CRAN Package Check Results for Package pawls

Last updated on 2020-02-19 10:49:02 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.0 3.74 18.97 22.71 ERROR
r-devel-linux-x86_64-debian-gcc 1.0.0 2.38 15.09 17.47 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.0 28.75 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.0 27.11 ERROR
r-devel-windows-ix86+x86_64 1.0.0 11.00 44.00 55.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.0.0 16.00 48.00 64.00 OK
r-patched-linux-x86_64 1.0.0 2.28 19.73 22.01 OK
r-patched-solaris-x86 1.0.0 42.70 OK
r-release-linux-x86_64 1.0.0 2.20 19.75 21.95 OK
r-release-windows-ix86+x86_64 1.0.0 9.00 44.00 53.00 OK
r-release-osx-x86_64 1.0.0 OK
r-oldrel-windows-ix86+x86_64 1.0.0 9.00 46.00 55.00 OK
r-oldrel-osx-x86_64 1.0.0 OK

Additional issues

rchk

Check Details

Version: 1.0.0
Check: examples
Result: ERROR
    Running examples in 'pawls-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: pawls
    > ### Title: Penalized adaptive weighted least squares regression
    > ### Aliases: pawls
    >
    > ### ** Examples
    >
    > ## generate data
    > library("mvtnorm")
    > set.seed(123) # for reproducibility
    > n = 100 # number of observations
    > p = 8 # number of variables
    > beta = c(1, 2, 3, 0, 0, 0, 0, 0) # coefficients
    > sigma <- 0.5 # controls signal-to-noise ratio
    > epsilon <- 0.1 # contamination level
    > Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
    > x <- rmvnorm(n, sigma=Sigma) # predictor matrix
    > e <- rnorm(n) # error terms
    > i <- 1:ceiling(epsilon*n) # observations to be contaminated
    > e[i] <- e[i] + 5 # vertical outliers
    > y <- c(x %*% beta + sigma * e) # response
    > x[i,] <- x[i,] + 5 # bad leverage points
    >
    > ## fit pawls model over a find grid of tuning parameters
    > pawls(x,y)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    pawls
     --- call from context ---
    pawls(x, y)
     --- call from argument ---
    if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
    }
     --- R stacktrace ---
    where 1: pawls(x, y)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (x, y, nlambda1 = 100, nlambda2 = 50, lambda1 = NULL,
     lambda2 = NULL, lambda1.min = 0.05, lambda2.min = 0.001,
     beta0 = NULL, w0 = NULL, initial = c("uniform", "PAWLS"),
     delta = 1e-06, maxIter = 1000, intercept = TRUE, standardize = TRUE,
     search = c("grid", "cross"))
    {
     n = length(y)
     p = dim(x)[2]
     if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
     }
     if (class(y) != "numeric") {
     tmp <- try(y <- as.numeric(y), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("y must numeric or able to be coerced to numeric")
     }
     if (any(is.na(y)) | any(is.na(x)))
     stop("Missing data (NA's) detected.Take actions to eliminate missing data before passing \n X and y to pawls.")
     initial <- match.arg(initial)
     search <- match.arg(search)
     penalty2 <- "L1"
     penalty1 <- "L1"
     criterion <- "BIC"
     startBeta <- NULL
     startW <- NULL
     if (!is.null(lambda1))
     nlambda1 <- length(lambda1)
     if (!is.null(lambda2))
     nlambda2 <- length(lambda2)
     if (initial == "PAWLS") {
     init = pawls(x, y, lambda1.min = 0.05, lambda2.min = 0.001,
     intercept = intercept, search = "grid")
     beta0 = SetBeta0(init$beta)
     w0 = ifelse(init$w == 1, 0.99, init$w)
     }
     else if (initial == "uniform") {
     if (is.null(beta0)) {
     beta0 = rep(1, p)
     if (intercept)
     beta0 = c(1, beta0)
     }
     if (is.null(w0))
     w0 = rep(0.99, n)
     beta0 = SetBeta0(beta0)
     w0 = ifelse(w0 == 1, 0.99, w0)
     }
     if (intercept) {
     x = AddIntercept(x)
     }
     std = 0
     scale = 0
     if (standardize) {
     std <- .Call("Standardize", x, y)
     XX <- std[[1]]
     yy <- std[[2]]
     scale <- std[[3]]
     }
     else {
     XX = x
     yy = y
     }
     if (is.null(lambda1) || is.null(lambda2)) {
     lambda = setup_parameter(x = XX, y = yy, nlambda1 = nlambda1,
     nlambda2 = nlambda2, lambda1.min = lambda1.min, lambda2.min = lambda2.min,
     beta0 = beta0, w0 = w0)
     if (is.null(lambda1))
     lambda1 = lambda$lambda1
     if (is.null(lambda2))
     lambda2 = lambda$lambda2
     }
     if (search == "grid") {
     res1 <- pawls_grid(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept)
     res2 <- BIC_grid(res1$wloss, res1$beta, res1$w)
     fit <- list(beta = res2$beta, w = res2$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = lambda1[res2$index1],
     opt.lambda2 = lambda2[res2$index2], iter = res1$iter,
     ws = res1$w, betas = res1$betas, raw.bic = res2$raw.bic,
     bic = res2$bic)
     class(fit) <- "pawls.grid"
     }
     else {
     res = pawls_cross(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept, criterion = criterion, startBeta = startBeta,
     startW = startW)
     fit <- list(beta = res$beta, w = res$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = res$opt.lambda1,
     opt.lambda2 = res$opt.lambda2, iter = res$iter)
     class(fit) <- "pawls.cross"
     }
     if (standardize) {
     scale = ifelse(scale == 0, 0, 1/scale)
     fit$beta = fit$beta * scale
     }
     fit
    }
    <bytecode: 0x2a139a0>
    <environment: namespace:pawls>
     --- function search by body ---
    Function pawls in namespace pawls has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(x) != "matrix") { : the condition has length > 1
    Calls: pawls
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0.0
Check: examples
Result: ERROR
    Running examples in ‘pawls-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: pawls
    > ### Title: Penalized adaptive weighted least squares regression
    > ### Aliases: pawls
    >
    > ### ** Examples
    >
    > ## generate data
    > library("mvtnorm")
    > set.seed(123) # for reproducibility
    > n = 100 # number of observations
    > p = 8 # number of variables
    > beta = c(1, 2, 3, 0, 0, 0, 0, 0) # coefficients
    > sigma <- 0.5 # controls signal-to-noise ratio
    > epsilon <- 0.1 # contamination level
    > Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
    > x <- rmvnorm(n, sigma=Sigma) # predictor matrix
    > e <- rnorm(n) # error terms
    > i <- 1:ceiling(epsilon*n) # observations to be contaminated
    > e[i] <- e[i] + 5 # vertical outliers
    > y <- c(x %*% beta + sigma * e) # response
    > x[i,] <- x[i,] + 5 # bad leverage points
    >
    > ## fit pawls model over a find grid of tuning parameters
    > pawls(x,y)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    pawls
     --- call from context ---
    pawls(x, y)
     --- call from argument ---
    if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
    }
     --- R stacktrace ---
    where 1: pawls(x, y)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (x, y, nlambda1 = 100, nlambda2 = 50, lambda1 = NULL,
     lambda2 = NULL, lambda1.min = 0.05, lambda2.min = 0.001,
     beta0 = NULL, w0 = NULL, initial = c("uniform", "PAWLS"),
     delta = 1e-06, maxIter = 1000, intercept = TRUE, standardize = TRUE,
     search = c("grid", "cross"))
    {
     n = length(y)
     p = dim(x)[2]
     if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
     }
     if (class(y) != "numeric") {
     tmp <- try(y <- as.numeric(y), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("y must numeric or able to be coerced to numeric")
     }
     if (any(is.na(y)) | any(is.na(x)))
     stop("Missing data (NA's) detected.Take actions to eliminate missing data before passing \n X and y to pawls.")
     initial <- match.arg(initial)
     search <- match.arg(search)
     penalty2 <- "L1"
     penalty1 <- "L1"
     criterion <- "BIC"
     startBeta <- NULL
     startW <- NULL
     if (!is.null(lambda1))
     nlambda1 <- length(lambda1)
     if (!is.null(lambda2))
     nlambda2 <- length(lambda2)
     if (initial == "PAWLS") {
     init = pawls(x, y, lambda1.min = 0.05, lambda2.min = 0.001,
     intercept = intercept, search = "grid")
     beta0 = SetBeta0(init$beta)
     w0 = ifelse(init$w == 1, 0.99, init$w)
     }
     else if (initial == "uniform") {
     if (is.null(beta0)) {
     beta0 = rep(1, p)
     if (intercept)
     beta0 = c(1, beta0)
     }
     if (is.null(w0))
     w0 = rep(0.99, n)
     beta0 = SetBeta0(beta0)
     w0 = ifelse(w0 == 1, 0.99, w0)
     }
     if (intercept) {
     x = AddIntercept(x)
     }
     std = 0
     scale = 0
     if (standardize) {
     std <- .Call("Standardize", x, y)
     XX <- std[[1]]
     yy <- std[[2]]
     scale <- std[[3]]
     }
     else {
     XX = x
     yy = y
     }
     if (is.null(lambda1) || is.null(lambda2)) {
     lambda = setup_parameter(x = XX, y = yy, nlambda1 = nlambda1,
     nlambda2 = nlambda2, lambda1.min = lambda1.min, lambda2.min = lambda2.min,
     beta0 = beta0, w0 = w0)
     if (is.null(lambda1))
     lambda1 = lambda$lambda1
     if (is.null(lambda2))
     lambda2 = lambda$lambda2
     }
     if (search == "grid") {
     res1 <- pawls_grid(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept)
     res2 <- BIC_grid(res1$wloss, res1$beta, res1$w)
     fit <- list(beta = res2$beta, w = res2$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = lambda1[res2$index1],
     opt.lambda2 = lambda2[res2$index2], iter = res1$iter,
     ws = res1$w, betas = res1$betas, raw.bic = res2$raw.bic,
     bic = res2$bic)
     class(fit) <- "pawls.grid"
     }
     else {
     res = pawls_cross(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept, criterion = criterion, startBeta = startBeta,
     startW = startW)
     fit <- list(beta = res$beta, w = res$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = res$opt.lambda1,
     opt.lambda2 = res$opt.lambda2, iter = res$iter)
     class(fit) <- "pawls.cross"
     }
     if (standardize) {
     scale = ifelse(scale == 0, 0, 1/scale)
     fit$beta = fit$beta * scale
     }
     fit
    }
    <bytecode: 0x55632041bf00>
    <environment: namespace:pawls>
     --- function search by body ---
    Function pawls in namespace pawls has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(x) != "matrix") { : the condition has length > 1
    Calls: pawls
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.0
Check: examples
Result: ERROR
    Running examples in ‘pawls-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: pawls
    > ### Title: Penalized adaptive weighted least squares regression
    > ### Aliases: pawls
    >
    > ### ** Examples
    >
    > ## generate data
    > library("mvtnorm")
    > set.seed(123) # for reproducibility
    > n = 100 # number of observations
    > p = 8 # number of variables
    > beta = c(1, 2, 3, 0, 0, 0, 0, 0) # coefficients
    > sigma <- 0.5 # controls signal-to-noise ratio
    > epsilon <- 0.1 # contamination level
    > Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
    > x <- rmvnorm(n, sigma=Sigma) # predictor matrix
    > e <- rnorm(n) # error terms
    > i <- 1:ceiling(epsilon*n) # observations to be contaminated
    > e[i] <- e[i] + 5 # vertical outliers
    > y <- c(x %*% beta + sigma * e) # response
    > x[i,] <- x[i,] + 5 # bad leverage points
    >
    > ## fit pawls model over a find grid of tuning parameters
    > pawls(x,y)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    pawls
     --- call from context ---
    pawls(x, y)
     --- call from argument ---
    if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
    }
     --- R stacktrace ---
    where 1: pawls(x, y)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (x, y, nlambda1 = 100, nlambda2 = 50, lambda1 = NULL,
     lambda2 = NULL, lambda1.min = 0.05, lambda2.min = 0.001,
     beta0 = NULL, w0 = NULL, initial = c("uniform", "PAWLS"),
     delta = 1e-06, maxIter = 1000, intercept = TRUE, standardize = TRUE,
     search = c("grid", "cross"))
    {
     n = length(y)
     p = dim(x)[2]
     if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
     }
     if (class(y) != "numeric") {
     tmp <- try(y <- as.numeric(y), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("y must numeric or able to be coerced to numeric")
     }
     if (any(is.na(y)) | any(is.na(x)))
     stop("Missing data (NA's) detected.Take actions to eliminate missing data before passing \n X and y to pawls.")
     initial <- match.arg(initial)
     search <- match.arg(search)
     penalty2 <- "L1"
     penalty1 <- "L1"
     criterion <- "BIC"
     startBeta <- NULL
     startW <- NULL
     if (!is.null(lambda1))
     nlambda1 <- length(lambda1)
     if (!is.null(lambda2))
     nlambda2 <- length(lambda2)
     if (initial == "PAWLS") {
     init = pawls(x, y, lambda1.min = 0.05, lambda2.min = 0.001,
     intercept = intercept, search = "grid")
     beta0 = SetBeta0(init$beta)
     w0 = ifelse(init$w == 1, 0.99, init$w)
     }
     else if (initial == "uniform") {
     if (is.null(beta0)) {
     beta0 = rep(1, p)
     if (intercept)
     beta0 = c(1, beta0)
     }
     if (is.null(w0))
     w0 = rep(0.99, n)
     beta0 = SetBeta0(beta0)
     w0 = ifelse(w0 == 1, 0.99, w0)
     }
     if (intercept) {
     x = AddIntercept(x)
     }
     std = 0
     scale = 0
     if (standardize) {
     std <- .Call("Standardize", x, y)
     XX <- std[[1]]
     yy <- std[[2]]
     scale <- std[[3]]
     }
     else {
     XX = x
     yy = y
     }
     if (is.null(lambda1) || is.null(lambda2)) {
     lambda = setup_parameter(x = XX, y = yy, nlambda1 = nlambda1,
     nlambda2 = nlambda2, lambda1.min = lambda1.min, lambda2.min = lambda2.min,
     beta0 = beta0, w0 = w0)
     if (is.null(lambda1))
     lambda1 = lambda$lambda1
     if (is.null(lambda2))
     lambda2 = lambda$lambda2
     }
     if (search == "grid") {
     res1 <- pawls_grid(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept)
     res2 <- BIC_grid(res1$wloss, res1$beta, res1$w)
     fit <- list(beta = res2$beta, w = res2$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = lambda1[res2$index1],
     opt.lambda2 = lambda2[res2$index2], iter = res1$iter,
     ws = res1$w, betas = res1$betas, raw.bic = res2$raw.bic,
     bic = res2$bic)
     class(fit) <- "pawls.grid"
     }
     else {
     res = pawls_cross(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept, criterion = criterion, startBeta = startBeta,
     startW = startW)
     fit <- list(beta = res$beta, w = res$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = res$opt.lambda1,
     opt.lambda2 = res$opt.lambda2, iter = res$iter)
     class(fit) <- "pawls.cross"
     }
     if (standardize) {
     scale = ifelse(scale == 0, 0, 1/scale)
     fit$beta = fit$beta * scale
     }
     fit
    }
    <bytecode: 0x28d4850>
    <environment: namespace:pawls>
     --- function search by body ---
    Function pawls in namespace pawls has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(x) != "matrix") { : the condition has length > 1
    Calls: pawls
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.0
Check: examples
Result: ERROR
    Running examples in ‘pawls-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: pawls
    > ### Title: Penalized adaptive weighted least squares regression
    > ### Aliases: pawls
    >
    > ### ** Examples
    >
    > ## generate data
    > library("mvtnorm")
    > set.seed(123) # for reproducibility
    > n = 100 # number of observations
    > p = 8 # number of variables
    > beta = c(1, 2, 3, 0, 0, 0, 0, 0) # coefficients
    > sigma <- 0.5 # controls signal-to-noise ratio
    > epsilon <- 0.1 # contamination level
    > Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
    > x <- rmvnorm(n, sigma=Sigma) # predictor matrix
    > e <- rnorm(n) # error terms
    > i <- 1:ceiling(epsilon*n) # observations to be contaminated
    > e[i] <- e[i] + 5 # vertical outliers
    > y <- c(x %*% beta + sigma * e) # response
    > x[i,] <- x[i,] + 5 # bad leverage points
    >
    > ## fit pawls model over a find grid of tuning parameters
    > pawls(x,y)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    pawls
     --- call from context ---
    pawls(x, y)
     --- call from argument ---
    if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
    }
     --- R stacktrace ---
    where 1: pawls(x, y)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (x, y, nlambda1 = 100, nlambda2 = 50, lambda1 = NULL,
     lambda2 = NULL, lambda1.min = 0.05, lambda2.min = 0.001,
     beta0 = NULL, w0 = NULL, initial = c("uniform", "PAWLS"),
     delta = 1e-06, maxIter = 1000, intercept = TRUE, standardize = TRUE,
     search = c("grid", "cross"))
    {
     n = length(y)
     p = dim(x)[2]
     if (class(x) != "matrix") {
     tmp <- try(x <- as.matrix(x), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("x must be a matrix or able to be coerced to a matrix")
     }
     if (class(y) != "numeric") {
     tmp <- try(y <- as.numeric(y), silent = TRUE)
     if (class(tmp)[1] == "try-error")
     stop("y must numeric or able to be coerced to numeric")
     }
     if (any(is.na(y)) | any(is.na(x)))
     stop("Missing data (NA's) detected.Take actions to eliminate missing data before passing \n X and y to pawls.")
     initial <- match.arg(initial)
     search <- match.arg(search)
     penalty2 <- "L1"
     penalty1 <- "L1"
     criterion <- "BIC"
     startBeta <- NULL
     startW <- NULL
     if (!is.null(lambda1))
     nlambda1 <- length(lambda1)
     if (!is.null(lambda2))
     nlambda2 <- length(lambda2)
     if (initial == "PAWLS") {
     init = pawls(x, y, lambda1.min = 0.05, lambda2.min = 0.001,
     intercept = intercept, search = "grid")
     beta0 = SetBeta0(init$beta)
     w0 = ifelse(init$w == 1, 0.99, init$w)
     }
     else if (initial == "uniform") {
     if (is.null(beta0)) {
     beta0 = rep(1, p)
     if (intercept)
     beta0 = c(1, beta0)
     }
     if (is.null(w0))
     w0 = rep(0.99, n)
     beta0 = SetBeta0(beta0)
     w0 = ifelse(w0 == 1, 0.99, w0)
     }
     if (intercept) {
     x = AddIntercept(x)
     }
     std = 0
     scale = 0
     if (standardize) {
     std <- .Call("Standardize", x, y)
     XX <- std[[1]]
     yy <- std[[2]]
     scale <- std[[3]]
     }
     else {
     XX = x
     yy = y
     }
     if (is.null(lambda1) || is.null(lambda2)) {
     lambda = setup_parameter(x = XX, y = yy, nlambda1 = nlambda1,
     nlambda2 = nlambda2, lambda1.min = lambda1.min, lambda2.min = lambda2.min,
     beta0 = beta0, w0 = w0)
     if (is.null(lambda1))
     lambda1 = lambda$lambda1
     if (is.null(lambda2))
     lambda2 = lambda$lambda2
     }
     if (search == "grid") {
     res1 <- pawls_grid(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept)
     res2 <- BIC_grid(res1$wloss, res1$beta, res1$w)
     fit <- list(beta = res2$beta, w = res2$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = lambda1[res2$index1],
     opt.lambda2 = lambda2[res2$index2], iter = res1$iter,
     ws = res1$w, betas = res1$betas, raw.bic = res2$raw.bic,
     bic = res2$bic)
     class(fit) <- "pawls.grid"
     }
     else {
     res = pawls_cross(x = XX, y = yy, penalty1 = penalty1,
     penalty2 = penalty2, lambda1 = lambda1, lambda2 = lambda2,
     beta0 = beta0, w0 = w0, delta = delta, maxIter = maxIter,
     intercept = intercept, criterion = criterion, startBeta = startBeta,
     startW = startW)
     fit <- list(beta = res$beta, w = res$w, lambda1 = lambda1,
     lambda2 = lambda2, opt.lambda1 = res$opt.lambda1,
     opt.lambda2 = res$opt.lambda2, iter = res$iter)
     class(fit) <- "pawls.cross"
     }
     if (standardize) {
     scale = ifelse(scale == 0, 0, 1/scale)
     fit$beta = fit$beta * scale
     }
     fit
    }
    <bytecode: 0x154ece0>
    <environment: namespace:pawls>
     --- function search by body ---
    Function pawls in namespace pawls has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(x) != "matrix") { : the condition has length > 1
    Calls: pawls
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc