CRAN Package Check Results for Package OptimClassifier

Last updated on 2020-01-11 09:49:13 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.4 6.65 60.78 67.43 ERROR
r-devel-linux-x86_64-debian-gcc 0.1.4 5.23 47.19 52.42 ERROR
r-devel-linux-x86_64-fedora-clang 0.1.4 79.32 OK
r-devel-linux-x86_64-fedora-gcc 0.1.4 78.10 OK
r-devel-windows-ix86+x86_64 0.1.4 21.00 102.00 123.00 OK
r-devel-windows-ix86+x86_64-gcc8 0.1.4 14.00 111.00 125.00 OK
r-patched-linux-x86_64 0.1.4 5.18 52.40 57.58 OK
r-patched-solaris-x86 0.1.4 110.00 OK
r-release-linux-x86_64 0.1.4 5.37 52.44 57.81 OK
r-release-windows-ix86+x86_64 0.1.4 16.00 103.00 119.00 OK
r-release-osx-x86_64 0.1.4 OK
r-oldrel-windows-ix86+x86_64 0.1.4 7.00 73.00 80.00 OK
r-oldrel-osx-x86_64 0.1.4 OK

Check Details

Version: 0.1.4
Check: tests
Result: ERROR
     Running 'testthat.R' [11s/13s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(testthat)
     > library(OptimClassifier)
     >
     > test_check("OptimClassifier")
     6 successful models have been tested
    
     CP rmse success_rate ti_error tii_error Nnodes
     1 0.002262443 0.3602883 0.8701923 0.04807692 0.08173077 17
     2 0.009049774 0.3466876 0.8798077 0.03846154 0.08173077 15
     3 0.011312217 0.3325311 0.8894231 0.04807692 0.06250000 11
     4 0.013574661 0.3325311 0.8894231 0.05769231 0.05288462 9
     5 0.022624434 0.3535534 0.8750000 0.03365385 0.09134615 3
     6 0.665158371 0.6430097 0.5865385 0.41346154 0.00000000 1
     6 successful models have been tested
    
     CP rmse success_rate ti_error tii_error Nnodes
     1 0.002262443 0.3602883 0.8701923 0.04807692 0.08173077 17
     2 0.009049774 0.3466876 0.8798077 0.03846154 0.08173077 15
     3 0.011312217 0.3325311 0.8894231 0.04807692 0.06250000 11
     4 0.013574661 0.3325311 0.8894231 0.05769231 0.05288462 9
     5 0.022624434 0.3535534 0.8750000 0.03365385 0.09134615 3
     6 0.665158371 0.6430097 0.5865385 0.41346154 0.00000000 1Call:
     rpart::rpart(formula = formula, data = training, na.action = rpart::na.rpart,
     model = FALSE, x = FALSE, y = FALSE, cp = 0)
     n= 482
    
     CP nsplit rel error xerror xstd
     1 0.66515837 0 1.0000000 1.0000000 0.04949948
     2 0.02262443 1 0.3348416 0.3348416 0.03581213
     3 0.01357466 4 0.2669683 0.3438914 0.03620379
     4 0.01131222 5 0.2533937 0.3438914 0.03620379
    
     Variable importance
     X8 X10 X9 X7 X5 X14 X13 X6 X12 X3
     36 16 16 13 10 6 2 1 1 1
    
     Node number 1: 482 observations, complexity param=0.6651584
     predicted class=0 expected loss=0.4585062 P(node) =1
     class counts: 261 221
     probabilities: 0.541 0.459
     left son=2 (219 obs) right son=3 (263 obs)
     Primary splits:
     X8 splits as LR, improve=119.25990, (0 missing)
     X10 < 2.5 to the left, improve= 52.61262, (0 missing)
     X9 splits as LR, improve= 47.76803, (0 missing)
     X14 < 396 to the left, improve= 32.46584, (0 missing)
     X7 < 1.0425 to the left, improve= 31.53528, (0 missing)
     Surrogate splits:
     X9 splits as LR, agree=0.701, adj=0.342, (0 split)
     X10 < 0.5 to the left, agree=0.701, adj=0.342, (0 split)
     X7 < 0.435 to the left, agree=0.699, adj=0.338, (0 split)
     X5 splits as LLLLRRRRRRRRRR, agree=0.641, adj=0.210, (0 split)
     X14 < 127 to the left, agree=0.606, adj=0.132, (0 split)
    
     Node number 2: 219 observations
     predicted class=0 expected loss=0.07305936 P(node) =0.4543568
     class counts: 203 16
     probabilities: 0.927 0.073
    
     Node number 3: 263 observations, complexity param=0.02262443
     predicted class=1 expected loss=0.2205323 P(node) =0.5456432
     class counts: 58 205
     probabilities: 0.221 0.779
     left son=6 (99 obs) right son=7 (164 obs)
     Primary splits:
     X9 splits as LR, improve=11.902240, (0 missing)
     X10 < 0.5 to the left, improve=11.902240, (0 missing)
     X14 < 216.5 to the left, improve=10.195680, (0 missing)
     X5 splits as LLLLLLRRRRRRRR, improve= 7.627675, (0 missing)
     X13 < 72.5 to the right, improve= 6.568284, (0 missing)
     Surrogate splits:
     X10 < 0.5 to the left, agree=1.000, adj=1.000, (0 split)
     X14 < 3 to the left, agree=0.722, adj=0.263, (0 split)
     X12 splits as LR-, agree=0.688, adj=0.172, (0 split)
     X5 splits as RLRLRLRRRRRRRR, agree=0.665, adj=0.111, (0 split)
     X7 < 0.27 to the left, agree=0.665, adj=0.111, (0 split)
    
     Node number 6: 99 observations, complexity param=0.02262443
     predicted class=1 expected loss=0.4141414 P(node) =0.2053942
     class counts: 41 58
     probabilities: 0.414 0.586
     left son=12 (61 obs) right son=13 (38 obs)
     Primary splits:
     X13 < 111 to the right, improve=6.520991, (0 missing)
     X5 splits as LLLLLLLLRRRRRR, improve=5.770954, (0 missing)
     X6 splits as LRLRL-RR, improve=4.176207, (0 missing)
     X14 < 388.5 to the left, improve=3.403553, (0 missing)
     X3 < 2.52 to the left, improve=2.599301, (0 missing)
     Surrogate splits:
     X3 < 4.5625 to the left, agree=0.697, adj=0.211, (0 split)
     X2 < 22.835 to the right, agree=0.677, adj=0.158, (0 split)
     X5 splits as RRLLRLLLLRRLLL, agree=0.667, adj=0.132, (0 split)
     X7 < 0.02 to the right, agree=0.667, adj=0.132, (0 split)
     X6 splits as RRRLL-LR, agree=0.657, adj=0.105, (0 split)
    
     Node number 7: 164 observations
     predicted class=1 expected loss=0.1036585 P(node) =0.340249
     class counts: 17 147
     probabilities: 0.104 0.896
    
     Node number 12: 61 observations, complexity param=0.02262443
     predicted class=0 expected loss=0.442623 P(node) =0.126556
     class counts: 34 27
     probabilities: 0.557 0.443
     left son=24 (49 obs) right son=25 (12 obs)
     Primary splits:
     X5 splits as LLLL-LLLRLRRLL, improve=4.5609460, (0 missing)
     X14 < 126 to the left, improve=3.7856330, (0 missing)
     X6 splits as L--LL-R-, improve=3.2211680, (0 missing)
     X3 < 9.625 to the right, improve=1.0257110, (0 missing)
     X2 < 24.5 to the right, improve=0.9861812, (0 missing)
     Surrogate splits:
     X14 < 2202.5 to the left, agree=0.836, adj=0.167, (0 split)
     X3 < 11.3125 to the left, agree=0.820, adj=0.083, (0 split)
    
     Node number 13: 38 observations
     predicted class=1 expected loss=0.1842105 P(node) =0.07883817
     class counts: 7 31
     probabilities: 0.184 0.816
    
     Node number 24: 49 observations, complexity param=0.01357466
     predicted class=0 expected loss=0.3469388 P(node) =0.1016598
     class counts: 32 17
     probabilities: 0.653 0.347
     left son=48 (34 obs) right son=49 (15 obs)
     Primary splits:
     X6 splits as L--LL-R-, improve=2.7687880, (0 missing)
     X13 < 150 to the left, improve=2.3016430, (0 missing)
     X14 < 126 to the left, improve=2.2040820, (0 missing)
     X3 < 4.4575 to the right, improve=1.5322870, (0 missing)
     X5 splits as LLRL-LRR-R--RR, improve=0.8850852, (0 missing)
     Surrogate splits:
     X2 < 50.415 to the left, agree=0.735, adj=0.133, (0 split)
     X5 splits as LLLL-LLL-L--LR, agree=0.735, adj=0.133, (0 split)
     X7 < 2.625 to the left, agree=0.735, adj=0.133, (0 split)
    
     Node number 25: 12 observations
     predicted class=1 expected loss=0.1666667 P(node) =0.02489627
     class counts: 2 10
     probabilities: 0.167 0.833
    
     Node number 48: 34 observations
     predicted class=0 expected loss=0.2352941 P(node) =0.07053942
     class counts: 26 8
     probabilities: 0.765 0.235
    
     Node number 49: 15 observations
     predicted class=1 expected loss=0.4 P(node) =0.03112033
     class counts: 6 9
     probabilities: 0.400 0.600
    
     1 successful models have been tested
    
     Model rmse success_rate ti_error tii_error
     1 lda 0.3509821 0.8768116 0.03623188 0.08695652 0 1
     0.5507246 0.4492754
     7 successful models have been tested and 21 thresholds evaluated
    
     Model rmse Threshold success_rate ti_error tii_error
     1 binomial(logit) 0.3011696 1.00 0.5865385 0.4134615 0
     2 binomial(probit) 0.3016317 1.00 0.5865385 0.4134615 0
     3 binomial(cloglog) 0.3020186 1.00 0.5865385 0.4134615 0
     4 poisson(log) 0.3032150 0.95 0.6634615 0.3365385 0
     5 poisson(sqrt) 0.3063370 0.95 0.6490385 0.3509615 0
     6 gaussian 0.3109044 0.95 0.6442308 0.3557692 0
     7 poisson 0.3111360 1.00 0.6153846 0.3846154 0
     -- 1. Failure: Test GLM with Australian Credit (@test-OptimGLM.R#10) ----------
     class(summary(modelFit)$coef) not equal to "matrix".
     Lengths differ: 2 is not 1
    
     3 successful models have been tested
    
     Model rmse threshold success_rate ti_error tii_error
     1 LM 0.3109044 1 0.5625000 0.009615385 0.4278846
     2 SQRT.LM 0.4516999 1 0.5625000 0.009615385 0.4278846
     3 LOG.LM 1.1762341 1 0.5865385 0.413461538 0.0000000
     3 successful models have been tested
    
     Model rmse threshold success_rate ti_error tii_error
     1 LM 0.3109044 1 0.5625000 0.009615385 0.4278846
     2 SQRT.LM 0.4516999 1 0.5625000 0.009615385 0.4278846
     3 LOG.LM 1.1762341 1 0.5865385 0.413461538 0.0000000-- 2. Failure: Test LM with Australian Credit (@test-OptimLM.R#12) ------------
     class(summary(modelFit)$coef) not equal to "matrix".
     Lengths differ: 2 is not 1
    
     8 random variables have been tested
    
     Random_Variable aic bic rmse threshold success_rate ti_error
     1 X5 495.8364 600.7961 1.023786 1.70 0.8942308 0.08653846
     2 X1 497.6737 628.8733 1.035826 1.60 0.8942308 0.04807692
     3 X6 514.7091 645.9087 1.019398 1.50 0.8653846 0.04807692
     4 X11 524.0760 677.1422 1.016578 1.55 0.8750000 0.04807692
     5 X4 531.7380 684.8042 1.017809 1.30 0.8653846 0.03846154
     6 X9 534.2266 691.6661 1.016536 1.55 0.8750000 0.04807692
     7 X12 536.3424 689.4086 1.016180 1.55 0.8750000 0.04807692
     8 X8 537.4437 694.8833 1.016513 1.55 0.8750000 0.04807692
     tii_error
     1 0.01923077
     2 0.05769231
     3 0.08653846
     4 0.07692308
     5 0.09615385
     6 0.07692308
     7 0.07692308
     8 0.07692308
     8 random variables have been tested
    
     Random_Variable aic bic rmse threshold success_rate ti_error
     1 X5 495.8364 600.7961 1.023786 1.70 0.8942308 0.08653846
     2 X1 497.6737 628.8733 1.035826 1.60 0.8942308 0.04807692
     3 X6 514.7091 645.9087 1.019398 1.50 0.8653846 0.04807692
     4 X11 524.0760 677.1422 1.016578 1.55 0.8750000 0.04807692
     5 X4 531.7380 684.8042 1.017809 1.30 0.8653846 0.03846154
     6 X9 534.2266 691.6661 1.016536 1.55 0.8750000 0.04807692
     7 X12 536.3424 689.4086 1.016180 1.55 0.8750000 0.04807692
     8 X8 537.4437 694.8833 1.016513 1.55 0.8750000 0.04807692
     tii_error
     1 0.01923077
     2 0.05769231
     3 0.08653846
     4 0.07692308
     5 0.09615385
     6 0.07692308
     7 0.07692308
     8 0.07692308Warning: Thresholds' criteria not selected. The success rate is defined as the default.
    
     # weights: 37
     initial value 314.113022
     iter 10 value 305.860086
     iter 20 value 305.236595
     iter 30 value 305.199531
     final value 305.199440
     converged
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
     :
     --- package (from environment) ---
     OptimClassifier
     --- call from context ---
     MC(y = y, yhat = CutR)
     --- call from argument ---
     if (class(yhat) != class(y)) {
     yhat <- as.numeric(yhat)
     y <- as.numeric(y)
     }
     --- R stacktrace ---
     where 1: MC(y = y, yhat = CutR)
     where 2: FUN(X[[i]], ...)
     where 3: lapply(thresholdsused, threshold, y = testing[, response_variable],
     yhat = predicts[[k]], categories = Names)
     where 4 at testthat/test-OptimNN.R#4: Optim.NN(Y ~ ., AustralianCredit, p = 0.65, seed = 2018)
     where 5: eval(code, test_env)
     where 6: eval(code, test_env)
     where 7: withCallingHandlers({
     eval(code, test_env)
     if (!handled && !is.null(test)) {
     skip_empty()
     }
     }, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
     message = handle_message, error = handle_error)
     where 8: doTryCatch(return(expr), name, parentenv, handler)
     where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
     where 11: doTryCatch(return(expr), name, parentenv, handler)
     where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]),
     names[nh], parentenv, handlers[[nh]])
     where 13: tryCatchList(expr, classes, parentenv, handlers)
     where 14: tryCatch(withCallingHandlers({
     eval(code, test_env)
     if (!handled && !is.null(test)) {
     skip_empty()
     }
     }, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
     message = handle_message, error = handle_error), error = handle_fatal,
     skip = function(e) {
     })
     where 15: test_code(desc, code, env = parent.frame())
     where 16 at testthat/test-OptimNN.R#3: test_that("Test example with Australian Credit Dataset for NN",
     {
     modelFit <- Optim.NN(Y ~ ., AustralianCredit, p = 0.65,
     seed = 2018)
     expect_equal(class(modelFit), "Optim")
     print(modelFit)
     print(modelFit, plain = TRUE)
     expect_equal(class(summary(modelFit)$value), "numeric")
     })
     where 17: eval(code, test_env)
     where 18: eval(code, test_env)
     where 19: withCallingHandlers({
     eval(code, test_env)
     if (!handled && !is.null(test)) {
     skip_empty()
     }
     }, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
     message = handle_message, error = handle_error)
     where 20: doTryCatch(return(expr), name, parentenv, handler)
     where 21: tryCatchOne(expr, names, parentenv, handlers[[1L]])
     where 22: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
     where 23: doTryCatch(return(expr), name, parentenv, handler)
     where 24: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]),
     names[nh], parentenv, handlers[[nh]])
     where 25: tryCatchList(expr, classes, parentenv, handlers)
     where 26: tryCatch(withCallingHandlers({
     eval(code, test_env)
     if (!handled && !is.null(test)) {
     skip_empty()
     }
     }, expectation = handle_expectation, skip = handle_skip, warning = handle_warning,
     message = handle_message, error = handle_error), error = handle_fatal,
     skip = function(e) {
     })
     where 27: test_code(NULL, exprs, env)
     where 28: source_file(path, new.env(parent = env), chdir = TRUE, wrap = wrap)
     where 29: force(code)
     where 30: doWithOneRestart(return(expr), restart)
     where 31: withOneRestart(expr, restarts[[1L]])
     where 32: withRestarts(testthat_abort_reporter = function() NULL, force(code))
     where 33: with_reporter(reporter = reporter, start_end_reporter = start_end_reporter,
     {
     reporter$start_file(basename(path))
     lister$start_file(basename(path))
     source_file(path, new.env(parent = env), chdir = TRUE,
     wrap = wrap)
     reporter$.end_context()
     reporter$end_file()
     })
     where 34: FUN(X[[i]], ...)
     where 35: lapply(paths, test_file, env = env, reporter = current_reporter,
     start_end_reporter = FALSE, load_helpers = FALSE, wrap = wrap)
     where 36: force(code)
     where 37: doWithOneRestart(return(expr), restart)
     where 38: withOneRestart(expr, restarts[[1L]])
     where 39: withRestarts(testthat_abort_reporter = function() NULL, force(code))
     where 40: with_reporter(reporter = current_reporter, results <- lapply(paths,
     test_file, env = env, reporter = current_reporter, start_end_reporter = FALSE,
     load_helpers = FALSE, wrap = wrap))
     where 41: test_files(paths, reporter = reporter, env = env, stop_on_failure = stop_on_failure,
     stop_on_warning = stop_on_warning, wrap = wrap)
     where 42: test_dir(path = test_path, reporter = reporter, env = env, filter = filter,
     ..., stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning,
     wrap = wrap)
     where 43: test_package_dir(package = package, test_path = test_path, filter = filter,
     reporter = reporter, ..., stop_on_failure = stop_on_failure,
     stop_on_warning = stop_on_warning, wrap = wrap)
     where 44: test_check("OptimClassifier")
    
     --- value of length: 2 type: logical ---
     [1] TRUE TRUE
     --- function from context ---
     function (yhat, y, metrics = FALSE)
     {
     if (class(yhat) != class(y)) {
     yhat <- as.numeric(yhat)
     y <- as.numeric(y)
     }
     Real <- y
     Estimated <- yhat
     MC <- table(Estimated, Real)
     Success_rate <- (sum(diag(MC)))/sum(MC)
     tI_error <- sum(MC[upper.tri(MC, diag = FALSE)])/sum(MC)
     tII_error <- sum(MC[lower.tri(MC, diag = FALSE)])/sum(MC)
     General_metrics <- data.frame(Success_rate = Success_rate,
     tI_error = tI_error, tII_error = tII_error)
     if (metrics == TRUE) {
     Real_cases <- colSums(MC)
     Sensitivity <- diag(MC)/colSums(MC)
     Prevalence <- Real_cases/sum(MC)
     Specificity_F <- function(N, Matrix) {
     sum(diag(Matrix)[-N])/sum(colSums(Matrix)[-N])
     }
     Precision_F <- function(N, Matrix) {
     diag(Matrix)[N]/sum(diag(Matrix))
     }
     Specificity <- unlist(lapply(X = 1:nrow(MC), FUN = Specificity_F,
     Matrix = MC))
     Precision <- unlist(lapply(X = 1:nrow(MC), FUN = Precision_F,
     Matrix = MC))
     Categories <- names(Precision)
     Categorical_Metrics <- data.frame(Categories, Sensitivity,
     Prevalence, Specificity, Precision)
     output <- list(MC, General_metrics, Categorical_Metrics)
     }
     else {
     output <- MC
     }
     return(output)
     }
     <bytecode: 0x4a13d50>
     <environment: namespace:OptimClassifier>
     --- function search by body ---
     Function MC in namespace OptimClassifier has this body.
     ----------- END OF FAILURE REPORT --------------
     -- 3. Error: Test example with Australian Credit Dataset for NN (@test-OptimNN.R
     the condition has length > 1
     Backtrace:
     1. OptimClassifier::Optim.NN(...)
     2. base::lapply(...)
     3. OptimClassifier:::FUN(X[[i]], ...)
     4. OptimClassifier::MC(y = y, yhat = CutR)
    
     4 successful kernels have been tested
    
     Kernels rmse threshold success_rate ti_error tii_error
     1 radial 0.3351234 1.75 0.8745981 0.05787781 0.06752412
     2 linear 0.3517729 1.20 0.8617363 0.03536977 0.10289389
     3 sigmoid 0.4044390 1.30 0.8617363 0.04180064 0.09646302
     4 polynomial 0.5285653 1.15 0.8360129 0.10932476 0.054662384 successful models have been tested
    
     Kernels rmse threshold success_rate ti_error tii_error
     1 radial 0.3351234 1.75 0.8745981 0.05787781 0.06752412
     2 linear 0.3517729 1.20 0.8617363 0.03536977 0.10289389
     3 sigmoid 0.4044390 1.30 0.8617363 0.04180064 0.09646302
     4 polynomial 0.5285653 1.15 0.8360129 0.10932476 0.05466238
     == testthat results ===========================================================
     [ OK: 13 | SKIPPED: 0 | WARNINGS: 9 | FAILED: 3 ]
     1. Failure: Test GLM with Australian Credit (@test-OptimGLM.R#10)
     2. Failure: Test LM with Australian Credit (@test-OptimLM.R#12)
     3. Error: Test example with Australian Credit Dataset for NN (@test-OptimNN.R#4)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.4
Check: tests
Result: ERROR
     Running ‘testthat.R’ [9s/14s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(OptimClassifier)
     >
     > test_check("OptimClassifier")
     6 successful models have been tested
    
     CP rmse success_rate ti_error tii_error Nnodes
     1 0.002262443 0.3602883 0.8701923 0.04807692 0.08173077 17
     2 0.009049774 0.3466876 0.8798077 0.03846154 0.08173077 15
     3 0.011312217 0.3325311 0.8894231 0.04807692 0.06250000 11
     4 0.013574661 0.3325311 0.8894231 0.05769231 0.05288462 9
     5 0.022624434 0.3535534 0.8750000 0.03365385 0.09134615 3
     6 0.665158371 0.6430097 0.5865385 0.41346154 0.00000000 1
     6 successful models have been tested
    
     CP rmse success_rate ti_error tii_error Nnodes
     1 0.002262443 0.3602883 0.8701923 0.04807692 0.08173077 17
     2 0.009049774 0.3466876 0.8798077 0.03846154 0.08173077 15
     3 0.011312217 0.3325311 0.8894231 0.04807692 0.06250000 11
     4 0.013574661 0.3325311 0.8894231 0.05769231 0.05288462 9
     5 0.022624434 0.3535534 0.8750000 0.03365385 0.09134615 3
     6 0.665158371 0.6430097 0.5865385 0.41346154 0.00000000 1Call:
     rpart::rpart(formula = formula, data = training, na.action = rpart::na.rpart,
     model = FALSE, x = FALSE, y = FALSE, cp = 0)
     n= 482
    
     CP nsplit rel error xerror xstd
     1 0.66515837 0 1.0000000 1.0000000 0.04949948
     2 0.02262443 1 0.3348416 0.3348416 0.03581213
     3 0.01357466 4 0.2669683 0.3438914 0.03620379
     4 0.01131222 5 0.2533937 0.3438914 0.03620379
    
     Variable importance
     X8 X10 X9 X7 X5 X14 X13 X6 X12 X3
     36 16 16 13 10 6 2 1 1 1
    
     Node number 1: 482 observations, complexity param=0.6651584
     predicted class=0 expected loss=0.4585062 P(node) =1
     class counts: 261 221
     probabilities: 0.541 0.459
     left son=2 (219 obs) right son=3 (263 obs)
     Primary splits:
     X8 splits as LR, improve=119.25990, (0 missing)
     X10 < 2.5 to the left, improve= 52.61262, (0 missing)
     X9 splits as LR, improve= 47.76803, (0 missing)
     X14 < 396 to the left, improve= 32.46584, (0 missing)
     X7 < 1.0425 to the left, improve= 31.53528, (0 missing)
     Surrogate splits:
     X9 splits as LR, agree=0.701, adj=0.342, (0 split)
     X10 < 0.5 to the left, agree=0.701, adj=0.342, (0 split)
     X7 < 0.435 to the left, agree=0.699, adj=0.338, (0 split)
     X5 splits as LLLLRRRRRRRRRR, agree=0.641, adj=0.210, (0 split)
     X14 < 127 to the left, agree=0.606, adj=0.132, (0 split)
    
     Node number 2: 219 observations
     predicted class=0 expected loss=0.07305936 P(node) =0.4543568
     class counts: 203 16
     probabilities: 0.927 0.073
    
     Node number 3: 263 observations, complexity param=0.02262443
     predicted class=1 expected loss=0.2205323 P(node) =0.5456432
     class counts: 58 205
     probabilities: 0.221 0.779
     left son=6 (99 obs) right son=7 (164 obs)
     Primary splits:
     X9 splits as LR, improve=11.902240, (0 missing)
     X10 < 0.5 to the left, improve=11.902240, (0 missing)
     X14 < 216.5 to the left, improve=10.195680, (0 missing)
     X5 splits as LLLLLLRRRRRRRR, improve= 7.627675, (0 missing)
     X13 < 72.5 to the right, improve= 6.568284, (0 missing)
     Surrogate splits:
     X10 < 0.5 to the left, agree=1.000, adj=1.000, (0 split)
     X14 < 3 to the left, agree=0.722, adj=0.263, (0 split)
     X12 splits as LR-, agree=0.688, adj=0.172, (0 split)
     X5 splits as RLRLRLRRRRRRRR, agree=0.665, adj=0.111, (0 split)
     X7 < 0.27 to the left, agree=0.665, adj=0.111, (0 split)
    
     Node number 6: 99 observations, complexity param=0.02262443
     predicted class=1 expected loss=0.4141414 P(node) =0.2053942
     class counts: 41 58
     probabilities: 0.414 0.586
     left son=12 (61 obs) right son=13 (38 obs)
     Primary splits:
     X13 < 111 to the right, improve=6.520991, (0 missing)
     X5 splits as LLLLLLLLRRRRRR, improve=5.770954, (0 missing)
     X6 splits as LRLRL-RR, improve=4.176207, (0 missing)
     X14 < 388.5 to the left, improve=3.403553, (0 missing)
     X3 < 2.52 to the left, improve=2.599301, (0 missing)
     Surrogate splits:
     X3 < 4.5625 to the left, agree=0.697, adj=0.211, (0 split)
     X2 < 22.835 to the right, agree=0.677, adj=0.158, (0 split)
     X5 splits as RRLLRLLLLRRLLL, agree=0.667, adj=0.132, (0 split)
     X7 < 0.02 to the right, agree=0.667, adj=0.132, (0 split)
     X6 splits as RRRLL-LR, agree=0.657, adj=0.105, (0 split)
    
     Node number 7: 164 observations
     predicted class=1 expected loss=0.1036585 P(node) =0.340249
     class counts: 17 147
     probabilities: 0.104 0.896
    
     Node number 12: 61 observations, complexity param=0.02262443
     predicted class=0 expected loss=0.442623 P(node) =0.126556
     class counts: 34 27
     probabilities: 0.557 0.443
     left son=24 (49 obs) right son=25 (12 obs)
     Primary splits:
     X5 splits as LLLL-LLLRLRRLL, improve=4.5609460, (0 missing)
     X14 < 126 to the left, improve=3.7856330, (0 missing)
     X6 splits as L--LL-R-, improve=3.2211680, (0 missing)
     X3 < 9.625 to the right, improve=1.0257110, (0 missing)
     X2 < 24.5 to the right, improve=0.9861812, (0 missing)
     Surrogate splits:
     X14 < 2202.5 to the left, agree=0.836, adj=0.167, (0 split)
     X3 < 11.3125 to the left, agree=0.820, adj=0.083, (0 split)
    
     Node number 13: 38 observations
     predicted class=1 expected loss=0.1842105 P(node) =0.07883817
     class counts: 7 31
     probabilities: 0.184 0.816
    
     Node number 24: 49 observations, complexity param=0.01357466
     predicted class=0 expected loss=0.3469388 P(node) =0.1016598
     class counts: 32 17
     probabilities: 0.653 0.347
     left son=48 (34 obs) right son=49 (15 obs)
     Primary splits:
     X6 splits as L--LL-R-, improve=2.7687880, (0 missing)
     X13 < 150 to the left, improve=2.3016430, (0 missing)
     X14 < 126 to the left, improve=2.2040820, (0 missing)
     X3 < 4.4575 to the right, improve=1.5322870, (0 missing)
     X5 splits as LLRL-LRR-R--RR, improve=0.8850852, (0 missing)
     Surrogate splits:
     X2 < 50.415 to the left, agree=0.735, adj=0.133, (0 split)
     X5 splits as LLLL-LLL-L--LR, agree=0.735, adj=0.133, (0 split)
     X7 < 2.625 to the left, agree=0.735, adj=0.133, (0 split)
    
     Node number 25: 12 observations
     predicted class=1 expected loss=0.1666667 P(node) =0.02489627
     class counts: 2 10
     probabilities: 0.167 0.833
    
     Node number 48: 34 observations
     predicted class=0 expected loss=0.2352941 P(node) =0.07053942
     class counts: 26 8
     probabilities: 0.765 0.235
    
     Node number 49: 15 observations
     predicted class=1 expected loss=0.4 P(node) =0.03112033
     class counts: 6 9
     probabilities: 0.400 0.600
    
     1 successful models have been tested
    
     Model rmse success_rate ti_error tii_error
     1 lda 0.3509821 0.8768116 0.03623188 0.08695652 0 1
     0.5507246 0.4492754
     7 successful models have been tested and 21 thresholds evaluated
    
     Model rmse Threshold success_rate ti_error tii_error
     1 binomial(logit) 0.3011696 1.00 0.5865385 0.4134615 0
     2 binomial(probit) 0.3016317 1.00 0.5865385 0.4134615 0
     3 binomial(cloglog) 0.3020186 1.00 0.5865385 0.4134615 0
     4 poisson(log) 0.3032150 0.95 0.6634615 0.3365385 0
     5 poisson(sqrt) 0.3063370 0.95 0.6490385 0.3509615 0
     6 gaussian 0.3109044 0.95 0.6442308 0.3557692 0
     7 poisson 0.3111360 1.00 0.6153846 0.3846154 0
     ── 1. Failure: Test GLM with Australian Credit (@test-OptimGLM.R#10) ──────────
     class(summary(modelFit)$coef) not equal to "matrix".
     Lengths differ: 2 is not 1
    
     3 successful models have been tested
    
     Model rmse threshold success_rate ti_error tii_error
     1 LM 0.3109044 1 0.5625000 0.009615385 0.4278846
     2 SQRT.LM 0.4516999 1 0.5625000 0.009615385 0.4278846
     3 LOG.LM 1.1762341 1 0.5865385 0.413461538 0.0000000
     3 successful models have been tested
    
     Model rmse threshold success_rate ti_error tii_error
     1 LM 0.3109044 1 0.5625000 0.009615385 0.4278846
     2 SQRT.LM 0.4516999 1 0.5625000 0.009615385 0.4278846
     3 LOG.LM 1.1762341 1 0.5865385 0.413461538 0.0000000── 2. Failure: Test LM with Australian Credit (@test-OptimLM.R#12) ────────────
     class(summary(modelFit)$coef) not equal to "matrix".
     Lengths differ: 2 is not 1
    
     8 random variables have been tested
    
     Random_Variable aic bic rmse threshold success_rate ti_error
     1 X5 495.8364 600.7961 1.023786 1.70 0.8942308 0.08653846
     2 X1 497.6737 628.8733 1.035826 1.60 0.8942308 0.04807692
     3 X6 514.7091 645.9087 1.019398 1.50 0.8653846 0.04807692
     4 X11 524.0760 677.1422 1.016578 1.55 0.8750000 0.04807692
     5 X4 531.7380 684.8042 1.017809 1.30 0.8653846 0.03846154
     6 X9 534.2266 691.6661 1.016536 1.55 0.8750000 0.04807692
     7 X12 536.3424 689.4086 1.016180 1.55 0.8750000 0.04807692
     8 X8 537.4437 694.8833 1.016513 1.55 0.8750000 0.04807692
     tii_error
     1 0.01923077
     2 0.05769231
     3 0.08653846
     4 0.07692308
     5 0.09615385
     6 0.07692308
     7 0.07692308
     8 0.07692308
     8 random variables have been tested
    
     Random_Variable aic bic rmse threshold success_rate ti_error
     1 X5 495.8364 600.7961 1.023786 1.70 0.8942308 0.08653846
     2 X1 497.6737 628.8733 1.035826 1.60 0.8942308 0.04807692
     3 X6 514.7091 645.9087 1.019398 1.50 0.8653846 0.04807692
     4 X11 524.0760 677.1422 1.016578 1.55 0.8750000 0.04807692
     5 X4 531.7380 684.8042 1.017809 1.30 0.8653846 0.03846154
     6 X9 534.2266 691.6661 1.016536 1.55 0.8750000 0.04807692
     7 X12 536.3424 689.4086 1.016180 1.55 0.8750000 0.04807692
     8 X8 537.4437 694.8833 1.016513 1.55 0.8750000 0.04807692
     tii_error
     1 0.01923077
     2 0.05769231
     3 0.08653846
     4 0.07692308
     5 0.09615385
     6 0.07692308
     7 0.07692308
     8 0.07692308Warning: Thresholds' criteria not selected. The success rate is defined as the default.
    
     # weights: 37
     initial value 314.113022
     iter 10 value 305.860086
     iter 20 value 305.236595
     iter 30 value 305.199531
     final value 305.199440
     converged
     # weights: 73
     initial value 331.204920
     iter 10 value 277.703814
     iter 20 value 264.464583
     iter 30 value 235.346147
     iter 40 value 213.675019
     iter 50 value 204.513413
     iter 60 value 188.579524
     iter 70 value 151.606445
     iter 80 value 135.045373
     iter 90 value 127.862716
     iter 100 value 127.540380
     final value 127.539685
     converged
     # weights: 109
     initial value 313.022965
     iter 10 value 293.213546
     iter 20 value 276.666037
     iter 30 value 272.763270
     iter 40 value 271.860014
     iter 50 value 271.852731
     final value 271.852717
     converged
     # weights: 145
     initial value 342.699156
     iter 10 value 266.493159
     iter 20 value 248.027580
     iter 30 value 202.137254
     iter 40 value 182.841633
     iter 50 value 163.406077
     iter 60 value 153.712411
     iter 70 value 143.761097
     iter 80 value 136.791530
     iter 90 value 131.883986
     iter 100 value 128.256325
     iter 110 value 123.054770
     iter 120 value 119.373904
     iter 130 value 117.935121
     iter 140 value 115.543916
     iter 150 value 113.870705
     iter 160 value 112.397158
     iter 170 value 110.659059
     iter 180 value 110.265167
     iter 190 value 109.914964
     iter 200 value 109.465033
     iter 210 value 109.365831
     iter 220 value 109.309421
     iter 230 value 109.221952
     iter 240 value 109.183033
     iter 250 value 109.077007
     iter 260 value 109.024442
     iter 270 value 108.979083
     iter 280 value 108.966573
     iter 290 value 108.946679
     iter 300 value 108.928539
     iter 310 value 108.906541
     iter 320 value 108.903732
     iter 330 value 108.881879
     iter 340 value 108.860613
     iter 350 value 108.852071
     iter 360 value 108.843541
     iter 370 value 108.833519
     iter 380 value 108.826552
     iter 390 value 108.704253
     iter 400 value 108.679474
     iter 410 value 108.667142
     iter 420 value 108.661706
     iter 430 value 108.659019
     iter 440 value 108.653729
     iter 450 value 108.633311
     iter 460 value 108.613541
     iter 470 value 108.584588
     iter 480 value 108.566776
     iter 490 value 108.527453
     iter 500 value 108.484387
     final value 108.484387
     stopped after 500 iterations
     # weights: 181
     initial value 431.964891
     iter 10 value 268.804053
     iter 20 value 257.332978
     iter 30 value 249.853001
     iter 40 value 185.335385
     iter 50 value 153.782864
     iter 60 value 139.784881
     iter 70 value 126.922476
     iter 80 value 123.252215
     iter 90 value 120.355265
     iter 100 value 116.841582
     iter 110 value 112.118113
     iter 120 value 105.917923
     iter 130 value 105.028943
     iter 140 value 105.024535
     final value 105.024530
     converged
     # weights: 217
     initial value 364.112551
     iter 10 value 274.040840
     iter 20 value 260.171164
     iter 30 value 252.654051
     iter 40 value 245.185007
     iter 50 value 239.105792
     iter 60 value 228.177441
     iter 70 value 209.068307
     iter 80 value 189.216192
     iter 90 value 179.285289
     iter 100 value 177.101089
     iter 110 value 177.096487
     final value 177.096448
     converged
     # weights: 253
     initial value 325.866420
     iter 10 value 269.878024
     iter 20 value 260.328850
     iter 30 value 255.407336
     iter 40 value 248.367432
     iter 50 value 201.019882
     iter 60 value 154.795327
     iter 70 value 142.061451
     iter 80 value 129.177931
     iter 90 value 113.635713
     iter 100 value 109.226495
     iter 110 value 102.067007
     iter 120 value 100.120314
     iter 130 value 99.785251
     iter 140 value 99.503240
     iter 150 value 99.238235
     iter 160 value 99.194327
     iter 170 value 99.004752
     iter 180 value 98.488715
     iter 190 value 97.866264
     iter 200 value 97.553015
     iter 210 value 97.406696
     iter 220 value 97.262658
     iter 230 value 97.069177
     iter 240 value 96.926948
     iter 250 value 96.846568
     iter 260 value 96.575699
     iter 270 value 96.307219
     iter 280 value 96.246913
     iter 290 value 96.193544
     iter 300 value 96.112864
     iter 310 value 96.061954
     iter 320 value 95.737456
     iter 330 value 95.016696
     iter 340 value 94.608414
     iter 350 value 94.331090
     iter 360 value 94.229239
     iter 370 value 94.123306
     iter 380 value 94.070268
     iter 390 value 93.966009
     iter 400 value 93.756340
     iter 410 value 93.566368
     iter 420 value 93.510538
     iter 430 value 93.426889
     iter 440 value 93.342668
     iter 450 value 93.293375
     iter 460 value 93.232193
     iter 470 value 93.158243
     iter 480 value 93.026257
     iter 490 value 92.808916
     iter 500 value 92.697079
     final value 92.697079
     stopped after 500 iterations
     # weights: 289
     initial value 308.589551
     iter 10 value 276.114138
     iter 20 value 271.523670
     iter 30 value 263.359821
     iter 40 value 252.965028
     iter 50 value 215.194350
     iter 60 value 197.931441
     iter 70 value 189.556282
     iter 80 value 162.533108
     iter 90 value 148.780324
     iter 100 value 127.237270
     iter 110 value 113.271915
     iter 120 value 103.681517
     iter 130 value 100.506900
     iter 140 value 99.473416
     iter 150 value 96.419897
     iter 160 value 95.875123
     iter 170 value 95.582754
     iter 180 value 94.802815
     iter 190 value 93.800813
     iter 200 value 93.415047
     iter 210 value 93.113811
     iter 220 value 92.848904
     iter 230 value 92.216786
     iter 240 value 91.199472
     iter 250 value 91.064264
     iter 260 value 90.940703
     iter 270 value 90.613176
     iter 280 value 90.580067
     iter 290 value 90.552349
     iter 300 value 90.469581
     iter 310 value 90.125040
     iter 320 value 89.834299
     iter 330 value 89.634271
     iter 340 value 89.477507
     iter 350 value 89.278901
     iter 360 value 89.110192
     iter 370 value 89.034938
     iter 380 value 88.514948
     iter 390 value 88.368879
     iter 400 value 88.232517
     iter 410 value 88.189377
     iter 420 value 88.178188
     iter 430 value 88.169094
     iter 440 value 88.156563
     iter 450 value 88.136171
     iter 460 value 88.106613
     iter 470 value 87.790970
     iter 480 value 87.676820
     iter 490 value 87.599647
     iter 500 value 87.568524
     final value 87.568524
     stopped after 500 iterations
     # weights: 325
     initial value 387.634927
     iter 10 value 268.437459
     iter 20 value 261.669527
     iter 30 value 238.226127
     iter 40 value 218.985628
     iter 50 value 203.340002
     iter 60 value 197.855735
     iter 70 value 192.165234
     iter 80 value 191.161086
     iter 90 value 191.147630
     iter 100 value 191.146459
     iter 110 value 191.146013
     final value 191.145998
     converged
     9 models have been tested with differents levels of hidden layers
    
     hiddenlayers rmse threshold success_rate ti_error tii_error
     1 5 0.3276663 1 0.5950413 0.4049587 0.00000000
     2 7 0.3331272 1 0.5950413 0.4049587 0.00000000
     3 4 0.3552631 1 0.5950413 0.4049587 0.00000000
     4 8 0.3645871 1 0.7851240 0.1983471 0.01652893
     5 2 0.3706125 1 0.5950413 0.4049587 0.00000000
     6 9 0.4330809 1 0.5950413 0.4049587 0.00000000
     7 6 0.4491394 1 0.5950413 0.4049587 0.00000000
     8 3 0.4793713 1 0.5950413 0.4049587 0.00000000
     9 1 0.5048849 1 0.5950413 0.4049587 0.000000009 successful models have been tested
    
     hiddenlayers rmse threshold success_rate ti_error tii_error
     1 5 0.3276663 1 0.5950413 0.4049587 0.00000000
     2 7 0.3331272 1 0.5950413 0.4049587 0.00000000
     3 4 0.3552631 1 0.5950413 0.4049587 0.00000000
     4 8 0.3645871 1 0.7851240 0.1983471 0.01652893
     5 2 0.3706125 1 0.5950413 0.4049587 0.00000000
     6 9 0.4330809 1 0.5950413 0.4049587 0.00000000
     7 6 0.4491394 1 0.5950413 0.4049587 0.00000000
     8 3 0.4793713 1 0.5950413 0.4049587 0.00000000
     9 1 0.5048849 1 0.5950413 0.4049587 0.00000000
     4 successful kernels have been tested
    
     Kernels rmse threshold success_rate ti_error tii_error
     1 radial 0.3351234 1.75 0.8745981 0.05787781 0.06752412
     2 linear 0.3517729 1.20 0.8617363 0.03536977 0.10289389
     3 sigmoid 0.4044390 1.30 0.8617363 0.04180064 0.09646302
     4 polynomial 0.5285653 1.15 0.8360129 0.10932476 0.054662384 successful models have been tested
    
     Kernels rmse threshold success_rate ti_error tii_error
     1 radial 0.3351234 1.75 0.8745981 0.05787781 0.06752412
     2 linear 0.3517729 1.20 0.8617363 0.03536977 0.10289389
     3 sigmoid 0.4044390 1.30 0.8617363 0.04180064 0.09646302
     4 polynomial 0.5285653 1.15 0.8360129 0.10932476 0.05466238
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 15 | SKIPPED: 0 | WARNINGS: 198 | FAILED: 2 ]
     1. Failure: Test GLM with Australian Credit (@test-OptimGLM.R#10)
     2. Failure: Test LM with Australian Credit (@test-OptimLM.R#12)
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc