CRAN Package Check Results for Package TEEReg

Last updated on 2020-02-19 10:49:13 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1 2.39 21.39 23.78 ERROR
r-devel-linux-x86_64-debian-gcc 1.1 1.73 16.94 18.67 ERROR
r-devel-linux-x86_64-fedora-clang 1.1 29.01 ERROR
r-devel-linux-x86_64-fedora-gcc 1.1 29.42 ERROR
r-devel-windows-ix86+x86_64 1.1 5.00 43.00 48.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.1 9.00 56.00 65.00 OK
r-patched-linux-x86_64 1.1 1.57 21.09 22.66 OK
r-patched-solaris-x86 1.1 42.80 OK
r-release-linux-x86_64 1.1 1.78 21.51 23.29 OK
r-release-windows-ix86+x86_64 1.1 5.00 41.00 46.00 OK
r-release-osx-x86_64 1.1 OK
r-oldrel-windows-ix86+x86_64 1.1 2.00 30.00 32.00 OK
r-oldrel-osx-x86_64 1.1 OK

Check Details

Version: 1.1
Check: examples
Result: ERROR
    Running examples in 'TEEReg-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: TEE.BCa
    > ### Title: Compute the bias-corrected accelerated bootstrap confidence
    > ### intervals.
    > ### Aliases: TEE.BCa
    > ### Keywords: TEE.BCa TEEReg TEE
    >
    > ### ** Examples
    >
    > data(telephone)
    > fit <- TEE(formula=Y~X,data=telephone,p.trimmed=0.5,p.subsample=0.5,method="tee")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    TEEReg
     --- call from context ---
    TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
     --- call from argument ---
    if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
     t(Xsvd$u[, Positive, drop = FALSE]))
     }
    } else if (nonsingular == "TRUE") {
     hat <- solve(X)
    }
     --- R stacktrace ---
    where 1: TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (formula, data, offset = NULL, p.trimmed = NULL, p.subsample = 1,
     method = "tee")
    {
     if (missing(formula)) {
     stop("'formula' must be provided.")
     }
     if (missing(data)) {
     stop("'data' must be provided.")
     }
     if (method != "ols" & method != "tee") {
     stop(gettextf("invalid 'method' argument, method = '%s' is not supported. Using 'tee' or 'ols'.",
     method), domain = NA)
     }
     if (is.null(p.trimmed) & method == "tee") {
     stop("'p.trimmed' must be provided when 'method' is 'tee'.")
     }
     if (!is.null(p.trimmed)) {
     if (!is.numeric(p.trimmed)) {
     stop("'p.trimmed' must be numeric.")
     }
     else if (p.trimmed >= 1 | p.trimmed < 0) {
     stop("invalid 'p.trimmed' argument.")
     }
     }
     if (!is.numeric(p.subsample)) {
     stop("'p.subsample' must be numeric.")
     }
     else if (p.subsample > 1 | p.subsample <= 0) {
     stop("invalid 'p.subsample' argument.")
     }
     mcall <- match.call(expand.dots = FALSE)
     mat <- match(c("formula", "data", "offset"), names(mcall),
     0L)
     mcall <- mcall[c(1L, mat)]
     mcall$drop.unused.levels <- TRUE
     mcall[[1L]] <- quote(stats::model.frame)
     mcall <- eval(mcall, parent.frame())
     mcallt <- attr(mcall, "terms")
     if (!is.null(offset)) {
     if (length(offset) != nrow(data)) {
     stop(gettextf("number of offsets is %d, should equal %d (number of observations).",
     length(offset), nrow(data)), domain = NA)
     }
     else {
     offset <- as.vector(model.offset(mcall))
     }
     }
     Yall <- model.response(mcall, "any")
     if (is.empty.model(mcallt)) {
     Xall <- NULL
     output <- list(coefficients = if (is.matrix(Yall)) matrix(,
     0, 3) else numeric(), residuals = Yall, fitted.values = 0 *
     Yall, rank = 0L)
     if (is.null(offset)) {
     output$fitted.values <- offset
     output$residuals <- Yall - offset
     }
     print(list(output))
     stop("no parameters need to be estimated.")
     }
     else {
     Xall <- model.matrix(mcallt, mcall)
     names <- colnames(Xall)
     }
     if (method == "ols") {
     callt <- match.call()
     c <- match(c("formula", "data", "offset", "method"),
     names(callt), 0L)
     callt <- callt[c(1L, c)]
     nonsingular <- class(try(solve(t(Xall) %*% Xall), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     warning("Matrix is singular, generalized inverse is used.")
     tol = sqrt(.Machine$double.eps)
     XpXsvd <- svd(t(Xall) %*% Xall)
     Positive <- XpXsvd$d > max(tol * XpXsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- XpXsvd$v %*% (1/XpXsvd$d * t(XpXsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(Xall)[2L:1L])
     }
     else {
     hat <- XpXsvd$v[, Positive, drop = FALSE] %*%
     ((1/XpXsvd$d[Positive]) * t(XpXsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(t(Xall) %*% Xall)
     }
     if (!is.null(offset)) {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% (Yall -
     offset)))
     }
     else {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% Yall))
     }
     }
     else if (method == "tee") {
     samplesize <- length(Yall)
     p <- ncol(Xall)
     index <- combn(samplesize, p)
     k <- ncol(index)
     set.seed(23211342)
     s <- ceiling(p.subsample * k)
     subset <- as.matrix(index[, sample(1:k, s, replace = FALSE)])
     beta.h <- matrix(NA, nrow = p, ncol = s)
     det.XhXh <- c()
     sum.abse <- c()
     r <- round((1 - p.trimmed) * s)
     for (i in 1:s) {
     Y <- Yall[subset[, i]]
     X <- Xall[subset[, i], ]
     nonsingular <- class(try(solve(X), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*%
     ((1/Xsvd$d[Positive]) * t(Xsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(X)
     }
     if (!is.null(offset)) {
     beta.h[, i] <- hat %*% (Y - offset[subset[, i]])
     }
     else {
     beta.h[, i] <- hat %*% Y
     }
     det.XhXh[i] <- det(t(X) %*% X)
     sum.abse[i] <- sum(abs(Yall - Xall %*% beta.h[, i]))
     }
     callt <- match.call()
     pho <- c()
     rank.err <- rank(sum.abse)
     for (j in 1:s) {
     if (rank.err[j] <= r) {
     pho[j] <- 1
     }
     else {
     pho[j] <- 0
     }
     }
     TEE.est <- as.matrix(t(rowSums(t(matrix(c(det.XhXh *
     pho), nrow = s, ncol = p)) * beta.h)/sum(det.XhXh *
     pho)))
     }
     colnames(TEE.est) <- c(names)
     rownames(TEE.est) <- ""
     resid <- if (is.null(offset)) {
     Yall - Xall %*% t(TEE.est)
     }
     else {
     Yall - (Xall %*% t(TEE.est) + offset)
     }
     fitted <- if (is.null(offset)) {
     Xall %*% t(TEE.est)
     }
     else {
     Xall %*% t(TEE.est) + offset
     }
     output <- list(call = callt, formula = formula, coefficients = TEE.est,
     residuals = t(resid), fitted.values = t(fitted))
     return(output)
    }
    <bytecode: 0x394fb78>
    <environment: namespace:TEEReg>
     --- function search by body ---
    Function TEE in namespace TEEReg has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (nonsingular == "FALSE") { : the condition has length > 1
    Calls: TEE
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.1
Check: examples
Result: ERROR
    Running examples in ‘TEEReg-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: TEE.BCa
    > ### Title: Compute the bias-corrected accelerated bootstrap confidence
    > ### intervals.
    > ### Aliases: TEE.BCa
    > ### Keywords: TEE.BCa TEEReg TEE
    >
    > ### ** Examples
    >
    > data(telephone)
    > fit <- TEE(formula=Y~X,data=telephone,p.trimmed=0.5,p.subsample=0.5,method="tee")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    TEEReg
     --- call from context ---
    TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
     --- call from argument ---
    if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
     t(Xsvd$u[, Positive, drop = FALSE]))
     }
    } else if (nonsingular == "TRUE") {
     hat <- solve(X)
    }
     --- R stacktrace ---
    where 1: TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (formula, data, offset = NULL, p.trimmed = NULL, p.subsample = 1,
     method = "tee")
    {
     if (missing(formula)) {
     stop("'formula' must be provided.")
     }
     if (missing(data)) {
     stop("'data' must be provided.")
     }
     if (method != "ols" & method != "tee") {
     stop(gettextf("invalid 'method' argument, method = '%s' is not supported. Using 'tee' or 'ols'.",
     method), domain = NA)
     }
     if (is.null(p.trimmed) & method == "tee") {
     stop("'p.trimmed' must be provided when 'method' is 'tee'.")
     }
     if (!is.null(p.trimmed)) {
     if (!is.numeric(p.trimmed)) {
     stop("'p.trimmed' must be numeric.")
     }
     else if (p.trimmed >= 1 | p.trimmed < 0) {
     stop("invalid 'p.trimmed' argument.")
     }
     }
     if (!is.numeric(p.subsample)) {
     stop("'p.subsample' must be numeric.")
     }
     else if (p.subsample > 1 | p.subsample <= 0) {
     stop("invalid 'p.subsample' argument.")
     }
     mcall <- match.call(expand.dots = FALSE)
     mat <- match(c("formula", "data", "offset"), names(mcall),
     0L)
     mcall <- mcall[c(1L, mat)]
     mcall$drop.unused.levels <- TRUE
     mcall[[1L]] <- quote(stats::model.frame)
     mcall <- eval(mcall, parent.frame())
     mcallt <- attr(mcall, "terms")
     if (!is.null(offset)) {
     if (length(offset) != nrow(data)) {
     stop(gettextf("number of offsets is %d, should equal %d (number of observations).",
     length(offset), nrow(data)), domain = NA)
     }
     else {
     offset <- as.vector(model.offset(mcall))
     }
     }
     Yall <- model.response(mcall, "any")
     if (is.empty.model(mcallt)) {
     Xall <- NULL
     output <- list(coefficients = if (is.matrix(Yall)) matrix(,
     0, 3) else numeric(), residuals = Yall, fitted.values = 0 *
     Yall, rank = 0L)
     if (is.null(offset)) {
     output$fitted.values <- offset
     output$residuals <- Yall - offset
     }
     print(list(output))
     stop("no parameters need to be estimated.")
     }
     else {
     Xall <- model.matrix(mcallt, mcall)
     names <- colnames(Xall)
     }
     if (method == "ols") {
     callt <- match.call()
     c <- match(c("formula", "data", "offset", "method"),
     names(callt), 0L)
     callt <- callt[c(1L, c)]
     nonsingular <- class(try(solve(t(Xall) %*% Xall), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     warning("Matrix is singular, generalized inverse is used.")
     tol = sqrt(.Machine$double.eps)
     XpXsvd <- svd(t(Xall) %*% Xall)
     Positive <- XpXsvd$d > max(tol * XpXsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- XpXsvd$v %*% (1/XpXsvd$d * t(XpXsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(Xall)[2L:1L])
     }
     else {
     hat <- XpXsvd$v[, Positive, drop = FALSE] %*%
     ((1/XpXsvd$d[Positive]) * t(XpXsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(t(Xall) %*% Xall)
     }
     if (!is.null(offset)) {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% (Yall -
     offset)))
     }
     else {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% Yall))
     }
     }
     else if (method == "tee") {
     samplesize <- length(Yall)
     p <- ncol(Xall)
     index <- combn(samplesize, p)
     k <- ncol(index)
     set.seed(23211342)
     s <- ceiling(p.subsample * k)
     subset <- as.matrix(index[, sample(1:k, s, replace = FALSE)])
     beta.h <- matrix(NA, nrow = p, ncol = s)
     det.XhXh <- c()
     sum.abse <- c()
     r <- round((1 - p.trimmed) * s)
     for (i in 1:s) {
     Y <- Yall[subset[, i]]
     X <- Xall[subset[, i], ]
     nonsingular <- class(try(solve(X), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*%
     ((1/Xsvd$d[Positive]) * t(Xsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(X)
     }
     if (!is.null(offset)) {
     beta.h[, i] <- hat %*% (Y - offset[subset[, i]])
     }
     else {
     beta.h[, i] <- hat %*% Y
     }
     det.XhXh[i] <- det(t(X) %*% X)
     sum.abse[i] <- sum(abs(Yall - Xall %*% beta.h[, i]))
     }
     callt <- match.call()
     pho <- c()
     rank.err <- rank(sum.abse)
     for (j in 1:s) {
     if (rank.err[j] <= r) {
     pho[j] <- 1
     }
     else {
     pho[j] <- 0
     }
     }
     TEE.est <- as.matrix(t(rowSums(t(matrix(c(det.XhXh *
     pho), nrow = s, ncol = p)) * beta.h)/sum(det.XhXh *
     pho)))
     }
     colnames(TEE.est) <- c(names)
     rownames(TEE.est) <- ""
     resid <- if (is.null(offset)) {
     Yall - Xall %*% t(TEE.est)
     }
     else {
     Yall - (Xall %*% t(TEE.est) + offset)
     }
     fitted <- if (is.null(offset)) {
     Xall %*% t(TEE.est)
     }
     else {
     Xall %*% t(TEE.est) + offset
     }
     output <- list(call = callt, formula = formula, coefficients = TEE.est,
     residuals = t(resid), fitted.values = t(fitted))
     return(output)
    }
    <bytecode: 0x559cc5479fd8>
    <environment: namespace:TEEReg>
     --- function search by body ---
    Function TEE in namespace TEEReg has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (nonsingular == "FALSE") { : the condition has length > 1
    Calls: TEE
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.1
Check: examples
Result: ERROR
    Running examples in ‘TEEReg-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: TEE.BCa
    > ### Title: Compute the bias-corrected accelerated bootstrap confidence
    > ### intervals.
    > ### Aliases: TEE.BCa
    > ### Keywords: TEE.BCa TEEReg TEE
    >
    > ### ** Examples
    >
    > data(telephone)
    > fit <- TEE(formula=Y~X,data=telephone,p.trimmed=0.5,p.subsample=0.5,method="tee")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    TEEReg
     --- call from context ---
    TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
     --- call from argument ---
    if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
     t(Xsvd$u[, Positive, drop = FALSE]))
     }
    } else if (nonsingular == "TRUE") {
     hat <- solve(X)
    }
     --- R stacktrace ---
    where 1: TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (formula, data, offset = NULL, p.trimmed = NULL, p.subsample = 1,
     method = "tee")
    {
     if (missing(formula)) {
     stop("'formula' must be provided.")
     }
     if (missing(data)) {
     stop("'data' must be provided.")
     }
     if (method != "ols" & method != "tee") {
     stop(gettextf("invalid 'method' argument, method = '%s' is not supported. Using 'tee' or 'ols'.",
     method), domain = NA)
     }
     if (is.null(p.trimmed) & method == "tee") {
     stop("'p.trimmed' must be provided when 'method' is 'tee'.")
     }
     if (!is.null(p.trimmed)) {
     if (!is.numeric(p.trimmed)) {
     stop("'p.trimmed' must be numeric.")
     }
     else if (p.trimmed >= 1 | p.trimmed < 0) {
     stop("invalid 'p.trimmed' argument.")
     }
     }
     if (!is.numeric(p.subsample)) {
     stop("'p.subsample' must be numeric.")
     }
     else if (p.subsample > 1 | p.subsample <= 0) {
     stop("invalid 'p.subsample' argument.")
     }
     mcall <- match.call(expand.dots = FALSE)
     mat <- match(c("formula", "data", "offset"), names(mcall),
     0L)
     mcall <- mcall[c(1L, mat)]
     mcall$drop.unused.levels <- TRUE
     mcall[[1L]] <- quote(stats::model.frame)
     mcall <- eval(mcall, parent.frame())
     mcallt <- attr(mcall, "terms")
     if (!is.null(offset)) {
     if (length(offset) != nrow(data)) {
     stop(gettextf("number of offsets is %d, should equal %d (number of observations).",
     length(offset), nrow(data)), domain = NA)
     }
     else {
     offset <- as.vector(model.offset(mcall))
     }
     }
     Yall <- model.response(mcall, "any")
     if (is.empty.model(mcallt)) {
     Xall <- NULL
     output <- list(coefficients = if (is.matrix(Yall)) matrix(,
     0, 3) else numeric(), residuals = Yall, fitted.values = 0 *
     Yall, rank = 0L)
     if (is.null(offset)) {
     output$fitted.values <- offset
     output$residuals <- Yall - offset
     }
     print(list(output))
     stop("no parameters need to be estimated.")
     }
     else {
     Xall <- model.matrix(mcallt, mcall)
     names <- colnames(Xall)
     }
     if (method == "ols") {
     callt <- match.call()
     c <- match(c("formula", "data", "offset", "method"),
     names(callt), 0L)
     callt <- callt[c(1L, c)]
     nonsingular <- class(try(solve(t(Xall) %*% Xall), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     warning("Matrix is singular, generalized inverse is used.")
     tol = sqrt(.Machine$double.eps)
     XpXsvd <- svd(t(Xall) %*% Xall)
     Positive <- XpXsvd$d > max(tol * XpXsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- XpXsvd$v %*% (1/XpXsvd$d * t(XpXsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(Xall)[2L:1L])
     }
     else {
     hat <- XpXsvd$v[, Positive, drop = FALSE] %*%
     ((1/XpXsvd$d[Positive]) * t(XpXsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(t(Xall) %*% Xall)
     }
     if (!is.null(offset)) {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% (Yall -
     offset)))
     }
     else {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% Yall))
     }
     }
     else if (method == "tee") {
     samplesize <- length(Yall)
     p <- ncol(Xall)
     index <- combn(samplesize, p)
     k <- ncol(index)
     set.seed(23211342)
     s <- ceiling(p.subsample * k)
     subset <- as.matrix(index[, sample(1:k, s, replace = FALSE)])
     beta.h <- matrix(NA, nrow = p, ncol = s)
     det.XhXh <- c()
     sum.abse <- c()
     r <- round((1 - p.trimmed) * s)
     for (i in 1:s) {
     Y <- Yall[subset[, i]]
     X <- Xall[subset[, i], ]
     nonsingular <- class(try(solve(X), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*%
     ((1/Xsvd$d[Positive]) * t(Xsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(X)
     }
     if (!is.null(offset)) {
     beta.h[, i] <- hat %*% (Y - offset[subset[, i]])
     }
     else {
     beta.h[, i] <- hat %*% Y
     }
     det.XhXh[i] <- det(t(X) %*% X)
     sum.abse[i] <- sum(abs(Yall - Xall %*% beta.h[, i]))
     }
     callt <- match.call()
     pho <- c()
     rank.err <- rank(sum.abse)
     for (j in 1:s) {
     if (rank.err[j] <= r) {
     pho[j] <- 1
     }
     else {
     pho[j] <- 0
     }
     }
     TEE.est <- as.matrix(t(rowSums(t(matrix(c(det.XhXh *
     pho), nrow = s, ncol = p)) * beta.h)/sum(det.XhXh *
     pho)))
     }
     colnames(TEE.est) <- c(names)
     rownames(TEE.est) <- ""
     resid <- if (is.null(offset)) {
     Yall - Xall %*% t(TEE.est)
     }
     else {
     Yall - (Xall %*% t(TEE.est) + offset)
     }
     fitted <- if (is.null(offset)) {
     Xall %*% t(TEE.est)
     }
     else {
     Xall %*% t(TEE.est) + offset
     }
     output <- list(call = callt, formula = formula, coefficients = TEE.est,
     residuals = t(resid), fitted.values = t(fitted))
     return(output)
    }
    <bytecode: 0x22faf40>
    <environment: namespace:TEEReg>
     --- function search by body ---
    Function TEE in namespace TEEReg has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (nonsingular == "FALSE") { : the condition has length > 1
    Calls: TEE
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.1
Check: examples
Result: ERROR
    Running examples in ‘TEEReg-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: TEE.BCa
    > ### Title: Compute the bias-corrected accelerated bootstrap confidence
    > ### intervals.
    > ### Aliases: TEE.BCa
    > ### Keywords: TEE.BCa TEEReg TEE
    >
    > ### ** Examples
    >
    > data(telephone)
    > fit <- TEE(formula=Y~X,data=telephone,p.trimmed=0.5,p.subsample=0.5,method="tee")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    TEEReg
     --- call from context ---
    TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
     --- call from argument ---
    if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*% ((1/Xsvd$d[Positive]) *
     t(Xsvd$u[, Positive, drop = FALSE]))
     }
    } else if (nonsingular == "TRUE") {
     hat <- solve(X)
    }
     --- R stacktrace ---
    where 1: TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.5, p.subsample = 0.5,
     method = "tee")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (formula, data, offset = NULL, p.trimmed = NULL, p.subsample = 1,
     method = "tee")
    {
     if (missing(formula)) {
     stop("'formula' must be provided.")
     }
     if (missing(data)) {
     stop("'data' must be provided.")
     }
     if (method != "ols" & method != "tee") {
     stop(gettextf("invalid 'method' argument, method = '%s' is not supported. Using 'tee' or 'ols'.",
     method), domain = NA)
     }
     if (is.null(p.trimmed) & method == "tee") {
     stop("'p.trimmed' must be provided when 'method' is 'tee'.")
     }
     if (!is.null(p.trimmed)) {
     if (!is.numeric(p.trimmed)) {
     stop("'p.trimmed' must be numeric.")
     }
     else if (p.trimmed >= 1 | p.trimmed < 0) {
     stop("invalid 'p.trimmed' argument.")
     }
     }
     if (!is.numeric(p.subsample)) {
     stop("'p.subsample' must be numeric.")
     }
     else if (p.subsample > 1 | p.subsample <= 0) {
     stop("invalid 'p.subsample' argument.")
     }
     mcall <- match.call(expand.dots = FALSE)
     mat <- match(c("formula", "data", "offset"), names(mcall),
     0L)
     mcall <- mcall[c(1L, mat)]
     mcall$drop.unused.levels <- TRUE
     mcall[[1L]] <- quote(stats::model.frame)
     mcall <- eval(mcall, parent.frame())
     mcallt <- attr(mcall, "terms")
     if (!is.null(offset)) {
     if (length(offset) != nrow(data)) {
     stop(gettextf("number of offsets is %d, should equal %d (number of observations).",
     length(offset), nrow(data)), domain = NA)
     }
     else {
     offset <- as.vector(model.offset(mcall))
     }
     }
     Yall <- model.response(mcall, "any")
     if (is.empty.model(mcallt)) {
     Xall <- NULL
     output <- list(coefficients = if (is.matrix(Yall)) matrix(,
     0, 3) else numeric(), residuals = Yall, fitted.values = 0 *
     Yall, rank = 0L)
     if (is.null(offset)) {
     output$fitted.values <- offset
     output$residuals <- Yall - offset
     }
     print(list(output))
     stop("no parameters need to be estimated.")
     }
     else {
     Xall <- model.matrix(mcallt, mcall)
     names <- colnames(Xall)
     }
     if (method == "ols") {
     callt <- match.call()
     c <- match(c("formula", "data", "offset", "method"),
     names(callt), 0L)
     callt <- callt[c(1L, c)]
     nonsingular <- class(try(solve(t(Xall) %*% Xall), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     warning("Matrix is singular, generalized inverse is used.")
     tol = sqrt(.Machine$double.eps)
     XpXsvd <- svd(t(Xall) %*% Xall)
     Positive <- XpXsvd$d > max(tol * XpXsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- XpXsvd$v %*% (1/XpXsvd$d * t(XpXsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(Xall)[2L:1L])
     }
     else {
     hat <- XpXsvd$v[, Positive, drop = FALSE] %*%
     ((1/XpXsvd$d[Positive]) * t(XpXsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(t(Xall) %*% Xall)
     }
     if (!is.null(offset)) {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% (Yall -
     offset)))
     }
     else {
     TEE.est <- as.matrix(t(hat %*% t(Xall) %*% Yall))
     }
     }
     else if (method == "tee") {
     samplesize <- length(Yall)
     p <- ncol(Xall)
     index <- combn(samplesize, p)
     k <- ncol(index)
     set.seed(23211342)
     s <- ceiling(p.subsample * k)
     subset <- as.matrix(index[, sample(1:k, s, replace = FALSE)])
     beta.h <- matrix(NA, nrow = p, ncol = s)
     det.XhXh <- c()
     sum.abse <- c()
     r <- round((1 - p.trimmed) * s)
     for (i in 1:s) {
     Y <- Yall[subset[, i]]
     X <- Xall[subset[, i], ]
     nonsingular <- class(try(solve(X), silent = T)) ==
     "matrix"
     if (nonsingular == "FALSE") {
     tol = sqrt(.Machine$double.eps)
     Xsvd <- svd(X)
     Positive <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
     if (all(Positive)) {
     hat <- Xsvd$v %*% (1/Xsvd$d * t(Xsvd$u))
     }
     else if (!any(Positive)) {
     hat <- array(0, dim(X)[2L:1L])
     }
     else {
     hat <- Xsvd$v[, Positive, drop = FALSE] %*%
     ((1/Xsvd$d[Positive]) * t(Xsvd$u[, Positive,
     drop = FALSE]))
     }
     }
     else if (nonsingular == "TRUE") {
     hat <- solve(X)
     }
     if (!is.null(offset)) {
     beta.h[, i] <- hat %*% (Y - offset[subset[, i]])
     }
     else {
     beta.h[, i] <- hat %*% Y
     }
     det.XhXh[i] <- det(t(X) %*% X)
     sum.abse[i] <- sum(abs(Yall - Xall %*% beta.h[, i]))
     }
     callt <- match.call()
     pho <- c()
     rank.err <- rank(sum.abse)
     for (j in 1:s) {
     if (rank.err[j] <= r) {
     pho[j] <- 1
     }
     else {
     pho[j] <- 0
     }
     }
     TEE.est <- as.matrix(t(rowSums(t(matrix(c(det.XhXh *
     pho), nrow = s, ncol = p)) * beta.h)/sum(det.XhXh *
     pho)))
     }
     colnames(TEE.est) <- c(names)
     rownames(TEE.est) <- ""
     resid <- if (is.null(offset)) {
     Yall - Xall %*% t(TEE.est)
     }
     else {
     Yall - (Xall %*% t(TEE.est) + offset)
     }
     fitted <- if (is.null(offset)) {
     Xall %*% t(TEE.est)
     }
     else {
     Xall %*% t(TEE.est) + offset
     }
     output <- list(call = callt, formula = formula, coefficients = TEE.est,
     residuals = t(resid), fitted.values = t(fitted))
     return(output)
    }
    <bytecode: 0x1784098>
    <environment: namespace:TEEReg>
     --- function search by body ---
    Function TEE in namespace TEEReg has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (nonsingular == "FALSE") { : the condition has length > 1
    Calls: TEE
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc