CRAN Package Check Results for Package qrcmNP

Last updated on 2020-02-19 10:49:05 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.2 8.48 73.46 81.94 ERROR
r-devel-linux-x86_64-debian-gcc 0.1.2 8.73 56.71 65.44 ERROR
r-devel-linux-x86_64-fedora-clang 0.1.2 97.24 ERROR
r-devel-linux-x86_64-fedora-gcc 0.1.2 98.70 ERROR
r-devel-windows-ix86+x86_64 0.1.2 20.00 95.00 115.00 OK
r-devel-windows-ix86+x86_64-gcc8 0.1.2 26.00 100.00 126.00 OK
r-patched-linux-x86_64 0.1.2 7.65 86.83 94.48 OK
r-patched-solaris-x86 0.1.2 175.60 OK
r-release-linux-x86_64 0.1.2 8.55 90.29 98.84 OK
r-release-windows-ix86+x86_64 0.1.2 16.00 93.00 109.00 OK
r-release-osx-x86_64 0.1.2 OK
r-oldrel-windows-ix86+x86_64 0.1.2 11.00 90.00 101.00 OK
r-oldrel-osx-x86_64 0.1.2 OK

Check Details

Version: 0.1.2
Check: examples
Result: ERROR
    Running examples in 'qrcmNP-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: gof.piqr
    > ### Title: Goodness of Fit of Penalized Quantile Regression Coefficients
    > ### Modeling
    > ### Aliases: gof.piqr
    >
    > ### ** Examples
    >
    >
    > # using simulated data
    >
    > set.seed(1234)
    > n <- 300
    > x1 <- rexp(n)
    > x2 <- runif(n, 0, 5)
    > x <- cbind(x1,x2)
    >
    > b <- function(p){matrix(cbind(1, qnorm(p), slp(p, 2)), nrow=4, byrow=TRUE)}
    > theta <- matrix(0, nrow=3, ncol=4); theta[, 1] <- 1; theta[1,2] <- 1; theta[2:3,3] <- 2
    > qy <- function(p, theta, b, x){rowSums(x * t(theta %*% b(p)))}
    >
    > y <- qy(runif(n), theta, b, cbind(1, x))
    >
    > s <- matrix(1, nrow=3, ncol=4); s[1,3:4] <- 0
    > obj <- piqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + slp(p, 2), s=s, nlambda=50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    qrcmNP
     --- call from context ---
    piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
     --- call from argument ---
    if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
    } else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
    }
     --- R stacktrace ---
    where 1: piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
    where 2: piqr.internal(mf = mf, cl = cl, formula.p = formula.p, tol = tol,
     maxit = maxit, segno = 1, lambda = 0, check = FALSE, A = A,
     s = seqS[[1]], st.theta = TRUE, theta0 = Theta0)
    where 3: piqr(y ~ x1 + x2, formula.p = ~I(qnorm(p)) + slp(p, 2), s = s,
     nlambda = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (theta, y, z, d, X, Xw, bfun, s, type, tol = 1e-06,
     maxit = 100, safeit, eps0, segno = 1, lambda = 0)
    {
     p.bisec.internal <- getFromNamespace("p.bisec.internal",
     "qrcm")
     if (type == "iqr") {
     ee <- piqr.ee
     }
     else if (type == "ciqr") {
     ee <- pciqr.ee
     }
     else {
     ee <- pctiqr.ee
     }
     q <- nrow(theta)
     k <- ncol(theta)
     s <- c(s == 1)
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = segno, lambda = lambda)
     g <- G$g[s]
     conv <- FALSE
     eps <- eps0
     edf <- NULL
     for (i in 1:safeit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     u <- rep.int(0, q * k)
     u[s] <- g
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     eps <- min(eps * 2, 0.1)
     }
     alg <- "nr"
     conv <- FALSE
     eps <- 0.1
     h <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)$J[s,
     s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     for (i in 1:maxit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     if (type == "iqr") {
     H1 <- try(chol(h), silent = TRUE)
     err <- (class(H1) == "try-error")
     }
     else {
     H1 <- qr(h)
     r <- H1$rank
     err <- (r != ncol(h))
     }
     if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
     }
     else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
     }
     u <- rep.int(0, q * k)
     u[s] <- delta
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     .temp <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)
     edf <- .temp$edf
     h <- .temp$J[s, s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     if (i > 1) {
     eps <- min(eps * 10, 1)
     }
     else {
     eps <- min(eps * 10, 0.1)
     }
     }
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     py <- bfun$p[p.star.y]
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     pz <- bfun$p[p.star.z]
     pz <- pmin(pz, py - 1e-08)
     pz[p.star.z == 1] <- 0
     }
     else {
     p.star.z <- pz <- NULL
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = 1, lambda = 0)
     list(coefficients = matrix(theta, q, k), converged = (i <
     maxit), n.it = i, p.star.y = p.star.y, p.star.z = p.star.z,
     py = py, pz = pz, ee = g, jacobian = h, rank = (alg ==
     "nr") * sum(s), grad = G$g, edf = edf)
    }
    <bytecode: 0xd577988>
    <environment: namespace:qrcmNP>
     --- function search by body ---
    Function piqr.newton in namespace qrcmNP has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (!err) { : the condition has length > 1
    Calls: piqr -> piqr.internal -> piqr.newton
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.2
Check: examples
Result: ERROR
    Running examples in ‘qrcmNP-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: gof.piqr
    > ### Title: Goodness of Fit of Penalized Quantile Regression Coefficients
    > ### Modeling
    > ### Aliases: gof.piqr
    >
    > ### ** Examples
    >
    >
    > # using simulated data
    >
    > set.seed(1234)
    > n <- 300
    > x1 <- rexp(n)
    > x2 <- runif(n, 0, 5)
    > x <- cbind(x1,x2)
    >
    > b <- function(p){matrix(cbind(1, qnorm(p), slp(p, 2)), nrow=4, byrow=TRUE)}
    > theta <- matrix(0, nrow=3, ncol=4); theta[, 1] <- 1; theta[1,2] <- 1; theta[2:3,3] <- 2
    > qy <- function(p, theta, b, x){rowSums(x * t(theta %*% b(p)))}
    >
    > y <- qy(runif(n), theta, b, cbind(1, x))
    >
    > s <- matrix(1, nrow=3, ncol=4); s[1,3:4] <- 0
    > obj <- piqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + slp(p, 2), s=s, nlambda=50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    qrcmNP
     --- call from context ---
    piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
     --- call from argument ---
    if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
    } else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
    }
     --- R stacktrace ---
    where 1: piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
    where 2: piqr.internal(mf = mf, cl = cl, formula.p = formula.p, tol = tol,
     maxit = maxit, segno = 1, lambda = 0, check = FALSE, A = A,
     s = seqS[[1]], st.theta = TRUE, theta0 = Theta0)
    where 3: piqr(y ~ x1 + x2, formula.p = ~I(qnorm(p)) + slp(p, 2), s = s,
     nlambda = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (theta, y, z, d, X, Xw, bfun, s, type, tol = 1e-06,
     maxit = 100, safeit, eps0, segno = 1, lambda = 0)
    {
     p.bisec.internal <- getFromNamespace("p.bisec.internal",
     "qrcm")
     if (type == "iqr") {
     ee <- piqr.ee
     }
     else if (type == "ciqr") {
     ee <- pciqr.ee
     }
     else {
     ee <- pctiqr.ee
     }
     q <- nrow(theta)
     k <- ncol(theta)
     s <- c(s == 1)
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = segno, lambda = lambda)
     g <- G$g[s]
     conv <- FALSE
     eps <- eps0
     edf <- NULL
     for (i in 1:safeit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     u <- rep.int(0, q * k)
     u[s] <- g
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     eps <- min(eps * 2, 0.1)
     }
     alg <- "nr"
     conv <- FALSE
     eps <- 0.1
     h <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)$J[s,
     s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     for (i in 1:maxit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     if (type == "iqr") {
     H1 <- try(chol(h), silent = TRUE)
     err <- (class(H1) == "try-error")
     }
     else {
     H1 <- qr(h)
     r <- H1$rank
     err <- (r != ncol(h))
     }
     if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
     }
     else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
     }
     u <- rep.int(0, q * k)
     u[s] <- delta
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     .temp <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)
     edf <- .temp$edf
     h <- .temp$J[s, s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     if (i > 1) {
     eps <- min(eps * 10, 1)
     }
     else {
     eps <- min(eps * 10, 0.1)
     }
     }
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     py <- bfun$p[p.star.y]
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     pz <- bfun$p[p.star.z]
     pz <- pmin(pz, py - 1e-08)
     pz[p.star.z == 1] <- 0
     }
     else {
     p.star.z <- pz <- NULL
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = 1, lambda = 0)
     list(coefficients = matrix(theta, q, k), converged = (i <
     maxit), n.it = i, p.star.y = p.star.y, p.star.z = p.star.z,
     py = py, pz = pz, ee = g, jacobian = h, rank = (alg ==
     "nr") * sum(s), grad = G$g, edf = edf)
    }
    <bytecode: 0x560dca8e6b10>
    <environment: namespace:qrcmNP>
     --- function search by body ---
    Function piqr.newton in namespace qrcmNP has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (!err) { : the condition has length > 1
    Calls: piqr -> piqr.internal -> piqr.newton
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.1.2
Check: examples
Result: ERROR
    Running examples in ‘qrcmNP-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: gof.piqr
    > ### Title: Goodness of Fit of Penalized Quantile Regression Coefficients
    > ### Modeling
    > ### Aliases: gof.piqr
    >
    > ### ** Examples
    >
    >
    > # using simulated data
    >
    > set.seed(1234)
    > n <- 300
    > x1 <- rexp(n)
    > x2 <- runif(n, 0, 5)
    > x <- cbind(x1,x2)
    >
    > b <- function(p){matrix(cbind(1, qnorm(p), slp(p, 2)), nrow=4, byrow=TRUE)}
    > theta <- matrix(0, nrow=3, ncol=4); theta[, 1] <- 1; theta[1,2] <- 1; theta[2:3,3] <- 2
    > qy <- function(p, theta, b, x){rowSums(x * t(theta %*% b(p)))}
    >
    > y <- qy(runif(n), theta, b, cbind(1, x))
    >
    > s <- matrix(1, nrow=3, ncol=4); s[1,3:4] <- 0
    > obj <- piqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + slp(p, 2), s=s, nlambda=50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    qrcmNP
     --- call from context ---
    piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
     --- call from argument ---
    if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
    } else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
    }
     --- R stacktrace ---
    where 1: piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
    where 2: piqr.internal(mf = mf, cl = cl, formula.p = formula.p, tol = tol,
     maxit = maxit, segno = 1, lambda = 0, check = FALSE, A = A,
     s = seqS[[1]], st.theta = TRUE, theta0 = Theta0)
    where 3: piqr(y ~ x1 + x2, formula.p = ~I(qnorm(p)) + slp(p, 2), s = s,
     nlambda = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (theta, y, z, d, X, Xw, bfun, s, type, tol = 1e-06,
     maxit = 100, safeit, eps0, segno = 1, lambda = 0)
    {
     p.bisec.internal <- getFromNamespace("p.bisec.internal",
     "qrcm")
     if (type == "iqr") {
     ee <- piqr.ee
     }
     else if (type == "ciqr") {
     ee <- pciqr.ee
     }
     else {
     ee <- pctiqr.ee
     }
     q <- nrow(theta)
     k <- ncol(theta)
     s <- c(s == 1)
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = segno, lambda = lambda)
     g <- G$g[s]
     conv <- FALSE
     eps <- eps0
     edf <- NULL
     for (i in 1:safeit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     u <- rep.int(0, q * k)
     u[s] <- g
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     eps <- min(eps * 2, 0.1)
     }
     alg <- "nr"
     conv <- FALSE
     eps <- 0.1
     h <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)$J[s,
     s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     for (i in 1:maxit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     if (type == "iqr") {
     H1 <- try(chol(h), silent = TRUE)
     err <- (class(H1) == "try-error")
     }
     else {
     H1 <- qr(h)
     r <- H1$rank
     err <- (r != ncol(h))
     }
     if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
     }
     else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
     }
     u <- rep.int(0, q * k)
     u[s] <- delta
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     .temp <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)
     edf <- .temp$edf
     h <- .temp$J[s, s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     if (i > 1) {
     eps <- min(eps * 10, 1)
     }
     else {
     eps <- min(eps * 10, 0.1)
     }
     }
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     py <- bfun$p[p.star.y]
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     pz <- bfun$p[p.star.z]
     pz <- pmin(pz, py - 1e-08)
     pz[p.star.z == 1] <- 0
     }
     else {
     p.star.z <- pz <- NULL
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = 1, lambda = 0)
     list(coefficients = matrix(theta, q, k), converged = (i <
     maxit), n.it = i, p.star.y = p.star.y, p.star.z = p.star.z,
     py = py, pz = pz, ee = g, jacobian = h, rank = (alg ==
     "nr") * sum(s), grad = G$g, edf = edf)
    }
    <bytecode: 0xd1b2098>
    <environment: namespace:qrcmNP>
     --- function search by body ---
    Function piqr.newton in namespace qrcmNP has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (!err) { : the condition has length > 1
    Calls: piqr -> piqr.internal -> piqr.newton
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.1.2
Check: examples
Result: ERROR
    Running examples in ‘qrcmNP-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: gof.piqr
    > ### Title: Goodness of Fit of Penalized Quantile Regression Coefficients
    > ### Modeling
    > ### Aliases: gof.piqr
    >
    > ### ** Examples
    >
    >
    > # using simulated data
    >
    > set.seed(1234)
    > n <- 300
    > x1 <- rexp(n)
    > x2 <- runif(n, 0, 5)
    > x <- cbind(x1,x2)
    >
    > b <- function(p){matrix(cbind(1, qnorm(p), slp(p, 2)), nrow=4, byrow=TRUE)}
    > theta <- matrix(0, nrow=3, ncol=4); theta[, 1] <- 1; theta[1,2] <- 1; theta[2:3,3] <- 2
    > qy <- function(p, theta, b, x){rowSums(x * t(theta %*% b(p)))}
    >
    > y <- qy(runif(n), theta, b, cbind(1, x))
    >
    > s <- matrix(1, nrow=3, ncol=4); s[1,3:4] <- 0
    > obj <- piqr(y ~ x1 + x2, formula.p = ~ I(qnorm(p)) + slp(p, 2), s=s, nlambda=50)
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    qrcmNP
     --- call from context ---
    piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
     --- call from argument ---
    if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
    } else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
    }
     --- R stacktrace ---
    where 1: piqr.newton(theta0, V$y, V$z, V$d, V$X, V$Xw, bfun, s = s, type = type,
     tol = tol, maxit = maxit, safeit = safeit, eps0 = eps0, segno = segno,
     lambda = lambda)
    where 2: piqr.internal(mf = mf, cl = cl, formula.p = formula.p, tol = tol,
     maxit = maxit, segno = 1, lambda = 0, check = FALSE, A = A,
     s = seqS[[1]], st.theta = TRUE, theta0 = Theta0)
    where 3: piqr(y ~ x1 + x2, formula.p = ~I(qnorm(p)) + slp(p, 2), s = s,
     nlambda = 50)
    
     --- value of length: 2 type: logical ---
    [1] TRUE TRUE
     --- function from context ---
    function (theta, y, z, d, X, Xw, bfun, s, type, tol = 1e-06,
     maxit = 100, safeit, eps0, segno = 1, lambda = 0)
    {
     p.bisec.internal <- getFromNamespace("p.bisec.internal",
     "qrcm")
     if (type == "iqr") {
     ee <- piqr.ee
     }
     else if (type == "ciqr") {
     ee <- pciqr.ee
     }
     else {
     ee <- pctiqr.ee
     }
     q <- nrow(theta)
     k <- ncol(theta)
     s <- c(s == 1)
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = segno, lambda = lambda)
     g <- G$g[s]
     conv <- FALSE
     eps <- eps0
     edf <- NULL
     for (i in 1:safeit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     u <- rep.int(0, q * k)
     u[s] <- g
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     eps <- min(eps * 2, 0.1)
     }
     alg <- "nr"
     conv <- FALSE
     eps <- 0.1
     h <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)$J[s,
     s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     for (i in 1:maxit) {
     if (conv | max(abs(g)) < tol) {
     break
     }
     if (type == "iqr") {
     H1 <- try(chol(h), silent = TRUE)
     err <- (class(H1) == "try-error")
     }
     else {
     H1 <- qr(h)
     r <- H1$rank
     err <- (r != ncol(h))
     }
     if (!err) {
     if (alg == "gs") {
     alg <- "nr"
     eps <- 1
     }
     delta <- (if (type == "iqr")
     chol2inv(H1) %*% g
     else qr.solve(H1) %*% g)
     }
     else {
     if (alg == "nr") {
     alg <- "gs"
     eps <- 1
     }
     delta <- g
     }
     u <- rep.int(0, q * k)
     u[s] <- delta
     delta <- matrix(u, q, k)
     delta[is.na(delta)] <- 0
     cond <- FALSE
     while (!cond) {
     new.theta <- theta - delta * eps
     if (max(abs(delta * eps)) < tol) {
     conv <- TRUE
     break
     }
     p.star.y <- p.bisec.internal(new.theta, y, X, bfun$bp)
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(new.theta, z, X,
     bfun$bp)
     }
     G1 <- ee(new.theta, y, z, d, X, Xw, bfun, p.star.y,
     p.star.z, J = FALSE, segno = segno, lambda = lambda)
     g1 <- G1$g[s]
     cond <- (sum(g1^2) < sum(g^2))
     eps <- eps * 0.5
     }
     if (conv) {
     break
     }
     g <- g1
     G <- G1
     theta <- new.theta
     .temp <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = TRUE, G = G, segno = segno, lambda = lambda)
     edf <- .temp$edf
     h <- .temp$J[s, s, drop = FALSE]
     h <- h + diag(1e-04, nrow(h))
     if (i > 1) {
     eps <- min(eps * 10, 1)
     }
     else {
     eps <- min(eps * 10, 0.1)
     }
     }
     p.star.y <- p.bisec.internal(theta, y, X, bfun$bp)
     py <- bfun$p[p.star.y]
     if (type == "ctiqr") {
     p.star.z <- p.bisec.internal(theta, z, X, bfun$bp)
     pz <- bfun$p[p.star.z]
     pz <- pmin(pz, py - 1e-08)
     pz[p.star.z == 1] <- 0
     }
     else {
     p.star.z <- pz <- NULL
     }
     G <- ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z,
     J = FALSE, segno = 1, lambda = 0)
     list(coefficients = matrix(theta, q, k), converged = (i <
     maxit), n.it = i, p.star.y = p.star.y, p.star.z = p.star.z,
     py = py, pz = pz, ee = g, jacobian = h, rank = (alg ==
     "nr") * sum(s), grad = G$g, edf = edf)
    }
    <bytecode: 0xcbaf9b0>
    <environment: namespace:qrcmNP>
     --- function search by body ---
    Function piqr.newton in namespace qrcmNP has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (!err) { : the condition has length > 1
    Calls: piqr -> piqr.internal -> piqr.newton
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc