2: eval(expr, envir, enclos)
where 3: eval(expr, envir, enclos)
where 4: withVisible(eval(expr, envir, enclos))
where 5: withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
error = eHandler, message = mHandler)
where 6: handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
enclos)), warning = wHandler, error = eHandler, message = mHandler))
where 7: timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
where 8: evaluate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
debug = debug, last = i == length(out), use_try = stop_on_error !=
2L, keep_warning = keep_warning, keep_message = keep_message,
output_handler = output_handler, include_timing = include_timing)
where 9: evaluate::evaluate(...)
where 10: evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
options$include) 0L else 2L, output_handler = knit_handlers(options$render,
options))
where 11: in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
stop_on_error = if (options$error && options$include) 0L else 2L,
output_handler = knit_handlers(options$render, options)))
where 12: block_exec(params)
where 13: call_block(x)
where 14: process_group.block(group)
where 15: process_group(group)
where 16: withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
error = function(e) {
setwd(wd)
cat(res, sep = "\n", file = output %n% "")
message("Quitting from lines ", paste(current_lines(i),
collapse = "-"), " (", knit_concord$get("infile"),
") ")
})
where 17: process_file(text, output)
where 18: knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet)
where 19: rmarkdown::render(file, encoding = encoding, quiet = quiet, envir = globalenv(),
...)
where 20: vweave_rmarkdown(...)
where 21: engine$weave(file, quiet = quiet, encoding = enc)
where 22: doTryCatch(return(expr), name, parentenv, handler)
where 23: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 24: tryCatchList(expr, classes, parentenv, handlers)
where 25: tryCatch({
engine$weave(file, quiet = quiet, encoding = enc)
setwd(startdir)
output <- find_vignette_product(name, by = "weave", engine = engine)
if (!have.makefile && vignette_is_tex(output)) {
texi2pdf(file = output, clean = FALSE, quiet = quiet)
output <- find_vignette_product(name, by = "texi2pdf",
engine = engine)
}
}, error = function(e) {
OK <<- FALSE
message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s",
file, conditionMessage(e)))
})
where 26: tools:::.buildOneVignette("Corr_MultiVarType_System.Rmd", "/home/hornik/tmp/R.check/r-devel-clang/Work/PKGS/SimRepeat.Rcheck/vign_test/SimRepeat",
TRUE, FALSE, "Corr_MultiVarType_System", "UTF-8", "/tmp/Rtmp4qvEIV/file592276ea8d98.rds")
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (M = NULL, method = c("Fleishman", "Polynomial"), error_type = c("non_mix",
"mix"), means = list(), vars = list(), skews = list(), skurts = list(),
fifths = list(), sixths = list(), Six = list(), mix_pis = list(),
mix_mus = list(), mix_sigmas = list(), mix_skews = list(),
mix_skurts = list(), mix_fifths = list(), mix_sixths = list(),
mix_Six = list(), marginal = list(), support = list(), lam = list(),
p_zip = list(), pois_eps = list(), size = list(), prob = list(),
mu = list(), p_zinb = list(), nb_eps = list(), corr.x = list(),
corr.yx = list(), corr.e = NULL, same.var = NULL, subj.var = NULL,
int.var = NULL, tint.var = NULL, betas.0 = NULL, betas = list(),
betas.subj = list(), betas.int = list(), betas.t = NULL,
betas.tint = list(), rand.int = c("none", "non_mix", "mix"),
rand.tsl = c("none", "non_mix", "mix"), rand.var = NULL,
corr.u = list(), quiet = FALSE)
{
if (length(error_type) != 1)
stop("Please choose one type of distribution for all of the error terms:\n mix if all errors have continuous mixture distributions,\n non_mix if all errors have continuous non-mixture distributions.")
if (length(method) != 1)
stop("Choose a PMT method for the continuous variables.")
K.cat <- rep(0, M)
K.pois <- rep(0, M)
K.nb <- rep(0, M)
if (length(marginal) > 0)
K.cat <- lengths(marginal)
if (max(K.cat) > 0) {
if (!all(unlist(lapply(marginal, function(x) unlist(lapply(x,
function(y) (sort(y) == y & min(y) > 0 & max(y) <
1)))))))
stop("Error in given marginal distributions.")
if (length(support) > 0) {
if (!all(K.cat %in% lengths(support)))
stop("Lengths of support do not match lengths of marginal.")
k.cat <- unlist(lapply(marginal, function(x) lengths(x) +
1))
k.cat2 <- unlist(lapply(support, function(x) lengths(x)))
if (!all(mapply(function(x, y) (if (y == 0 | y ==
x) TRUE else FALSE), k.cat, k.cat2)))
stop("Error in given support values.")
}
}
if (length(lam) > 0)
K.pois <- lengths(lam)
if (max(K.pois) > 0) {
if (sum(sapply(lam, function(x) sum(x < 0)) > 0) > 0)
stop("Lambda values cannot be negative.")
if (class(p_zip) == "numeric" & length(p_zip) == 1 &
quiet == FALSE) {
message("All p_zip values will be set at p_zip.")
}
else if (class(p_zip) == "numeric" & length(p_zip) ==
M & quiet == FALSE) {
message("All p_zip[[p]] values will be set at p_zip[p].")
}
else if (class(p_zip) == "list" & length(p_zip) == M &
quiet == FALSE) {
for (p in 1:M) {
if (length(p_zip[[p]]) != K.pois[p])
message(paste("Missing value of p_zip for equation ",
p, " will be set at 0.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All p_zip values will be set at 0.")
}
if (class(pois_eps) == "numeric" & length(pois_eps) ==
1 & quiet == FALSE) {
message("All pois_eps values will be set at pois_eps.")
}
else if (class(pois_eps) == "numeric" & length(pois_eps) ==
M & quiet == FALSE) {
message("All pois_eps[[p]] values will be set at pois_eps[p].")
}
else if (class(pois_eps) == "list" & length(pois_eps) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(pois_eps[[p]]) != K.pois[p])
message(paste("Missing value of pois_eps for equation ",
p, " will be set at 0.0001.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All pois_eps values will be set at 0.0001.")
}
}
if (length(size) > 0)
K.nb <- lengths(size)
if (max(K.nb) > 0) {
if (sum(sapply(size, function(x) sum(x < 0)) > 0) > 0)
stop("Size values cannot be negative.")
if (length(prob) > 0) {
if (sum(sapply(prob, function(x) sum(x < 0)) > 0) >
0)
stop("Prob values cannot be negative.")
if (!all(lengths(prob) %in% K.nb))
stop("Check lengths of prob vectors.")
}
if (length(mu) > 0) {
if (sum(sapply(mu, function(x) sum(x < 0)) > 0) >
0)
stop("mu values cannot be negative.")
if (!all(lengths(mu) %in% K.nb))
stop("Check lengths of mu vectors.")
}
if (class(p_zinb) == "numeric" & length(p_zinb) == 1 &
quiet == FALSE) {
message("All p_zinb values will be set at p_zinb.")
}
else if (class(p_zinb) == "numeric" & length(p_zinb) ==
M & quiet == FALSE) {
message("All p_zinb[[p]] values will be set at p_zinb[p].")
}
else if (class(p_zinb) == "list" & length(p_zinb) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(p_zinb[[p]]) != K.nb[p])
message(paste("Missing value of p_zinb for equation ",
p, " will be set at 0.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All p_zinb values will be set at 0.")
}
if (class(nb_eps) == "numeric" & length(nb_eps) == 1 &
quiet == FALSE) {
message("All nb_eps values will be set at nb_eps.")
}
else if (class(nb_eps) == "numeric" & length(nb_eps) ==
M & quiet == FALSE) {
message("All nb_eps[[p]] values will be set at nb_eps[p].")
}
else if (class(nb_eps) == "list" & length(nb_eps) ==
M & quiet == FALSE) {
for (p in 1:M) {
if (length(nb_eps[[p]]) != K.nb[p])
message(paste("Missing value of nb_eps for equation ",
p, " will be set at 0.0001.", sep = ""))
}
}
else if (quiet == FALSE) {
message("All nb_eps values will be set at 0.0001.")
}
}
if (!(length(means) %in% c(M, 1 + M, 2 * M)) | !(length(vars) %in%
c(M, 1 + M, 2 * M)))
stop("Each equation must have a continuous error term with means given in\n means and variances in vars. Length of means and vars\n should be M, 1 + M, or 2 * M.")
M0 <- length(means)
K.mix <- rep(0, M0)
K.comp <- rep(0, M0)
if (length(mix_pis) > 0) {
if (length(mix_pis) == M0) {
K.mix <- lengths(mix_pis)
K.comp <- lengths(lapply(mix_pis, unlist))
}
else {
K.mix <- c(lengths(mix_pis), rep(0, M0 - M))
K.comp <- c(lengths(lapply(mix_pis, unlist)), rep(0,
M0 - M))
}
}
K.cont <- lengths(vars) - K.mix
if (!all(lengths(means) %in% (K.cont + K.mix)))
stop("Lengths of mean vectors should be same as lengths of vars vectors.")
if (max(K.cont) > 0) {
if (!all(lengths(skews) %in% K.cont) | !all(lengths(skurts) %in%
K.cont))
stop("Lengths of continuous non-mixture lists should equal lengths of\n vars minus the number of continuous mixture variables.")
if (method == "Polynomial") {
if (!all(lengths(fifths) %in% K.cont) | !all(lengths(sixths) %in%
K.cont))
stop("Lengths of continuous non-mixture lists should equal lengths of\n vars minus the number of continuous mixture variables.")
if (!(length(Six) %in% c(0, M, 1 + M, 2 * M)))
stop("Six should be either list() or a list of length M, M + 1,\n or 2 * M.")
if (length(Six) != 0) {
for (i in 1:length(Six)) {
if (!(length(Six[[i]]) %in% c(0, K.cont[i])))
stop("The i-th element of Six should be either NULL or a list of\n the same length as the i-th element of sixths.")
}
}
}
}
if (length(mix_pis) > 0) {
if (!all(lengths(mix_mus) %in% K.mix) | !all(lengths(mix_sigmas) %in%
K.mix) | !all(lengths(mix_skews) %in% K.mix) | !all(lengths(mix_skurts) %in%
K.mix))
stop("Lengths of mixing parameter lists should be equal to the number\n of mixture variables.")
if (method == "Polynomial") {
if (!all(lengths(mix_fifths) %in% K.mix) | !all(lengths(mix_sixths) %in%
K.mix))
stop("Lengths of mixing parameter lists should be equal to the number\n of mixture variables.")
if (!(length(mix_Six) %in% c(0, M, M + 1, 2 * M)))
stop("mix_Six should be either list() or a list of length M, M + 1,\n or 2 * M.")
if (length(mix_Six) != 0) {
for (i in 1:length(mix_Six)) {
if (!(length(mix_Six[[i]]) %in% c(0, K.comp[i])))
stop("The i-th element of mix_Six should be either NULL or a list\n of the same length as the i-th element of mix_sixths.")
}
}
}
}
if (length(means) %in% c(2 * M, M + 1)) {
means <- means[1:M]
vars <- vars[1:M]
}
if (length(mix_pis) %in% c(2 * M, M + 1))
mix_pis <- mix_pis[1:M]
K.mix <- rep(0, M)
K.comp <- rep(0, M)
K.error <- rep(0, M)
if (length(mix_pis) > 0) {
K.mix <- lengths(mix_pis)
K.comp <- sapply(lapply(mix_pis, unlist), length)
}
K.cont <- lengths(vars) - K.mix
k.mix <- c(0, cumsum(K.mix))
if (error_type == "mix") {
K.error <- sapply(mix_pis, function(x) lengths(x[length(x)]))
K.x <- K.cont + K.comp - K.error + K.cat + K.pois + K.nb
K.cont2 <- K.cont
K.mix2 <- K.mix - 1
}
else {
K.x <- K.cont + K.comp - 1 + K.cat + K.pois + K.nb
K.cont2 <- K.cont - 1
K.mix2 <- K.mix
}
if (sum(lengths(means) == 0) > 0 | sum(lengths(vars) == 0) >
0)
stop("Each equation must have a continuous error term with means given in\n means and variances in vars.")
if (length(corr.x) > 0) {
if (length(corr.x) != M)
stop("corr.x should be list of length M.")
if (!all(lengths(corr.x) %in% c(0, M)))
stop("corr.x should be list of lists of length M.")
for (i in 1:M) {
if (K.x[i] == 0)
next
if (!all(sapply(corr.x[[i]], function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, K.x[i])))
stop("corr.x[[i]] should be list of matrices with number of rows equal\n to number of independent variables for equation i.")
for (j in 1:M) {
if (K.x[j] == 0)
next
if (ncol(corr.x[[i]][[j]]) != K.x[j])
stop("corr.x[[i]][[j]] should be matrix with number of cols equal\n to number of independent variables for equation j.")
}
}
}
if (length(corr.yx) > 0) {
if (length(corr.yx) != M)
stop("corr.yx should be a list of length M.")
if (!all(sapply(corr.yx, function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, 1)))
stop("corr.yx should be a list of matrices with 1 row each.")
if (!all(sapply(corr.yx, function(x) if (is.null(x)) 0 else ncol(x)) %in%
K.x) & !all(sapply(corr.yx, function(x) if (is.null(x)) 0 else ncol(x)) %in%
(K.cont2 + K.mix2)))
stop("corr.yx should be a list of matrices with 1 row each.\n The number of columns should either equal the number of non-mixture\n plus components of mixture variables or the number of non-mixture\n plus mixture variables.")
}
K.r <- rep(0, M)
if (class(corr.u) == "list" & length(corr.u) > 0) {
K.r <- sapply(mapply("[", corr.u, lengths(corr.u), SIMPLIFY = FALSE),
function(x) if (is.null(x))
0
else nrow(x[[1]]))
if (length(corr.u) != M)
stop("corr.u should be list of length M.")
if (!all(lengths(corr.u) %in% c(0, M)))
stop("corr.u should be list of lists of length M.")
for (i in 1:M) {
if (K.r[i] == 0)
next
if (!all(sapply(corr.u[[i]], function(x) if (is.null(x)) 0 else nrow(x)) %in%
c(0, K.r[i])))
stop("corr.u[[i]] should be list of matrices with number of rows equal\n to number of random effects for equation i.")
for (j in 1:M) {
if (K.r[j] == 0)
next
if (ncol(corr.u[[i]][[j]]) != K.r[j])
stop("corr.u[[i]][[j]] should be matrix with number of cols equal\n to number of random effects for equation j.")
}
}
}
if (max(K.r) > 0) {
if (length(rand.int) != M & quiet == FALSE)
message("The random intercept for all equations will be set at\n rand.int[1].")
if (length(rand.tsl) != M & quiet == FALSE)
message("The random time slope for all equations will be set at\n rand.tsl[1].")
if (!is.null(rand.var)) {
if (ncol(rand.var) != 2)
stop("rand.var should be matrix with 2 columns.")
}
}
if (quiet == FALSE) {
if (is.null(betas.0))
message("The intercepts will all be set at 0.")
if (length(betas.0) < M & length(betas.0) > 0)
message("The intercepts will all be set at betas.0[1].")
if (length(corr.yx) == 0 & is.null(betas.t))
message("The time slopes will all be set at 1.")
if (length(betas.t) < M & length(betas.t) > 0)
message("The time slopes will all be set at betas.t[1].")
}
if (!is.null(same.var)) {
if (class(same.var) == "matrix") {
if (ncol(same.var) != 4)
stop("same.var should be matrix with 4 columns.")
}
else if (class(same.var) == "numeric") {
if (length(same.var) > ncol(corr.x[[1]][[1]]))
stop("same.var should be vector with at most ncol(corr.x[[1]][[1]])\n elements.")
}
else stop("same.var should be vector or matrix.")
}
if (!is.null(subj.var)) {
if (ncol(subj.var) != 2)
stop("subj.var should be matrix with 2 columns.")
}
if (!is.null(int.var)) {
if (ncol(int.var) != 3)
stop("int.var should be matrix with 3 columns.")
}
if (!is.null(tint.var)) {
if (ncol(tint.var) != 2)
stop("tint.var should be matrix with 2 columns.")
}
if (length(corr.yx) == 0 & length(betas) == 0 & quiet ==
FALSE)
message("All betas will be set to 0 if using corrsys or corrsys2.")
if (class(betas) == "list" & length(betas) == 1 & quiet ==
FALSE)
message("All betas will be set to betas[[1]].")
if (class(betas) != "list" | (class(betas) == "list" & !(length(betas) %in%
c(0, 1, M))))
stop("Betas should be list of length 0, 1 or M.")
if (length(betas.subj) == 0 & !is.null(subj.var) & quiet ==
FALSE)
message("All betas.subj will be set to 0 if using corrsys or corrsys2.")
if (class(betas.subj) == "list" & length(betas.subj) == 1 &
quiet == FALSE)
message("All betas.subj will be set to betas.subj[[1]] if using corrsys or\n corrsys2.")
if (class(betas.subj) != "list" | (class(betas.subj) == "list" &
!(length(betas.subj) %in% c(0, 1, M))))
stop("betas.subj should be list of length 0, 1 or M.")
if (length(betas.int) == 0 & !is.null(int.var) & quiet ==
FALSE)
message("All betas.int will be set to 0 if using corrsys or corrsys2.")
if (class(betas.int) == "list" & length(betas.int) == 1 &
quiet == FALSE)
message("All betas.int will be set to betas.int[[1]] if using corrsys or\n corrsys2.")
if (class(betas.int) != "list" | (class(betas.int) == "list" &
!(length(betas.int) %in% c(0, 1, M))))
stop("betas.int should be list of length 0, 1 or M.")
if (length(betas.tint) == 0 & !is.null(tint.var) & quiet ==
FALSE)
message("All betas.tint will be set to 0 if using corrsys or corrsys2.")
if (class(betas.tint) == "list" & length(betas.tint) == 1 &
quiet == FALSE)
message("All betas.tint will be set to betas.tint[[1]] if using corrsys or\n corrsys2.")
if (class(betas.tint) != "list" | (class(betas.tint) == "list" &
!(length(betas.tint) %in% c(0, 1, M))))
stop("betas.tint should be list of length 0, 1 or M.")
return(TRUE)
}
<bytecode: 0x97cdcb8>
<environment: namespace:SimRepeat>
--- function search by body ---
Function checkpar in namespace SimRepeat has this body.
----------- END OF FAILURE REPORT --------------
Quitting from lines 531-537 (Corr_MultiVarType_System.Rmd)
Error: processing vignette 'Corr_MultiVarType_System.Rmd' failed with diagnostics:
the condition has length > 1
--- failed re-building 'Corr_MultiVarType_System.Rmd'
--- re-building 'HLM_Approach.Rmd' using rmarkdown
--- finished re-building 'HLM_Approach.Rmd'
--- re-building 'Theory_Cont_System.Rmd' using rmarkdown
--- finished re-building 'Theory_Cont_System.Rmd'
SUMMARY: processing the following files failed:
'Corr_Cont_System.Rmd' 'Corr_MultiVarType_System.Rmd'
Error: Vignette re-building failed.
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.1.0
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘Corr_Cont_System.Rmd’ using rmarkdown
Loading required package: SimMultiCorrData
Attaching package: 'SimMultiCorrData'
The following object is masked from 'package:stats':
poly
Loading required package: SimCorrMix
Warning in if (class(same.var) == "matrix") { :
the condition has length > 1 and only the first element will be used
Warning in if (class(same.var) == "numeric") { :
the condition has length > 1 and only the first element will be used
Warning in kable_markdown(x, padding = padding, ...) :
The table should have a header (column names)
Warning in kable_markdown(x, padding = padding, ...) :
The table should have a header (column names)
--- finished re-building ‘Corr_Cont_System.Rmd’
--- re-building ‘Corr_MultiVarType_System.Rmd’ using rmarkdown
Loading required package: SimMultiCorrData
Attaching package: 'SimMultiCorrData'
The following object is masked from 'package:stats':
poly
Loading required package: SimCorrMix
Warning in if (class(same.var) == "matrix") { :
the condition has length > 1 and only the first element will be used
Warning in if (class(same.var) == "numeric") { :
the condition has length > 1 and only the first element will be used
Warning in if (class(corr.u) == "list" & length(corr.u) > 0) { :
the condition has length > 1 and only the first element will be used
Warning in if (class(corr.u) == "list" & length(corr.u) > 0) K.r <- sapply(mapply("[", :
the condition has length > 1 and only the first element will be used
Warning in if (class(corr.u) == "matrix") K.r <- rep(ncol(corr.u), M) :
the condition has length > 1 and only the first element will be used
Warning in if ((class(corr.u) == "list" & length(corr.u) > 0) | class(corr.u) == :
the condition has length > 1 and only the first element will be used
Quitting from lines 759-765 (Corr_MultiVarType_System.Rmd)
Error: processing vignette 'Corr_MultiVarType_System.Rmd' failed with diagnostics:
invalid ‘times’ argument
--- failed re-building ‘Corr_MultiVarType_System.Rmd’
--- re-building ‘HLM_Approach.Rmd’ using rmarkdown
--- finished re-building ‘HLM_Approach.Rmd’
--- re-building ‘Theory_Cont_System.Rmd’ using rmarkdown
--- finished re-building ‘Theory_Cont_System.Rmd’
SUMMARY: processing the following file failed:
‘Corr_MultiVarType_System.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.1.0
Check: dependencies in R code
Result: NOTE
Namespaces in Imports field not imported from:
‘BB’ ‘MASS’ ‘ggplot2’ ‘grid’ ‘triangle’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86, r-release-osx-x86_64, r-oldrel-osx-x86_64