Last updated on 2020-01-09 07:48:06 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.3.4 | 12.47 | 228.68 | 241.15 | OK | |
r-devel-linux-x86_64-debian-gcc | 0.3.4 | 9.76 | 158.48 | 168.24 | OK | |
r-devel-linux-x86_64-fedora-clang | 0.3.4 | 258.72 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.3.4 | 249.09 | NOTE | |||
r-devel-windows-ix86+x86_64 | 0.3.4 | 33.00 | 260.00 | 293.00 | OK | |
r-devel-windows-ix86+x86_64-gcc8 | 0.3.4 | 32.00 | 281.00 | 313.00 | OK | |
r-patched-linux-x86_64 | 0.3.4 | 10.11 | 179.13 | 189.24 | OK | |
r-patched-solaris-x86 | 0.3.4 | 329.40 | NOTE | |||
r-release-linux-x86_64 | 0.3.4 | 10.18 | 182.57 | 192.75 | OK | |
r-release-windows-ix86+x86_64 | 0.3.4 | 27.00 | 230.00 | 257.00 | OK | |
r-release-osx-x86_64 | 0.3.4 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 0.3.4 | 18.00 | 244.00 | 262.00 | OK | |
r-oldrel-osx-x86_64 | 0.3.4 | NOTE |
Version: 0.3.4
Check: dependencies in R code
Result: NOTE
Namespaces in Imports field not imported from:
‘data.table’ ‘foreach’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86, r-release-osx-x86_64, r-oldrel-osx-x86_64
Version: 0.3.4
Check: tests
Result: ERROR
Running ‘testthat.R’ [122s/123s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(MlBayesOpt)
>
> test_check("MlBayesOpt")
elapsed = 0.04 Round = 1 mtry_opt = 3.6634 min_node_size = 7.0000 Value = 0.1300
elapsed = 0.11 Round = 2 mtry_opt = 5.4408 min_node_size = 4.0000 Value = 0.1400
elapsed = 0.09 Round = 3 mtry_opt = 3.6190 min_node_size = 7.0000 Value = 0.1000
elapsed = 0.02 Round = 4 mtry_opt = 2.6933 min_node_size = 3.0000 Value = 0.1700
elapsed = 0.07 Round = 5 mtry_opt = 3.5290 min_node_size = 3.0000 Value = 0.1800
elapsed = 0.10 Round = 6 mtry_opt = 8.5781 min_node_size = 5.0000 Value = 0.1600
elapsed = 0.11 Round = 7 mtry_opt = 6.2937 min_node_size = 5.0000 Value = 0.1500
elapsed = 0.10 Round = 8 mtry_opt = 8.1154 min_node_size = 4.0000 Value = 0.1500
elapsed = 0.11 Round = 9 mtry_opt = 3.7041 min_node_size = 4.0000 Value = 0.1700
elapsed = 0.12 Round = 10 mtry_opt = 4.4780 min_node_size = 9.0000 Value = 0.1600
elapsed = 0.09 Round = 11 mtry_opt = 1.9407 min_node_size = 1.0000 Value = 0.1800
elapsed = 0.08 Round = 12 mtry_opt = 7.0937 min_node_size = 6.0000 Value = 0.1600
elapsed = 0.10 Round = 13 mtry_opt = 2.1344 min_node_size = 8.0000 Value = 0.1600
elapsed = 0.04 Round = 14 mtry_opt = 7.1353 min_node_size = 2.0000 Value = 0.1500
elapsed = 0.09 Round = 15 mtry_opt = 7.7371 min_node_size = 8.0000 Value = 0.1500
elapsed = 0.11 Round = 16 mtry_opt = 7.2140 min_node_size = 9.0000 Value = 0.1300
elapsed = 0.10 Round = 17 mtry_opt = 2.0706 min_node_size = 5.0000 Value = 0.1200
elapsed = 0.12 Round = 18 mtry_opt = 7.4475 min_node_size = 3.0000 Value = 0.1500
elapsed = 0.10 Round = 19 mtry_opt = 8.1743 min_node_size = 5.0000 Value = 0.1400
elapsed = 0.03 Round = 20 mtry_opt = 8.4158 min_node_size = 1.0000 Value = 0.1200
elapsed = 0.09 Round = 21 mtry_opt = 8.9925 min_node_size = 9.0000 Value = 0.1600
Best Parameters Found:
Round = 5 mtry_opt = 3.5290 min_node_size = 3.0000 Value = 0.1800
List of 4
$ Best_Par : Named num [1:2] 3.53 3
..- attr(*, "names")= chr [1:2] "mtry_opt" "min_node_size"
$ Best_Value: num 0.18
$ History :Classes 'data.table' and 'data.frame': 21 obs. of 4 variables:
..$ Round : int [1:21] 1 2 3 4 5 6 7 8 9 10 ...
..$ mtry_opt : num [1:21] 3.66 5.44 3.62 2.69 3.53 ...
..$ min_node_size: num [1:21] 7 4 7 3 3 5 5 4 4 9 ...
..$ Value : num [1:21] 0.13 0.14 0.1 0.17 0.18 0.16 0.15 0.15 0.17 0.16 ...
..- attr(*, ".internal.selfref")=<externalptr>
$ Pred :Classes 'data.table' and 'data.frame': 1 obs. of 21 variables:
..$ V1 : num 0.13
..$ V2 : num 0.14
..$ V3 : num 0.1
..$ V4 : num 0.17
..$ V5 : num 0.18
..$ V6 : num 0.16
..$ V7 : num 0.15
..$ V8 : num 0.15
..$ V9 : num 0.17
..$ V10: num 0.16
..$ V11: num 0.18
..$ V12: num 0.16
..$ V13: num 0.16
..$ V14: num 0.15
..$ V15: num 0.15
..$ V16: num 0.13
..$ V17: num 0.12
..$ V18: num 0.15
..$ V19: num 0.14
..$ V20: num 0.12
..$ V21: num 0.16
..- attr(*, ".internal.selfref")=<externalptr>
elapsed = 0.03 Round = 1 gamma_opt = 3.3299 cost_opt = 61.5259 Value = 0.1900
elapsed = 0.02 Round = 2 gamma_opt = 5.5515 cost_opt = 28.7558 Value = 0.2100
elapsed = 0.02 Round = 3 gamma_opt = 3.2744 cost_opt = 70.8278 Value = 0.1700
elapsed = 0.02 Round = 4 gamma_opt = 2.1175 cost_opt = 21.9740 Value = 0.1600
elapsed = 0.02 Round = 5 gamma_opt = 3.1619 cost_opt = 19.3146 Value = 0.1600
elapsed = 0.02 Round = 6 gamma_opt = 9.4727 cost_opt = 46.3378 Value = 0.1600
elapsed = 0.06 Round = 7 gamma_opt = 6.6175 cost_opt = 41.6790 Value = 0.1400
elapsed = 0.03 Round = 8 gamma_opt = 8.8943 cost_opt = 33.0888 Value = 0.1300
elapsed = 0.02 Round = 9 gamma_opt = 3.3808 cost_opt = 29.9110 Value = 0.0800
elapsed = 0.02 Round = 10 gamma_opt = 4.3481 cost_opt = 88.7062 Value = 0.1500
elapsed = 0.03 Round = 11 gamma_opt = 1.1767 cost_opt = 5.2563 Value = 0.1300
elapsed = 0.03 Round = 12 gamma_opt = 7.6174 cost_opt = 60.4227 Value = 0.1500
elapsed = 0.03 Round = 13 gamma_opt = 1.4188 cost_opt = 79.6450 Value = 0.1700
elapsed = 0.03 Round = 14 gamma_opt = 7.6693 cost_opt = 6.2103 Value = 0.0900
elapsed = 0.02 Round = 15 gamma_opt = 8.4215 cost_opt = 78.2717 Value = 0.1300
elapsed = 0.03 Round = 16 gamma_opt = 7.7677 cost_opt = 83.7658 Value = 0.1800
elapsed = 0.03 Round = 17 gamma_opt = 1.3391 cost_opt = 45.6691 Value = 0.1100
elapsed = 0.03 Round = 18 gamma_opt = 8.0596 cost_opt = 22.1903 Value = 0.1500
elapsed = 0.02 Round = 19 gamma_opt = 8.9679 cost_opt = 46.9767 Value = 0.2000
elapsed = 0.02 Round = 20 gamma_opt = 9.2699 cost_opt = 3.9481 Value = 0.1100
elapsed = 0.02 Round = 21 gamma_opt = 5.8138 cost_opt = 28.6718 Value = 0.1700
Best Parameters Found:
Round = 2 gamma_opt = 5.5515 cost_opt = 28.7558 Value = 0.2100
List of 4
$ Best_Par : Named num [1:2] 5.55 28.76
..- attr(*, "names")= chr [1:2] "gamma_opt" "cost_opt"
$ Best_Value: num 0.21
$ History :Classes 'data.table' and 'data.frame': 21 obs. of 4 variables:
..$ Round : int [1:21] 1 2 3 4 5 6 7 8 9 10 ...
..$ gamma_opt: num [1:21] 3.33 5.55 3.27 2.12 3.16 ...
..$ cost_opt : num [1:21] 61.5 28.8 70.8 22 19.3 ...
..$ Value : num [1:21] 0.19 0.21 0.17 0.16 0.16 0.16 0.14 0.13 0.08 0.15 ...
..- attr(*, ".internal.selfref")=<externalptr>
$ Pred :Classes 'data.table' and 'data.frame': 100 obs. of 21 variables:
..$ V1 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V2 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V3 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V4 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V5 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V6 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V7 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V8 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V9 : Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V10: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V11: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V12: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V13: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V14: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V15: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V16: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V17: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V18: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V19: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 10 6 ...
..$ V20: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..$ V21: Factor w/ 10 levels "0","1","2","3",..: 6 6 6 6 6 6 6 1 6 6 ...
..- attr(*, ".internal.selfref")=<externalptr>
elapsed = 0.03 Round = 1 gamma_opt = 3.3299 cost_opt = 61.5259 Value = 0.1900
elapsed = 0.02 Round = 2 gamma_opt = 5.5515 cost_opt = 28.7558 Value = 0.2300
elapsed = 0.03 Round = 3 gamma_opt = 3.2744 cost_opt = 70.8278 Value = 0.1900
elapsed = 0.02 Round = 4 gamma_opt = 2.1175 cost_opt = 21.9740 Value = 0.1900
elapsed = 0.02 Round = 5 gamma_opt = 3.1619 cost_opt = 19.3146 Value = 0.1900
elapsed = 0.02 Round = 6 gamma_opt = 9.4727 cost_opt = 46.3378 Value = 0.2200
elapsed = 0.03 Round = 7 gamma_opt = 6.6175 cost_opt = 41.6790 Value = 0.2200
elapsed = 0.02 Round = 8 gamma_opt = 8.8943 cost_opt = 33.0888 Value = 0.2200
elapsed = 0.02 Round = 9 gamma_opt = 3.3808 cost_opt = 29.9110 Value = 0.1900
elapsed = 0.02 Round = 10 gamma_opt = 4.3481 cost_opt = 88.7062 Value = 0.2300
elapsed = 0.02 Round = 11 gamma_opt = 1.1767 cost_opt = 5.2563 Value = 0.2000
elapsed = 0.02 Round = 12 gamma_opt = 7.6174 cost_opt = 60.4227 Value = 0.2200
elapsed = 0.02 Round = 13 gamma_opt = 1.4188 cost_opt = 79.6450 Value = 0.1800
elapsed = 0.02 Round = 14 gamma_opt = 7.6693 cost_opt = 6.2103 Value = 0.2200
elapsed = 0.02 Round = 15 gamma_opt = 8.4215 cost_opt = 78.2717 Value = 0.2300
elapsed = 0.02 Round = 16 gamma_opt = 7.7677 cost_opt = 83.7658 Value = 0.2200
elapsed = 0.02 Round = 17 gamma_opt = 1.3391 cost_opt = 45.6691 Value = 0.1800
elapsed = 0.02 Round = 18 gamma_opt = 8.0596 cost_opt = 22.1903 Value = 0.2200
elapsed = 0.02 Round = 19 gamma_opt = 8.9679 cost_opt = 46.9767 Value = 0.2200
elapsed = 0.02 Round = 20 gamma_opt = 9.2699 cost_opt = 3.9481 Value = 0.1800
elapsed = 0.05 Round = 21 gamma_opt = 9.6352 cost_opt = 14.7148 Value = 0.2200
Best Parameters Found:
Round = 2 gamma_opt = 5.5515 cost_opt = 28.7558 Value = 0.2300
List of 4
$ Best_Par : Named num [1:2] 5.55 28.76
..- attr(*, "names")= chr [1:2] "gamma_opt" "cost_opt"
$ Best_Value: num 0.23
$ History :Classes 'data.table' and 'data.frame': 21 obs. of 4 variables:
..$ Round : int [1:21] 1 2 3 4 5 6 7 8 9 10 ...
..$ gamma_opt: num [1:21] 3.33 5.55 3.27 2.12 3.16 ...
..$ cost_opt : num [1:21] 61.5 28.8 70.8 22 19.3 ...
..$ Value : num [1:21] 0.19 0.23 0.19 0.19 0.19 0.22 0.22 0.22 0.19 0.23 ...
..- attr(*, ".internal.selfref")=<externalptr>
$ Pred :Classes 'data.table' and 'data.frame': 1 obs. of 21 variables:
..$ V1 : num 0.19
..$ V2 : num 0.23
..$ V3 : num 0.19
..$ V4 : num 0.19
..$ V5 : num 0.19
..$ V6 : num 0.22
..$ V7 : num 0.22
..$ V8 : num 0.22
..$ V9 : num 0.19
..$ V10: num 0.23
..$ V11: num 0.2
..$ V12: num 0.22
..$ V13: num 0.18
..$ V14: num 0.22
..$ V15: num 0.23
..$ V16: num 0.22
..$ V17: num 0.18
..$ V18: num 0.22
..$ V19: num 0.22
..$ V20: num 0.18
..$ V21: num 0.22
..- attr(*, ".internal.selfref")=<externalptr>
OMP: Warning #96: Cannot form a team with 24 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
elapsed = 0.11 Round = 1 eta_opt = 0.2854 max_depth_opt = 5.0000 nrounds_opt = 112.9858 subsample_opt = 0.4052 bytree_opt = 0.5438 Value = -0.2697
elapsed = 0.03 Round = 2 eta_opt = 0.2589 max_depth_opt = 5.0000 nrounds_opt = 147.5089 subsample_opt = 0.8555 bytree_opt = 0.4354 Value = -0.1228
elapsed = 0.04 Round = 3 eta_opt = 0.7183 max_depth_opt = 5.0000 nrounds_opt = 109.4287 subsample_opt = 0.4120 bytree_opt = 0.7854 Value = -0.0614
elapsed = 0.04 Round = 4 eta_opt = 0.4457 max_depth_opt = 4.0000 nrounds_opt = 92.0318 subsample_opt = 0.4004 bytree_opt = 0.9258 Value = -0.0614
elapsed = 0.03 Round = 5 eta_opt = 0.7929 max_depth_opt = 6.0000 nrounds_opt = 76.3611 subsample_opt = 0.5287 bytree_opt = 0.8673 Value = -0.0351
elapsed = 0.03 Round = 6 eta_opt = 0.5479 max_depth_opt = 5.0000 nrounds_opt = 78.9520 subsample_opt = 0.9030 bytree_opt = 0.8784 Value = -0.0351
elapsed = 0.06 Round = 7 eta_opt = 0.7459 max_depth_opt = 6.0000 nrounds_opt = 98.4645 subsample_opt = 0.8779 bytree_opt = 0.6732 Value = -0.0263
elapsed = 0.02 Round = 8 eta_opt = 0.9927 max_depth_opt = 4.0000 nrounds_opt = 116.6771 subsample_opt = 0.4510 bytree_opt = 0.6461 Value = -0.0892
elapsed = 0.03 Round = 9 eta_opt = 0.4420 max_depth_opt = 5.0000 nrounds_opt = 129.5805 subsample_opt = 0.7996 bytree_opt = 0.8865 Value = -0.0351
elapsed = 0.03 Round = 10 eta_opt = 0.7997 max_depth_opt = 5.0000 nrounds_opt = 106.6147 subsample_opt = 0.9646 bytree_opt = 0.7630 Value = -0.0088
elapsed = 0.03 Round = 11 eta_opt = 0.9412 max_depth_opt = 6.0000 nrounds_opt = 152.1588 subsample_opt = 0.4912 bytree_opt = 0.7928 Value = -0.0526
elapsed = 0.03 Round = 12 eta_opt = 0.2909 max_depth_opt = 5.0000 nrounds_opt = 96.4243 subsample_opt = 0.7413 bytree_opt = 0.6119 Value = -0.0351
elapsed = 0.03 Round = 13 eta_opt = 0.6865 max_depth_opt = 6.0000 nrounds_opt = 111.3159 subsample_opt = 0.4600 bytree_opt = 0.5622 Value = -0.1243
elapsed = 0.03 Round = 14 eta_opt = 0.2130 max_depth_opt = 5.0000 nrounds_opt = 99.9155 subsample_opt = 0.3928 bytree_opt = 0.9956 Value = -0.1140
elapsed = 0.03 Round = 15 eta_opt = 0.3405 max_depth_opt = 5.0000 nrounds_opt = 128.5783 subsample_opt = 0.7814 bytree_opt = 0.7801 Value = -0.0351
elapsed = 0.03 Round = 16 eta_opt = 0.4475 max_depth_opt = 6.0000 nrounds_opt = 93.2215 subsample_opt = 0.2824 bytree_opt = 0.5279 Value = -0.3465
elapsed = 0.03 Round = 17 eta_opt = 0.1121 max_depth_opt = 4.0000 nrounds_opt = 113.0691 subsample_opt = 0.7400 bytree_opt = 0.4776 Value = -0.1294
elapsed = 0.03 Round = 18 eta_opt = 0.4441 max_depth_opt = 5.0000 nrounds_opt = 138.9680 subsample_opt = 0.2095 bytree_opt = 0.6869 Value = -0.4269
elapsed = 0.03 Round = 19 eta_opt = 0.8827 max_depth_opt = 5.0000 nrounds_opt = 77.5822 subsample_opt = 0.3209 bytree_opt = 0.9544 Value = -0.1681
elapsed = 0.03 Round = 20 eta_opt = 0.4063 max_depth_opt = 5.0000 nrounds_opt = 148.7789 subsample_opt = 0.2290 bytree_opt = 0.7593 Value = -0.4167
── 1. Error: (unknown) (@test-xgb_cv_opt.R#10) ────────────────────────────────
task 14 failed - "non-finite value supplied by optim"
Backtrace:
1. MlBayesOpt::xgb_cv_opt(...)
2. rBayesianOptimization::BayesianOptimization(...)
6. rBayesianOptimization::Utility_Max(...)
10. `%do%`(...)
11. e$fun(obj, substitute(ex), parent.frame(), e$data)
elapsed = 0.11 Round = 1 eta_opt = 0.3996 max_depth_opt = 5.0000 nrounds_opt = 103.8797 subsample_opt = 0.6901 bytree_opt = 0.5783 Value = 1.0000
elapsed = 0.12 Round = 2 eta_opt = 0.5996 max_depth_opt = 5.0000 nrounds_opt = 125.7482 subsample_opt = 0.3096 bytree_opt = 0.6693 Value = 1.0000
elapsed = 0.17 Round = 3 eta_opt = 0.3946 max_depth_opt = 5.0000 nrounds_opt = 73.3337 subsample_opt = 0.1606 bytree_opt = 0.8845 Value = 0.1800
elapsed = 0.12 Round = 4 eta_opt = 0.2905 max_depth_opt = 4.0000 nrounds_opt = 129.3648 subsample_opt = 0.1475 bytree_opt = 0.5431 Value = 0.1900
elapsed = 0.15 Round = 5 eta_opt = 0.3845 max_depth_opt = 4.0000 nrounds_opt = 106.4619 subsample_opt = 0.3976 bytree_opt = 0.4083 Value = 1.0000
elapsed = 0.11 Round = 6 eta_opt = 0.9525 max_depth_opt = 5.0000 nrounds_opt = 127.4542 subsample_opt = 0.2646 bytree_opt = 0.4167 Value = 1.0000
elapsed = 0.12 Round = 7 eta_opt = 0.6955 max_depth_opt = 5.0000 nrounds_opt = 119.2315 subsample_opt = 0.5751 bytree_opt = 0.4965 Value = 1.0000
elapsed = 0.12 Round = 8 eta_opt = 0.9005 max_depth_opt = 5.0000 nrounds_opt = 81.0287 subsample_opt = 0.8342 bytree_opt = 0.6838 Value = 1.0000
elapsed = 0.08 Round = 9 eta_opt = 0.4042 max_depth_opt = 5.0000 nrounds_opt = 73.5520 subsample_opt = 0.5461 bytree_opt = 0.6483 Value = 1.0000
elapsed = 0.14 Round = 10 eta_opt = 0.4913 max_depth_opt = 6.0000 nrounds_opt = 144.0938 subsample_opt = 0.1334 bytree_opt = 0.6559 Value = 0.9900
elapsed = 0.08 Round = 11 eta_opt = 0.2058 max_depth_opt = 4.0000 nrounds_opt = 72.1364 subsample_opt = 0.4510 bytree_opt = 0.4659 Value = 1.0000
elapsed = 0.08 Round = 12 eta_opt = 0.7855 max_depth_opt = 5.0000 nrounds_opt = 81.2798 subsample_opt = 0.3255 bytree_opt = 0.7891 Value = 1.0000
elapsed = 0.13 Round = 13 eta_opt = 0.2276 max_depth_opt = 6.0000 nrounds_opt = 124.3278 subsample_opt = 0.9381 bytree_opt = 0.7298 Value = 1.0000
elapsed = 0.12 Round = 14 eta_opt = 0.7902 max_depth_opt = 4.0000 nrounds_opt = 115.3598 subsample_opt = 0.6396 bytree_opt = 0.9333 Value = 1.0000
elapsed = 0.15 Round = 15 eta_opt = 0.8579 max_depth_opt = 6.0000 nrounds_opt = 155.7652 subsample_opt = 0.9330 bytree_opt = 0.6380 Value = 1.0000
elapsed = 0.15 Round = 16 eta_opt = 0.7991 max_depth_opt = 6.0000 nrounds_opt = 159.1933 subsample_opt = 0.9602 bytree_opt = 0.7328 Value = 1.0000
elapsed = 0.11 Round = 17 eta_opt = 0.2204 max_depth_opt = 5.0000 nrounds_opt = 112.8439 subsample_opt = 0.8948 bytree_opt = 0.4939 Value = 1.0000
elapsed = 0.12 Round = 18 eta_opt = 0.8253 max_depth_opt = 4.0000 nrounds_opt = 126.4373 subsample_opt = 0.6642 bytree_opt = 0.4461 Value = 0.9900
elapsed = 0.19 Round = 19 eta_opt = 0.9071 max_depth_opt = 5.0000 nrounds_opt = 129.1942 subsample_opt = 0.6238 bytree_opt = 0.6919 Value = 1.0000
elapsed = 0.08 Round = 20 eta_opt = 0.9343 max_depth_opt = 4.0000 nrounds_opt = 86.8685 subsample_opt = 0.9110 bytree_opt = 0.5663 Value = 1.0000
elapsed = 0.07 Round = 21 eta_opt = 0.9550 max_depth_opt = 6.0000 nrounds_opt = 74.9652 subsample_opt = 0.2873 bytree_opt = 0.4000 Value = 1.0000
Best Parameters Found:
Round = 1 eta_opt = 0.3996 max_depth_opt = 5.0000 nrounds_opt = 103.8797 subsample_opt = 0.6901 bytree_opt = 0.5783 Value = 1.0000
List of 4
$ Best_Par : Named num [1:5] 0.4 5 103.88 0.69 0.578
..- attr(*, "names")= chr [1:5] "eta_opt" "max_depth_opt" "nrounds_opt" "subsample_opt" ...
$ Best_Value: num 1
$ History :Classes 'data.table' and 'data.frame': 21 obs. of 7 variables:
..$ Round : int [1:21] 1 2 3 4 5 6 7 8 9 10 ...
..$ eta_opt : num [1:21] 0.4 0.6 0.395 0.291 0.385 ...
..$ max_depth_opt: num [1:21] 5 5 5 4 4 5 5 5 5 6 ...
..$ nrounds_opt : num [1:21] 103.9 125.7 73.3 129.4 106.5 ...
..$ subsample_opt: num [1:21] 0.69 0.31 0.161 0.147 0.398 ...
..$ bytree_opt : num [1:21] 0.578 0.669 0.885 0.543 0.408 ...
..$ Value : num [1:21] 1 1 0.18 0.19 1 1 1 1 1 0.99 ...
..- attr(*, ".internal.selfref")=<externalptr>
$ Pred :Classes 'data.table' and 'data.frame': 1 obs. of 21 variables:
..$ V1 : num 1
..$ V2 : num 1
..$ V3 : num 0.18
..$ V4 : num 0.19
..$ V5 : num 1
..$ V6 : num 1
..$ V7 : num 1
..$ V8 : num 1
..$ V9 : num 1
..$ V10: num 0.99
..$ V11: num 1
..$ V12: num 1
..$ V13: num 1
..$ V14: num 1
..$ V15: num 1
..$ V16: num 1
..$ V17: num 1
..$ V18: num 0.99
..$ V19: num 1
..$ V20: num 1
..$ V21: num 1
..- attr(*, ".internal.selfref")=<externalptr>
══ testthat results ═══════════════════════════════════════════════════════════
[ OK: 0 | SKIPPED: 0 | WARNINGS: 0 | FAILED: 1 ]
1. Error: (unknown) (@test-xgb_cv_opt.R#10)
Error: testthat unit tests failed
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang