Last updated on 2020-02-19 10:49:01 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1 | 8.78 | 59.70 | 68.48 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.1 | 6.42 | 47.35 | 53.77 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.1 | 82.37 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.1 | 81.69 | ERROR | |||
r-devel-windows-ix86+x86_64 | 0.1 | 14.00 | 68.00 | 82.00 | OK | |
r-devel-windows-ix86+x86_64-gcc8 | 0.1 | 21.00 | 87.00 | 108.00 | OK | |
r-patched-linux-x86_64 | 0.1 | 5.90 | 51.18 | 57.08 | OK | |
r-patched-solaris-x86 | 0.1 | 108.50 | OK | |||
r-release-linux-x86_64 | 0.1 | 7.51 | 51.11 | 58.62 | OK | |
r-release-windows-ix86+x86_64 | 0.1 | 12.00 | 61.00 | 73.00 | OK | |
r-release-osx-x86_64 | 0.1 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 0.1 | 8.00 | 60.00 | 68.00 | OK | |
r-oldrel-osx-x86_64 | 0.1 | OK |
Version: 0.1
Check: examples
Result: ERROR
Running examples in 'optismixture-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: batch.estimation
> ### Title: Two stage estimation, a pilot estimate of mixing alpha and a
> ### following importance sampling, with or without control variates
> ### Aliases: batch.estimation
>
> ### ** Examples
>
> library(optismixture)
> seed <- 1
> p <- 5
> rho <- 1/2
> gamma <- 2.4
> sigma.dvar <- function(rho, p){
+ sigma <- matrix(0, p, p)
+ for(i in 1:(p-1)){
+ for(j in (i+1):p){
+ sigma[i,j] <- rho^(abs(i-j))
+ }
+ }
+ sigma <- sigma + t(sigma)
+ diag(sigma) <- 1
+ return(sigma)
+ }
> sigma <- sigma.dvar(rho, p)
> batch.size <- c(10^4, 1002)
> j.vec <- 2^-(seq(1,5,1))
> eps.status <- 1
> eps.safe <- 0.1
> ## initialization and construct derived parameters
> mu <- rep(0, p)
> x0 <- matrix(1, 1, p)
> x0.mat <- rbind(rep(1,p), rep(-1, p))
> j.mat <- data.frame(centerid = rep(1:dim(x0.mat)[1], each = length(j.vec)),
+ variance = rep(j.vec, 2))
> J <- dim(j.mat)[1] + 1
> eps <- rep(0.1/J, J)
> mixture.param <- list(x0 = x0, x0.mat = x0.mat, p = p,
+ sigma = sigma, gamma = gamma, j.mat = j.mat, J = J)
> f <- function(x, j, mixture.param){
+ f1 <- function(x, mixture.param){
+ x0 <- mixture.param$x0
+ gamma <- mixture.param$gamma
+ return(sum((x - x0)^2)^(-gamma/2))
+ }
+ return(apply(x, 1, f1, mixture.param))
+ }
> dq <- function(x, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j, 2]
+ return(mvtnorm::dmvnorm(x, mixture.param$x0.mat[centerid,], j.param*diag(mixture.param$p)))
+ }
> dp <- function(x, mixture.param){
+ return(mvtnorm::dmvnorm(x, rep(0, mixture.param$p), mixture.param$sigma))
+ }
> rq <- function(n, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j,2]
+ return(mvtnorm::rmvnorm(n, mixture.param$x0.mat[centerid, ], j.param*diag(mixture.param$p)))
+ }
> rp <- function(n, mixture.param){
+ mu <- rep(0, mixture.param$p)
+ sigma <- mixture.param$sigma
+ return(mvtnorm::rmvnorm(n, mu, sigma))
+ }
> a <- batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
+ fname = "f", rpname = "rp", rqname = "rq", dpname = "dp", dqname = "dq")
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
optismixture
--- call from context ---
dampednewton(alpha, rho, reltol = reltol)
--- call from argument ---
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
--- R stacktrace ---
where 1: dampednewton(alpha, rho, reltol = reltol)
where 2: penoptpersp.alpha.only(y = opt.input$Y[get.index.b(batch.size,
b), ], z = as.matrix(opt.input$Z[get.index.b(batch.size,
b), ]), a0 = alpha.opt, eps = eps, reltol = opt.param$reltol,
relerr = opt.param$relerr, rho0 = opt.param$rho0, maxin = opt.param$maxin,
maxout = opt.param$maxout)
where 3: batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
fname = "f", rpname = "rp", rqname = "rq", dpname = "dp",
dqname = "dq")
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (alpha, rho, reltol)
{
done = FALSE
inct <- 0
oldf <- -Inf
while (1) {
vals = fgH(alpha, rho, do = 3)
if (identical(oldf, vals$f)) {
solstatus <- "exact"
break
}
oldf <- vals$f
newtonstep = try(-svdsolve(vals$H, vals$g), silent = TRUE)
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
newtonstep <- drop(newtonstep)
decrement = -(vals$g %*% newtonstep)[1, 1]/2
reldecrement = decrement/vals$f
if (reldecrement <= reltol) {
solstatus <- "exact"
break
}
tval = linesearch(alpha, rho, newtonstep, vals$f, vals$g)
alpha = alpha + tval * newtonstep
inct = inct + 1
if (inct >= maxin) {
print("Reaching maximum inner iterations")
solstatus <- "semiexact"
print(paste("decrement", decrement))
print(paste("vals$f", vals$f))
break
}
}
list(alpha = alpha, solstatus = solstatus, inct = inct)
}
<bytecode: 0x49f4fe0>
<environment: 0x5e85790>
--- function search by body ---
----------- END OF FAILURE REPORT --------------
Error in if (class(newtonstep) == "try-error") { :
the condition has length > 1
Calls: batch.estimation -> penoptpersp.alpha.only -> dampednewton
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.1
Check: examples
Result: ERROR
Running examples in ‘optismixture-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: batch.estimation
> ### Title: Two stage estimation, a pilot estimate of mixing alpha and a
> ### following importance sampling, with or without control variates
> ### Aliases: batch.estimation
>
> ### ** Examples
>
> library(optismixture)
> seed <- 1
> p <- 5
> rho <- 1/2
> gamma <- 2.4
> sigma.dvar <- function(rho, p){
+ sigma <- matrix(0, p, p)
+ for(i in 1:(p-1)){
+ for(j in (i+1):p){
+ sigma[i,j] <- rho^(abs(i-j))
+ }
+ }
+ sigma <- sigma + t(sigma)
+ diag(sigma) <- 1
+ return(sigma)
+ }
> sigma <- sigma.dvar(rho, p)
> batch.size <- c(10^4, 1002)
> j.vec <- 2^-(seq(1,5,1))
> eps.status <- 1
> eps.safe <- 0.1
> ## initialization and construct derived parameters
> mu <- rep(0, p)
> x0 <- matrix(1, 1, p)
> x0.mat <- rbind(rep(1,p), rep(-1, p))
> j.mat <- data.frame(centerid = rep(1:dim(x0.mat)[1], each = length(j.vec)),
+ variance = rep(j.vec, 2))
> J <- dim(j.mat)[1] + 1
> eps <- rep(0.1/J, J)
> mixture.param <- list(x0 = x0, x0.mat = x0.mat, p = p,
+ sigma = sigma, gamma = gamma, j.mat = j.mat, J = J)
> f <- function(x, j, mixture.param){
+ f1 <- function(x, mixture.param){
+ x0 <- mixture.param$x0
+ gamma <- mixture.param$gamma
+ return(sum((x - x0)^2)^(-gamma/2))
+ }
+ return(apply(x, 1, f1, mixture.param))
+ }
> dq <- function(x, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j, 2]
+ return(mvtnorm::dmvnorm(x, mixture.param$x0.mat[centerid,], j.param*diag(mixture.param$p)))
+ }
> dp <- function(x, mixture.param){
+ return(mvtnorm::dmvnorm(x, rep(0, mixture.param$p), mixture.param$sigma))
+ }
> rq <- function(n, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j,2]
+ return(mvtnorm::rmvnorm(n, mixture.param$x0.mat[centerid, ], j.param*diag(mixture.param$p)))
+ }
> rp <- function(n, mixture.param){
+ mu <- rep(0, mixture.param$p)
+ sigma <- mixture.param$sigma
+ return(mvtnorm::rmvnorm(n, mu, sigma))
+ }
> a <- batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
+ fname = "f", rpname = "rp", rqname = "rq", dpname = "dp", dqname = "dq")
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
optismixture
--- call from context ---
dampednewton(alpha, rho, reltol = reltol)
--- call from argument ---
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
--- R stacktrace ---
where 1: dampednewton(alpha, rho, reltol = reltol)
where 2: penoptpersp.alpha.only(y = opt.input$Y[get.index.b(batch.size,
b), ], z = as.matrix(opt.input$Z[get.index.b(batch.size,
b), ]), a0 = alpha.opt, eps = eps, reltol = opt.param$reltol,
relerr = opt.param$relerr, rho0 = opt.param$rho0, maxin = opt.param$maxin,
maxout = opt.param$maxout)
where 3: batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
fname = "f", rpname = "rp", rqname = "rq", dpname = "dp",
dqname = "dq")
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (alpha, rho, reltol)
{
done = FALSE
inct <- 0
oldf <- -Inf
while (1) {
vals = fgH(alpha, rho, do = 3)
if (identical(oldf, vals$f)) {
solstatus <- "exact"
break
}
oldf <- vals$f
newtonstep = try(-svdsolve(vals$H, vals$g), silent = TRUE)
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
newtonstep <- drop(newtonstep)
decrement = -(vals$g %*% newtonstep)[1, 1]/2
reldecrement = decrement/vals$f
if (reldecrement <= reltol) {
solstatus <- "exact"
break
}
tval = linesearch(alpha, rho, newtonstep, vals$f, vals$g)
alpha = alpha + tval * newtonstep
inct = inct + 1
if (inct >= maxin) {
print("Reaching maximum inner iterations")
solstatus <- "semiexact"
print(paste("decrement", decrement))
print(paste("vals$f", vals$f))
break
}
}
list(alpha = alpha, solstatus = solstatus, inct = inct)
}
<bytecode: 0x55ff9fc3de60>
<environment: 0x55ffa05f4ad8>
--- function search by body ---
----------- END OF FAILURE REPORT --------------
Error in if (class(newtonstep) == "try-error") { :
the condition has length > 1
Calls: batch.estimation -> penoptpersp.alpha.only -> dampednewton
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.1
Check: examples
Result: ERROR
Running examples in ‘optismixture-Ex.R’ failed
The error most likely occurred in:
> ### Name: batch.estimation
> ### Title: Two stage estimation, a pilot estimate of mixing alpha and a
> ### following importance sampling, with or without control variates
> ### Aliases: batch.estimation
>
> ### ** Examples
>
> library(optismixture)
> seed <- 1
> p <- 5
> rho <- 1/2
> gamma <- 2.4
> sigma.dvar <- function(rho, p){
+ sigma <- matrix(0, p, p)
+ for(i in 1:(p-1)){
+ for(j in (i+1):p){
+ sigma[i,j] <- rho^(abs(i-j))
+ }
+ }
+ sigma <- sigma + t(sigma)
+ diag(sigma) <- 1
+ return(sigma)
+ }
> sigma <- sigma.dvar(rho, p)
> batch.size <- c(10^4, 1002)
> j.vec <- 2^-(seq(1,5,1))
> eps.status <- 1
> eps.safe <- 0.1
> ## initialization and construct derived parameters
> mu <- rep(0, p)
> x0 <- matrix(1, 1, p)
> x0.mat <- rbind(rep(1,p), rep(-1, p))
> j.mat <- data.frame(centerid = rep(1:dim(x0.mat)[1], each = length(j.vec)),
+ variance = rep(j.vec, 2))
> J <- dim(j.mat)[1] + 1
> eps <- rep(0.1/J, J)
> mixture.param <- list(x0 = x0, x0.mat = x0.mat, p = p,
+ sigma = sigma, gamma = gamma, j.mat = j.mat, J = J)
> f <- function(x, j, mixture.param){
+ f1 <- function(x, mixture.param){
+ x0 <- mixture.param$x0
+ gamma <- mixture.param$gamma
+ return(sum((x - x0)^2)^(-gamma/2))
+ }
+ return(apply(x, 1, f1, mixture.param))
+ }
> dq <- function(x, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j, 2]
+ return(mvtnorm::dmvnorm(x, mixture.param$x0.mat[centerid,], j.param*diag(mixture.param$p)))
+ }
> dp <- function(x, mixture.param){
+ return(mvtnorm::dmvnorm(x, rep(0, mixture.param$p), mixture.param$sigma))
+ }
> rq <- function(n, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j,2]
+ return(mvtnorm::rmvnorm(n, mixture.param$x0.mat[centerid, ], j.param*diag(mixture.param$p)))
+ }
> rp <- function(n, mixture.param){
+ mu <- rep(0, mixture.param$p)
+ sigma <- mixture.param$sigma
+ return(mvtnorm::rmvnorm(n, mu, sigma))
+ }
> a <- batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
+ fname = "f", rpname = "rp", rqname = "rq", dpname = "dp", dqname = "dq")
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
optismixture
--- call from context ---
dampednewton(alpha, rho, reltol = reltol)
--- call from argument ---
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
--- R stacktrace ---
where 1: dampednewton(alpha, rho, reltol = reltol)
where 2: penoptpersp.alpha.only(y = opt.input$Y[get.index.b(batch.size,
b), ], z = as.matrix(opt.input$Z[get.index.b(batch.size,
b), ]), a0 = alpha.opt, eps = eps, reltol = opt.param$reltol,
relerr = opt.param$relerr, rho0 = opt.param$rho0, maxin = opt.param$maxin,
maxout = opt.param$maxout)
where 3: batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
fname = "f", rpname = "rp", rqname = "rq", dpname = "dp",
dqname = "dq")
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (alpha, rho, reltol)
{
done = FALSE
inct <- 0
oldf <- -Inf
while (1) {
vals = fgH(alpha, rho, do = 3)
if (identical(oldf, vals$f)) {
solstatus <- "exact"
break
}
oldf <- vals$f
newtonstep = try(-svdsolve(vals$H, vals$g), silent = TRUE)
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
newtonstep <- drop(newtonstep)
decrement = -(vals$g %*% newtonstep)[1, 1]/2
reldecrement = decrement/vals$f
if (reldecrement <= reltol) {
solstatus <- "exact"
break
}
tval = linesearch(alpha, rho, newtonstep, vals$f, vals$g)
alpha = alpha + tval * newtonstep
inct = inct + 1
if (inct >= maxin) {
print("Reaching maximum inner iterations")
solstatus <- "semiexact"
print(paste("decrement", decrement))
print(paste("vals$f", vals$f))
break
}
}
list(alpha = alpha, solstatus = solstatus, inct = inct)
}
<bytecode: 0x693d970>
<environment: 0x6936580>
--- function search by body ---
----------- END OF FAILURE REPORT --------------
Error in if (class(newtonstep) == "try-error") { :
the condition has length > 1
Calls: batch.estimation -> penoptpersp.alpha.only -> dampednewton
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.1
Check: examples
Result: ERROR
Running examples in ‘optismixture-Ex.R’ failed
The error most likely occurred in:
> ### Name: batch.estimation
> ### Title: Two stage estimation, a pilot estimate of mixing alpha and a
> ### following importance sampling, with or without control variates
> ### Aliases: batch.estimation
>
> ### ** Examples
>
> library(optismixture)
> seed <- 1
> p <- 5
> rho <- 1/2
> gamma <- 2.4
> sigma.dvar <- function(rho, p){
+ sigma <- matrix(0, p, p)
+ for(i in 1:(p-1)){
+ for(j in (i+1):p){
+ sigma[i,j] <- rho^(abs(i-j))
+ }
+ }
+ sigma <- sigma + t(sigma)
+ diag(sigma) <- 1
+ return(sigma)
+ }
> sigma <- sigma.dvar(rho, p)
> batch.size <- c(10^4, 1002)
> j.vec <- 2^-(seq(1,5,1))
> eps.status <- 1
> eps.safe <- 0.1
> ## initialization and construct derived parameters
> mu <- rep(0, p)
> x0 <- matrix(1, 1, p)
> x0.mat <- rbind(rep(1,p), rep(-1, p))
> j.mat <- data.frame(centerid = rep(1:dim(x0.mat)[1], each = length(j.vec)),
+ variance = rep(j.vec, 2))
> J <- dim(j.mat)[1] + 1
> eps <- rep(0.1/J, J)
> mixture.param <- list(x0 = x0, x0.mat = x0.mat, p = p,
+ sigma = sigma, gamma = gamma, j.mat = j.mat, J = J)
> f <- function(x, j, mixture.param){
+ f1 <- function(x, mixture.param){
+ x0 <- mixture.param$x0
+ gamma <- mixture.param$gamma
+ return(sum((x - x0)^2)^(-gamma/2))
+ }
+ return(apply(x, 1, f1, mixture.param))
+ }
> dq <- function(x, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j, 2]
+ return(mvtnorm::dmvnorm(x, mixture.param$x0.mat[centerid,], j.param*diag(mixture.param$p)))
+ }
> dp <- function(x, mixture.param){
+ return(mvtnorm::dmvnorm(x, rep(0, mixture.param$p), mixture.param$sigma))
+ }
> rq <- function(n, j, mixture.param){
+ centerid <- mixture.param$j.mat[j, 1]
+ j.param <- mixture.param$j.mat[j,2]
+ return(mvtnorm::rmvnorm(n, mixture.param$x0.mat[centerid, ], j.param*diag(mixture.param$p)))
+ }
> rp <- function(n, mixture.param){
+ mu <- rep(0, mixture.param$p)
+ sigma <- mixture.param$sigma
+ return(mvtnorm::rmvnorm(n, mu, sigma))
+ }
> a <- batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
+ fname = "f", rpname = "rp", rqname = "rq", dpname = "dp", dqname = "dq")
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
optismixture
--- call from context ---
dampednewton(alpha, rho, reltol = reltol)
--- call from argument ---
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
--- R stacktrace ---
where 1: dampednewton(alpha, rho, reltol = reltol)
where 2: penoptpersp.alpha.only(y = opt.input$Y[get.index.b(batch.size,
b), ], z = as.matrix(opt.input$Z[get.index.b(batch.size,
b), ]), a0 = alpha.opt, eps = eps, reltol = opt.param$reltol,
relerr = opt.param$relerr, rho0 = opt.param$rho0, maxin = opt.param$maxin,
maxout = opt.param$maxout)
where 3: batch.estimation(seed, batch.size, mixture.param, eps, cv = FALSE,
fname = "f", rpname = "rp", rqname = "rq", dpname = "dp",
dqname = "dq")
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
function (alpha, rho, reltol)
{
done = FALSE
inct <- 0
oldf <- -Inf
while (1) {
vals = fgH(alpha, rho, do = 3)
if (identical(oldf, vals$f)) {
solstatus <- "exact"
break
}
oldf <- vals$f
newtonstep = try(-svdsolve(vals$H, vals$g), silent = TRUE)
if (class(newtonstep) == "try-error") {
if (isTRUE(all.equal(vals$g, rep(0, length(vals$g))))) {
solstatus <- "exact"
break
}
else {
print("returning inexact solution")
solstatus <- "inexact"
break
}
}
newtonstep <- drop(newtonstep)
decrement = -(vals$g %*% newtonstep)[1, 1]/2
reldecrement = decrement/vals$f
if (reldecrement <= reltol) {
solstatus <- "exact"
break
}
tval = linesearch(alpha, rho, newtonstep, vals$f, vals$g)
alpha = alpha + tval * newtonstep
inct = inct + 1
if (inct >= maxin) {
print("Reaching maximum inner iterations")
solstatus <- "semiexact"
print(paste("decrement", decrement))
print(paste("vals$f", vals$f))
break
}
}
list(alpha = alpha, solstatus = solstatus, inct = inct)
}
<bytecode: 0x5e14a68>
<environment: 0x55216a8>
--- function search by body ---
----------- END OF FAILURE REPORT --------------
Error in if (class(newtonstep) == "try-error") { :
the condition has length > 1
Calls: batch.estimation -> penoptpersp.alpha.only -> dampednewton
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc