CRAN Package Check Results for Package FDGcopulas

Last updated on 2020-02-19 10:48:52 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0 25.58 29.32 54.90 ERROR
r-devel-linux-x86_64-debian-gcc 1.0 16.17 23.44 39.61 ERROR
r-devel-linux-x86_64-fedora-clang 1.0 75.79 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0 69.20 ERROR
r-devel-windows-ix86+x86_64 1.0 52.00 63.00 115.00 NOTE
r-devel-windows-ix86+x86_64-gcc8 1.0 75.00 99.00 174.00 NOTE
r-patched-linux-x86_64 1.0 19.38 26.74 46.12 NOTE
r-patched-solaris-x86 1.0 84.80 NOTE
r-release-linux-x86_64 1.0 20.20 26.51 46.71 NOTE
r-release-windows-ix86+x86_64 1.0 55.00 59.00 114.00 NOTE
r-release-osx-x86_64 1.0 NOTE
r-oldrel-windows-ix86+x86_64 1.0 44.00 61.00 105.00 NOTE
r-oldrel-osx-x86_64 1.0 NOTE

Check Details

Version: 1.0
Check: R code for possible problems
Result: NOTE
    asymp.vcov: no visible global function definition for 'cov'
    corFDG: no visible global function definition for 'cor'
    g.exponential: no visible global function definition for 'integrate'
    rho.exponential: no visible global function definition for 'integrate'
    rho.sinus: no visible global function definition for 'integrate'
    tau.exponential: no visible global function definition for 'integrate'
    tau.sinus: no visible global function definition for 'integrate'
    tfun.sinus.rho: no visible global function definition for 'integrate'
    wlsdc: no visible global function definition for 'optim'
    Undefined global functions or variables:
     cor cov integrate optim
    Consider adding
     importFrom("stats", "cor", "cov", "integrate", "optim")
    to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64

Version: 1.0
Check: examples
Result: ERROR
    Running examples in 'FDGcopulas-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: FDGcopulas-package
    > ### Title: Deals with FDG copulas
    > ### Aliases: FDGcopulas-package
    > ### Keywords: copula multivariate
    >
    > ### ** Examples
    >
    > ## creates an object of class 'FDGcopula'
    > myFDGcopula <- FDGcopula("frechet", c(.3,.5,.7,.9))
    >
    > ## compute the pairwise dependence coefficients
    > ## Spearman's rho:
    > rhoFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Kendall's tau:
    > tauFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.0000 0.1075000 0.1547000 0.2043
    [2,] 0.1075 1.0000000 0.2741667 0.3675
    [3,] 0.1547 0.2741667 1.0000000 0.5523
    [4,] 0.2043 0.3675000 0.5523000 1.0000
    > ## Upper tail dependence coefficient:
    > utdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Lower tail dependence coefficient:
    > ltdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    >
    > ## simulates data ##
    > dat <- rFDG(30, myFDGcopula)
    >
    > ## fit data ##
    > myFittedCopula <- fitFDG(myFDGcopula, dat)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    FDGcopulas
     --- call from context ---
    fitFDG(myFDGcopula, dat)
     --- call from argument ---
    if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
    } else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
    }
     --- R stacktrace ---
    where 1: fitFDG(myFDGcopula, dat)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (FDGcopula, data, depcoefType = "spearman", nbInit = 1,
     W = NA, method = "L-BFGS-B", estimate.variance = TRUE, nb.rep = 100,
     nb.obs = 100, dcData = NA, sizeSubSample = 10000)
    {
     if (!depcoefType %in% c("spearman", "kendall", "utdc")) {
     stop("'depcoefType' should be one of 'spearman', 'kendall', or 'utdc'")
     }
     else {
     }
     if (FDGcopula@extremevalue == TRUE & FDGcopula@family ==
     "exponential") {
     stop("The extreme-value copula coming from the FDG copula with exponential generators is the INDEPENDENCE copula!")
     }
     else {
     }
     d <- length(FDGcopula@parameters)
     p <- d * (d - 1)/2
     if (is.na(W) == TRUE) {
     W <- diag(1, p)
     }
     else {
     }
     if (is.na(sum(dcData))) {
     dcData <- corFDG(data, depcoefType)
     if (depcoefType == "utdc" & FDGcopula@extremevalue ==
     FALSE) {
     stop("The upper tail dependence coefficient estimator implemented by default is theoretically well grounded ONLY for extreme-value copulas. If you still wanna do this way, use your own estimator by providing 'dcData'")
     }
     else {
     }
     }
     else {
     }
     optimResults <- wlsdc(FDGcopula, dcData, depcoefType, nbInit,
     W, method)
     Sigma <- if (estimate.variance) {
     asymp.vcov(nb.rep, nb.obs, FDGcopula, depcoefType, sizeSubSample)
     }
     else {
     matrix(ncol = p, nrow = p, rep(NA, p * p))
     }
     fittedFDG <- FDGcopula(FDGcopula@family, optimResults$estimate,
     FDGcopula@extremevalue)
     J <- JacobianFDG(fittedFDG, depcoefType)
     invJtJ <- try(solve(t(J) %*% J, diag(1, d)))
     Xi <- if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
     }
     else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
     }
     new(Class = "fitFDG", estimate = optimResults$estimate, var.est = Xi,
     optimalvalues = optimResults$optimalValues, convergence = optimResults$convergenceDiagnostic,
     FDGcopula = fittedFDG)
    }
    <bytecode: 0x3369420>
    <environment: namespace:FDGcopulas>
     --- function search by body ---
    Function fitFDG in namespace FDGcopulas has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(invJtJ) == "try-error") { :
     the condition has length > 1
    Calls: fitFDG
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0
Check: examples
Result: ERROR
    Running examples in ‘FDGcopulas-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: FDGcopulas-package
    > ### Title: Deals with FDG copulas
    > ### Aliases: FDGcopulas-package
    > ### Keywords: copula multivariate
    >
    > ### ** Examples
    >
    > ## creates an object of class 'FDGcopula'
    > myFDGcopula <- FDGcopula("frechet", c(.3,.5,.7,.9))
    >
    > ## compute the pairwise dependence coefficients
    > ## Spearman's rho:
    > rhoFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Kendall's tau:
    > tauFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.0000 0.1075000 0.1547000 0.2043
    [2,] 0.1075 1.0000000 0.2741667 0.3675
    [3,] 0.1547 0.2741667 1.0000000 0.5523
    [4,] 0.2043 0.3675000 0.5523000 1.0000
    > ## Upper tail dependence coefficient:
    > utdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Lower tail dependence coefficient:
    > ltdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    >
    > ## simulates data ##
    > dat <- rFDG(30, myFDGcopula)
    >
    > ## fit data ##
    > myFittedCopula <- fitFDG(myFDGcopula, dat)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    FDGcopulas
     --- call from context ---
    fitFDG(myFDGcopula, dat)
     --- call from argument ---
    if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
    } else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
    }
     --- R stacktrace ---
    where 1: fitFDG(myFDGcopula, dat)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (FDGcopula, data, depcoefType = "spearman", nbInit = 1,
     W = NA, method = "L-BFGS-B", estimate.variance = TRUE, nb.rep = 100,
     nb.obs = 100, dcData = NA, sizeSubSample = 10000)
    {
     if (!depcoefType %in% c("spearman", "kendall", "utdc")) {
     stop("'depcoefType' should be one of 'spearman', 'kendall', or 'utdc'")
     }
     else {
     }
     if (FDGcopula@extremevalue == TRUE & FDGcopula@family ==
     "exponential") {
     stop("The extreme-value copula coming from the FDG copula with exponential generators is the INDEPENDENCE copula!")
     }
     else {
     }
     d <- length(FDGcopula@parameters)
     p <- d * (d - 1)/2
     if (is.na(W) == TRUE) {
     W <- diag(1, p)
     }
     else {
     }
     if (is.na(sum(dcData))) {
     dcData <- corFDG(data, depcoefType)
     if (depcoefType == "utdc" & FDGcopula@extremevalue ==
     FALSE) {
     stop("The upper tail dependence coefficient estimator implemented by default is theoretically well grounded ONLY for extreme-value copulas. If you still wanna do this way, use your own estimator by providing 'dcData'")
     }
     else {
     }
     }
     else {
     }
     optimResults <- wlsdc(FDGcopula, dcData, depcoefType, nbInit,
     W, method)
     Sigma <- if (estimate.variance) {
     asymp.vcov(nb.rep, nb.obs, FDGcopula, depcoefType, sizeSubSample)
     }
     else {
     matrix(ncol = p, nrow = p, rep(NA, p * p))
     }
     fittedFDG <- FDGcopula(FDGcopula@family, optimResults$estimate,
     FDGcopula@extremevalue)
     J <- JacobianFDG(fittedFDG, depcoefType)
     invJtJ <- try(solve(t(J) %*% J, diag(1, d)))
     Xi <- if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
     }
     else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
     }
     new(Class = "fitFDG", estimate = optimResults$estimate, var.est = Xi,
     optimalvalues = optimResults$optimalValues, convergence = optimResults$convergenceDiagnostic,
     FDGcopula = fittedFDG)
    }
    <bytecode: 0x55ec7d3d72a0>
    <environment: namespace:FDGcopulas>
     --- function search by body ---
    Function fitFDG in namespace FDGcopulas has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(invJtJ) == "try-error") { :
     the condition has length > 1
    Calls: fitFDG
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0
Check: compiled code
Result: NOTE
    File ‘FDGcopulas/libs/FDGcopulas.so’:
     Found no calls to: ‘R_registerRoutines’, ‘R_useDynamicSymbols’
    
    It is good practice to register native routines and to disable symbol
    search.
    
    See ‘Writing portable packages’ in the ‘Writing R Extensions’ manual.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.0
Check: examples
Result: ERROR
    Running examples in ‘FDGcopulas-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: FDGcopulas-package
    > ### Title: Deals with FDG copulas
    > ### Aliases: FDGcopulas-package
    > ### Keywords: copula multivariate
    >
    > ### ** Examples
    >
    > ## creates an object of class 'FDGcopula'
    > myFDGcopula <- FDGcopula("frechet", c(.3,.5,.7,.9))
    >
    > ## compute the pairwise dependence coefficients
    > ## Spearman's rho:
    > rhoFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Kendall's tau:
    > tauFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.0000 0.1075000 0.1547000 0.2043
    [2,] 0.1075 1.0000000 0.2741667 0.3675
    [3,] 0.1547 0.2741667 1.0000000 0.5523
    [4,] 0.2043 0.3675000 0.5523000 1.0000
    > ## Upper tail dependence coefficient:
    > utdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Lower tail dependence coefficient:
    > ltdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    >
    > ## simulates data ##
    > dat <- rFDG(30, myFDGcopula)
    >
    > ## fit data ##
    > myFittedCopula <- fitFDG(myFDGcopula, dat)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    FDGcopulas
     --- call from context ---
    fitFDG(myFDGcopula, dat)
     --- call from argument ---
    if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
    } else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
    }
     --- R stacktrace ---
    where 1: fitFDG(myFDGcopula, dat)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (FDGcopula, data, depcoefType = "spearman", nbInit = 1,
     W = NA, method = "L-BFGS-B", estimate.variance = TRUE, nb.rep = 100,
     nb.obs = 100, dcData = NA, sizeSubSample = 10000)
    {
     if (!depcoefType %in% c("spearman", "kendall", "utdc")) {
     stop("'depcoefType' should be one of 'spearman', 'kendall', or 'utdc'")
     }
     else {
     }
     if (FDGcopula@extremevalue == TRUE & FDGcopula@family ==
     "exponential") {
     stop("The extreme-value copula coming from the FDG copula with exponential generators is the INDEPENDENCE copula!")
     }
     else {
     }
     d <- length(FDGcopula@parameters)
     p <- d * (d - 1)/2
     if (is.na(W) == TRUE) {
     W <- diag(1, p)
     }
     else {
     }
     if (is.na(sum(dcData))) {
     dcData <- corFDG(data, depcoefType)
     if (depcoefType == "utdc" & FDGcopula@extremevalue ==
     FALSE) {
     stop("The upper tail dependence coefficient estimator implemented by default is theoretically well grounded ONLY for extreme-value copulas. If you still wanna do this way, use your own estimator by providing 'dcData'")
     }
     else {
     }
     }
     else {
     }
     optimResults <- wlsdc(FDGcopula, dcData, depcoefType, nbInit,
     W, method)
     Sigma <- if (estimate.variance) {
     asymp.vcov(nb.rep, nb.obs, FDGcopula, depcoefType, sizeSubSample)
     }
     else {
     matrix(ncol = p, nrow = p, rep(NA, p * p))
     }
     fittedFDG <- FDGcopula(FDGcopula@family, optimResults$estimate,
     FDGcopula@extremevalue)
     J <- JacobianFDG(fittedFDG, depcoefType)
     invJtJ <- try(solve(t(J) %*% J, diag(1, d)))
     Xi <- if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
     }
     else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
     }
     new(Class = "fitFDG", estimate = optimResults$estimate, var.est = Xi,
     optimalvalues = optimResults$optimalValues, convergence = optimResults$convergenceDiagnostic,
     FDGcopula = fittedFDG)
    }
    <bytecode: 0x437e820>
    <environment: namespace:FDGcopulas>
     --- function search by body ---
    Function fitFDG in namespace FDGcopulas has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(invJtJ) == "try-error") { :
     the condition has length > 1
    Calls: fitFDG
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0
Check: examples
Result: ERROR
    Running examples in ‘FDGcopulas-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: FDGcopulas-package
    > ### Title: Deals with FDG copulas
    > ### Aliases: FDGcopulas-package
    > ### Keywords: copula multivariate
    >
    > ### ** Examples
    >
    > ## creates an object of class 'FDGcopula'
    > myFDGcopula <- FDGcopula("frechet", c(.3,.5,.7,.9))
    >
    > ## compute the pairwise dependence coefficients
    > ## Spearman's rho:
    > rhoFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Kendall's tau:
    > tauFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.0000 0.1075000 0.1547000 0.2043
    [2,] 0.1075 1.0000000 0.2741667 0.3675
    [3,] 0.1547 0.2741667 1.0000000 0.5523
    [4,] 0.2043 0.3675000 0.5523000 1.0000
    > ## Upper tail dependence coefficient:
    > utdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    > ## Lower tail dependence coefficient:
    > ltdcFDG(myFDGcopula)
     [,1] [,2] [,3] [,4]
    [1,] 1.00 0.15 0.21 0.27
    [2,] 0.15 1.00 0.35 0.45
    [3,] 0.21 0.35 1.00 0.63
    [4,] 0.27 0.45 0.63 1.00
    >
    > ## simulates data ##
    > dat <- rFDG(30, myFDGcopula)
    >
    > ## fit data ##
    > myFittedCopula <- fitFDG(myFDGcopula, dat)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    FDGcopulas
     --- call from context ---
    fitFDG(myFDGcopula, dat)
     --- call from argument ---
    if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
    } else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
    }
     --- R stacktrace ---
    where 1: fitFDG(myFDGcopula, dat)
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (FDGcopula, data, depcoefType = "spearman", nbInit = 1,
     W = NA, method = "L-BFGS-B", estimate.variance = TRUE, nb.rep = 100,
     nb.obs = 100, dcData = NA, sizeSubSample = 10000)
    {
     if (!depcoefType %in% c("spearman", "kendall", "utdc")) {
     stop("'depcoefType' should be one of 'spearman', 'kendall', or 'utdc'")
     }
     else {
     }
     if (FDGcopula@extremevalue == TRUE & FDGcopula@family ==
     "exponential") {
     stop("The extreme-value copula coming from the FDG copula with exponential generators is the INDEPENDENCE copula!")
     }
     else {
     }
     d <- length(FDGcopula@parameters)
     p <- d * (d - 1)/2
     if (is.na(W) == TRUE) {
     W <- diag(1, p)
     }
     else {
     }
     if (is.na(sum(dcData))) {
     dcData <- corFDG(data, depcoefType)
     if (depcoefType == "utdc" & FDGcopula@extremevalue ==
     FALSE) {
     stop("The upper tail dependence coefficient estimator implemented by default is theoretically well grounded ONLY for extreme-value copulas. If you still wanna do this way, use your own estimator by providing 'dcData'")
     }
     else {
     }
     }
     else {
     }
     optimResults <- wlsdc(FDGcopula, dcData, depcoefType, nbInit,
     W, method)
     Sigma <- if (estimate.variance) {
     asymp.vcov(nb.rep, nb.obs, FDGcopula, depcoefType, sizeSubSample)
     }
     else {
     matrix(ncol = p, nrow = p, rep(NA, p * p))
     }
     fittedFDG <- FDGcopula(FDGcopula@family, optimResults$estimate,
     FDGcopula@extremevalue)
     J <- JacobianFDG(fittedFDG, depcoefType)
     invJtJ <- try(solve(t(J) %*% J, diag(1, d)))
     Xi <- if (class(invJtJ) == "try-error") {
     matrix(ncol = d, nrow = d, NA)
     }
     else {
     invJtJ %*% t(J) %*% Sigma %*% J %*% invJtJ
     }
     new(Class = "fitFDG", estimate = optimResults$estimate, var.est = Xi,
     optimalvalues = optimResults$optimalValues, convergence = optimResults$convergenceDiagnostic,
     FDGcopula = fittedFDG)
    }
    <bytecode: 0x506c098>
    <environment: namespace:FDGcopulas>
     --- function search by body ---
    Function fitFDG in namespace FDGcopulas has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(invJtJ) == "try-error") { :
     the condition has length > 1
    Calls: fitFDG
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc