CRAN Package Check Results for Package sae2

Last updated on 2020-02-19 10:49:09 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0-1 10.34 75.84 86.18 ERROR
r-devel-linux-x86_64-debian-gcc 1.0-1 9.45 58.44 67.89 ERROR
r-devel-linux-x86_64-fedora-clang 1.0-1 102.89 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0-1 104.49 ERROR
r-devel-windows-ix86+x86_64 1.0-1 18.00 76.00 94.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.0-1 26.00 85.00 111.00 OK
r-patched-linux-x86_64 1.0-1 7.80 72.13 79.93 OK
r-patched-solaris-x86 1.0-1 143.20 OK
r-release-linux-x86_64 1.0-1 9.26 72.06 81.32 OK
r-release-windows-ix86+x86_64 1.0-1 17.00 71.00 88.00 OK
r-release-osx-x86_64 1.0-1 ERROR
r-oldrel-windows-ix86+x86_64 1.0-1 12.00 71.00 83.00 ERROR
r-oldrel-osx-x86_64 1.0-1 ERROR

Check Details

Version: 1.0-1
Check: examples
Result: ERROR
    Running examples in 'sae2-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: eblupDyn
    > ### Title: EBLUP Fit of the Dynamic and Rao-Yu Time Series Models
    > ### Aliases: eblupDyn eblupRY
    >
    > ### ** Examples
    >
    > D <- 20 # number of domains
    > T <- 5 # number of years
    > set.seed(1)
    > data <- data.frame(Y= mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    + sigma.u.dyn=.19, sigma.e=diag(5)), X=rep(1:T, times=D))
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    sae2
     --- call from context ---
    mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
     --- call from argument ---
    if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
    } else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
    }
     --- R stacktrace ---
    where 1: mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
    where 2: data.frame(Y = mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1,
     sigma.u.dyn = 0.19, sigma.e = diag(5)), X = rep(1:T, times = D))
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (NV = 1, D, T, sigma.e, rho.dyn, sigma.v.dyn, sigma.u.dyn,
     rho.u.dyn, rho.RY, sigma.v.RY, sigma.u.RY, rho.u.RY, tol = 1e-06,
     conditional.mean = FALSE)
    {
     if (missing(T))
     stop("'T' must be specified")
     if (T < 3)
     stop("'T' must be >2")
     if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
     }
     else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
     }
     sigma <- matrix(0, NV * T, NV * T)
     mu <- rep(0, NV * T)
     if (!(missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))) {
     if (missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))
     stop("some parameters missing for dynamic model")
     if (NV == 1) {
     if (length(sigma.v.dyn) != 1 | length(sigma.u.dyn) !=
     1)
     stop("wrong length for 'sigma.v.dyn' or 'sigma.u.dyn'")
     sigma <- sigma.v.dyn * Gamma_v_f(rho.dyn, T)[[1]] +
     sigma.u.dyn * Gamma_u_f(rho.dyn, T)[[1]]
     }
     else {
     if (missing(rho.u.dyn))
     stop("'rho.u.dyn' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.dyn) == 1 & NV > 2)
     rho.u.dyn <- rep(rho.u.dyn, len.rho)
     if (length(rho.u.dyn) != len.rho)
     stop(paste0("the length of 'rho.u.dyn' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.dyn[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.dyn) == 1)
     sigma.v.dyn <- rep(sigma.v.dyn, NV)
     if (length(sigma.u.dyn) == 1)
     sigma.u.dyn <- rep(sigma.u.dyn, NV)
     if (length(sigma.v.dyn) != NV)
     stop(paste0("the length of 'sigma.v.dyn' must be 1 or NV"))
     if (length(sigma.u.dyn) != NV)
     stop(paste0("the length of 'sigma.u.dyn' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.dyn)
     sqrt_v <- sqrt(sigma.v.dyn)
     sigma <- ((sqrt_u %*% t(sqrt_u)) * u_corr) %x% Gamma_u_f(rho.dyn,
     T)[[1]] + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v_f(rho.dyn, T)[[1]]
     }
     }
     if (!(missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))) {
     if (missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))
     stop("some parameters missing for Rao-Yu model")
     Gamma_v <- matrix(1, nrow = T, ncol = T)
     Gamma_b <- matrix(rep(1:T, times = T), nrow = T, ncol = T)
     Gamma_s <- abs(Gamma_b - t(Gamma_b))
     if (rho.RY > 0) {
     Gamma_u <- rho.RY^(Gamma_s)/(1 - rho.RY^2)
     }
     else {
     Gamma_u <- diag(T)
     }
     if (NV == 1) {
     if (length(sigma.v.RY) != 1 | length(sigma.u.RY) !=
     1)
     stop("wrong length for 'sigma.v.RY' or 'sigma.u.RY'")
     sigma <- sigma + sigma.v.RY * Gamma_v + sigma.u.RY *
     Gamma_u
     }
     else {
     if (missing(rho.u.RY))
     stop("'rho.u.RY' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.RY) == 1 & NV > 2)
     rho.u.RY <- rep(rho.u.RY, len.rho)
     if (length(rho.u.RY) != len.rho)
     stop(paste0("the length of 'rho.u.RY' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.RY[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.RY) == 1)
     sigma.v.RY <- rep(sigma.v.RY, NV)
     if (length(sigma.u.RY) == 1)
     sigma.u.RY <- rep(sigma.u.RY, NV)
     if (length(sigma.v.RY) != NV)
     stop(paste0("the length of 'sigma.v.RY' must be 1 or NV"))
     if (length(sigma.u.RY) != NV)
     stop(paste0("the length of 'sigma.u.RY' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.RY)
     sqrt_v <- sqrt(sigma.v.RY)
     sigma <- sigma + ((sqrt_u %*% t(sqrt_u)) * u_corr) %x%
     Gamma_u + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v
     }
     }
     if (NV == 1) {
     y <- rep(0, D * T)
     if (conditional.mean) {
     y.mean <- rep(0, D * T)
     for (i in 1:D) {
     y.mean[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma, tol = tol)
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e[[i]], tol = tol)
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e, tol = tol)
     }
     }
     }
     }
     else {
     y <- matrix(0, nrow = D * T, ncol = NV)
     if (conditional.mean) {
     y.mean <- matrix(0, nrow = D * T, ncol = NV)
     for (i in 1:D) {
     y.mean.temp <- mvrnorm(mu = mu, Sigma = sigma,
     tol = tol)
     for (nv in 1:NV) {
     y.mean[((i - 1) * T + 1):(i * T), nv] <- y.mean.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e[[i]], tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e, tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     }
     if (conditional.mean) {
     return(list(y = y, y.mean = y.mean))
     }
     else {
     return(y)
     }
    }
    <bytecode: 0x6878f60>
    <environment: namespace:sae2>
     --- function search by body ---
    Function mvrnormSeries in namespace sae2 has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(sigma.e) == "list") { : the condition has length > 1
    Calls: data.frame -> mvrnormSeries
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0-1
Check: examples
Result: ERROR
    Running examples in ‘sae2-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: eblupDyn
    > ### Title: EBLUP Fit of the Dynamic and Rao-Yu Time Series Models
    > ### Aliases: eblupDyn eblupRY
    >
    > ### ** Examples
    >
    > D <- 20 # number of domains
    > T <- 5 # number of years
    > set.seed(1)
    > data <- data.frame(Y= mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    + sigma.u.dyn=.19, sigma.e=diag(5)), X=rep(1:T, times=D))
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    sae2
     --- call from context ---
    mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
     --- call from argument ---
    if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
    } else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
    }
     --- R stacktrace ---
    where 1: mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
    where 2: data.frame(Y = mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1,
     sigma.u.dyn = 0.19, sigma.e = diag(5)), X = rep(1:T, times = D))
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (NV = 1, D, T, sigma.e, rho.dyn, sigma.v.dyn, sigma.u.dyn,
     rho.u.dyn, rho.RY, sigma.v.RY, sigma.u.RY, rho.u.RY, tol = 1e-06,
     conditional.mean = FALSE)
    {
     if (missing(T))
     stop("'T' must be specified")
     if (T < 3)
     stop("'T' must be >2")
     if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
     }
     else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
     }
     sigma <- matrix(0, NV * T, NV * T)
     mu <- rep(0, NV * T)
     if (!(missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))) {
     if (missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))
     stop("some parameters missing for dynamic model")
     if (NV == 1) {
     if (length(sigma.v.dyn) != 1 | length(sigma.u.dyn) !=
     1)
     stop("wrong length for 'sigma.v.dyn' or 'sigma.u.dyn'")
     sigma <- sigma.v.dyn * Gamma_v_f(rho.dyn, T)[[1]] +
     sigma.u.dyn * Gamma_u_f(rho.dyn, T)[[1]]
     }
     else {
     if (missing(rho.u.dyn))
     stop("'rho.u.dyn' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.dyn) == 1 & NV > 2)
     rho.u.dyn <- rep(rho.u.dyn, len.rho)
     if (length(rho.u.dyn) != len.rho)
     stop(paste0("the length of 'rho.u.dyn' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.dyn[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.dyn) == 1)
     sigma.v.dyn <- rep(sigma.v.dyn, NV)
     if (length(sigma.u.dyn) == 1)
     sigma.u.dyn <- rep(sigma.u.dyn, NV)
     if (length(sigma.v.dyn) != NV)
     stop(paste0("the length of 'sigma.v.dyn' must be 1 or NV"))
     if (length(sigma.u.dyn) != NV)
     stop(paste0("the length of 'sigma.u.dyn' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.dyn)
     sqrt_v <- sqrt(sigma.v.dyn)
     sigma <- ((sqrt_u %*% t(sqrt_u)) * u_corr) %x% Gamma_u_f(rho.dyn,
     T)[[1]] + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v_f(rho.dyn, T)[[1]]
     }
     }
     if (!(missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))) {
     if (missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))
     stop("some parameters missing for Rao-Yu model")
     Gamma_v <- matrix(1, nrow = T, ncol = T)
     Gamma_b <- matrix(rep(1:T, times = T), nrow = T, ncol = T)
     Gamma_s <- abs(Gamma_b - t(Gamma_b))
     if (rho.RY > 0) {
     Gamma_u <- rho.RY^(Gamma_s)/(1 - rho.RY^2)
     }
     else {
     Gamma_u <- diag(T)
     }
     if (NV == 1) {
     if (length(sigma.v.RY) != 1 | length(sigma.u.RY) !=
     1)
     stop("wrong length for 'sigma.v.RY' or 'sigma.u.RY'")
     sigma <- sigma + sigma.v.RY * Gamma_v + sigma.u.RY *
     Gamma_u
     }
     else {
     if (missing(rho.u.RY))
     stop("'rho.u.RY' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.RY) == 1 & NV > 2)
     rho.u.RY <- rep(rho.u.RY, len.rho)
     if (length(rho.u.RY) != len.rho)
     stop(paste0("the length of 'rho.u.RY' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.RY[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.RY) == 1)
     sigma.v.RY <- rep(sigma.v.RY, NV)
     if (length(sigma.u.RY) == 1)
     sigma.u.RY <- rep(sigma.u.RY, NV)
     if (length(sigma.v.RY) != NV)
     stop(paste0("the length of 'sigma.v.RY' must be 1 or NV"))
     if (length(sigma.u.RY) != NV)
     stop(paste0("the length of 'sigma.u.RY' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.RY)
     sqrt_v <- sqrt(sigma.v.RY)
     sigma <- sigma + ((sqrt_u %*% t(sqrt_u)) * u_corr) %x%
     Gamma_u + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v
     }
     }
     if (NV == 1) {
     y <- rep(0, D * T)
     if (conditional.mean) {
     y.mean <- rep(0, D * T)
     for (i in 1:D) {
     y.mean[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma, tol = tol)
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e[[i]], tol = tol)
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e, tol = tol)
     }
     }
     }
     }
     else {
     y <- matrix(0, nrow = D * T, ncol = NV)
     if (conditional.mean) {
     y.mean <- matrix(0, nrow = D * T, ncol = NV)
     for (i in 1:D) {
     y.mean.temp <- mvrnorm(mu = mu, Sigma = sigma,
     tol = tol)
     for (nv in 1:NV) {
     y.mean[((i - 1) * T + 1):(i * T), nv] <- y.mean.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e[[i]], tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e, tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     }
     if (conditional.mean) {
     return(list(y = y, y.mean = y.mean))
     }
     else {
     return(y)
     }
    }
    <bytecode: 0x55cf4c172de8>
    <environment: namespace:sae2>
     --- function search by body ---
    Function mvrnormSeries in namespace sae2 has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(sigma.e) == "list") { : the condition has length > 1
    Calls: data.frame -> mvrnormSeries
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0-1
Check: examples
Result: ERROR
    Running examples in ‘sae2-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: eblupDyn
    > ### Title: EBLUP Fit of the Dynamic and Rao-Yu Time Series Models
    > ### Aliases: eblupDyn eblupRY
    >
    > ### ** Examples
    >
    > D <- 20 # number of domains
    > T <- 5 # number of years
    > set.seed(1)
    > data <- data.frame(Y= mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    + sigma.u.dyn=.19, sigma.e=diag(5)), X=rep(1:T, times=D))
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    sae2
     --- call from context ---
    mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
     --- call from argument ---
    if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
    } else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
    }
     --- R stacktrace ---
    where 1: mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
    where 2: data.frame(Y = mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1,
     sigma.u.dyn = 0.19, sigma.e = diag(5)), X = rep(1:T, times = D))
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (NV = 1, D, T, sigma.e, rho.dyn, sigma.v.dyn, sigma.u.dyn,
     rho.u.dyn, rho.RY, sigma.v.RY, sigma.u.RY, rho.u.RY, tol = 1e-06,
     conditional.mean = FALSE)
    {
     if (missing(T))
     stop("'T' must be specified")
     if (T < 3)
     stop("'T' must be >2")
     if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
     }
     else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
     }
     sigma <- matrix(0, NV * T, NV * T)
     mu <- rep(0, NV * T)
     if (!(missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))) {
     if (missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))
     stop("some parameters missing for dynamic model")
     if (NV == 1) {
     if (length(sigma.v.dyn) != 1 | length(sigma.u.dyn) !=
     1)
     stop("wrong length for 'sigma.v.dyn' or 'sigma.u.dyn'")
     sigma <- sigma.v.dyn * Gamma_v_f(rho.dyn, T)[[1]] +
     sigma.u.dyn * Gamma_u_f(rho.dyn, T)[[1]]
     }
     else {
     if (missing(rho.u.dyn))
     stop("'rho.u.dyn' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.dyn) == 1 & NV > 2)
     rho.u.dyn <- rep(rho.u.dyn, len.rho)
     if (length(rho.u.dyn) != len.rho)
     stop(paste0("the length of 'rho.u.dyn' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.dyn[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.dyn) == 1)
     sigma.v.dyn <- rep(sigma.v.dyn, NV)
     if (length(sigma.u.dyn) == 1)
     sigma.u.dyn <- rep(sigma.u.dyn, NV)
     if (length(sigma.v.dyn) != NV)
     stop(paste0("the length of 'sigma.v.dyn' must be 1 or NV"))
     if (length(sigma.u.dyn) != NV)
     stop(paste0("the length of 'sigma.u.dyn' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.dyn)
     sqrt_v <- sqrt(sigma.v.dyn)
     sigma <- ((sqrt_u %*% t(sqrt_u)) * u_corr) %x% Gamma_u_f(rho.dyn,
     T)[[1]] + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v_f(rho.dyn, T)[[1]]
     }
     }
     if (!(missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))) {
     if (missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))
     stop("some parameters missing for Rao-Yu model")
     Gamma_v <- matrix(1, nrow = T, ncol = T)
     Gamma_b <- matrix(rep(1:T, times = T), nrow = T, ncol = T)
     Gamma_s <- abs(Gamma_b - t(Gamma_b))
     if (rho.RY > 0) {
     Gamma_u <- rho.RY^(Gamma_s)/(1 - rho.RY^2)
     }
     else {
     Gamma_u <- diag(T)
     }
     if (NV == 1) {
     if (length(sigma.v.RY) != 1 | length(sigma.u.RY) !=
     1)
     stop("wrong length for 'sigma.v.RY' or 'sigma.u.RY'")
     sigma <- sigma + sigma.v.RY * Gamma_v + sigma.u.RY *
     Gamma_u
     }
     else {
     if (missing(rho.u.RY))
     stop("'rho.u.RY' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.RY) == 1 & NV > 2)
     rho.u.RY <- rep(rho.u.RY, len.rho)
     if (length(rho.u.RY) != len.rho)
     stop(paste0("the length of 'rho.u.RY' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.RY[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.RY) == 1)
     sigma.v.RY <- rep(sigma.v.RY, NV)
     if (length(sigma.u.RY) == 1)
     sigma.u.RY <- rep(sigma.u.RY, NV)
     if (length(sigma.v.RY) != NV)
     stop(paste0("the length of 'sigma.v.RY' must be 1 or NV"))
     if (length(sigma.u.RY) != NV)
     stop(paste0("the length of 'sigma.u.RY' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.RY)
     sqrt_v <- sqrt(sigma.v.RY)
     sigma <- sigma + ((sqrt_u %*% t(sqrt_u)) * u_corr) %x%
     Gamma_u + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v
     }
     }
     if (NV == 1) {
     y <- rep(0, D * T)
     if (conditional.mean) {
     y.mean <- rep(0, D * T)
     for (i in 1:D) {
     y.mean[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma, tol = tol)
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e[[i]], tol = tol)
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e, tol = tol)
     }
     }
     }
     }
     else {
     y <- matrix(0, nrow = D * T, ncol = NV)
     if (conditional.mean) {
     y.mean <- matrix(0, nrow = D * T, ncol = NV)
     for (i in 1:D) {
     y.mean.temp <- mvrnorm(mu = mu, Sigma = sigma,
     tol = tol)
     for (nv in 1:NV) {
     y.mean[((i - 1) * T + 1):(i * T), nv] <- y.mean.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e[[i]], tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e, tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     }
     if (conditional.mean) {
     return(list(y = y, y.mean = y.mean))
     }
     else {
     return(y)
     }
    }
    <bytecode: 0x7b8aad0>
    <environment: namespace:sae2>
     --- function search by body ---
    Function mvrnormSeries in namespace sae2 has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(sigma.e) == "list") { : the condition has length > 1
    Calls: data.frame -> mvrnormSeries
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0-1
Check: examples
Result: ERROR
    Running examples in ‘sae2-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: eblupDyn
    > ### Title: EBLUP Fit of the Dynamic and Rao-Yu Time Series Models
    > ### Aliases: eblupDyn eblupRY
    >
    > ### ** Examples
    >
    > D <- 20 # number of domains
    > T <- 5 # number of years
    > set.seed(1)
    > data <- data.frame(Y= mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    + sigma.u.dyn=.19, sigma.e=diag(5)), X=rep(1:T, times=D))
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    sae2
     --- call from context ---
    mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
     --- call from argument ---
    if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
    } else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
    }
     --- R stacktrace ---
    where 1: mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1, sigma.u.dyn = 0.19,
     sigma.e = diag(5))
    where 2: data.frame(Y = mvrnormSeries(D = D, T = T, rho.dyn = 0.9, sigma.v.dyn = 1,
     sigma.u.dyn = 0.19, sigma.e = diag(5)), X = rep(1:T, times = D))
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (NV = 1, D, T, sigma.e, rho.dyn, sigma.v.dyn, sigma.u.dyn,
     rho.u.dyn, rho.RY, sigma.v.RY, sigma.u.RY, rho.u.RY, tol = 1e-06,
     conditional.mean = FALSE)
    {
     if (missing(T))
     stop("'T' must be specified")
     if (T < 3)
     stop("'T' must be >2")
     if (class(sigma.e) == "list") {
     if (missing(D)) {
     D <- length(sigma.e)
     }
     else {
     if (D != length(sigma.e))
     stop("the length of 'sigma.e' must agree with D")
     }
     lapply(sigma.e, FUN = function(x) {
     if (!all(dim(x) == c(NV * T, NV * T)))
     stop(paste("each element of 'sigma.e' must be a square matrix",
     "with 'NV*T' rows"))
     })
     }
     else {
     if (missing(D))
     stop("'D' must be specified")
     if (class(sigma.e) != "matrix")
     stop("'sigma.e' must be a matrix or a list of matrices")
     if (!all(dim(sigma.e) == c(NV * T, NV * T)))
     stop("'sigma.e' must be a square matrix with 'NV*T' rows")
     }
     sigma <- matrix(0, NV * T, NV * T)
     mu <- rep(0, NV * T)
     if (!(missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))) {
     if (missing(rho.dyn) | missing(sigma.v.dyn) | missing(sigma.u.dyn))
     stop("some parameters missing for dynamic model")
     if (NV == 1) {
     if (length(sigma.v.dyn) != 1 | length(sigma.u.dyn) !=
     1)
     stop("wrong length for 'sigma.v.dyn' or 'sigma.u.dyn'")
     sigma <- sigma.v.dyn * Gamma_v_f(rho.dyn, T)[[1]] +
     sigma.u.dyn * Gamma_u_f(rho.dyn, T)[[1]]
     }
     else {
     if (missing(rho.u.dyn))
     stop("'rho.u.dyn' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.dyn) == 1 & NV > 2)
     rho.u.dyn <- rep(rho.u.dyn, len.rho)
     if (length(rho.u.dyn) != len.rho)
     stop(paste0("the length of 'rho.u.dyn' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.dyn[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.dyn) == 1)
     sigma.v.dyn <- rep(sigma.v.dyn, NV)
     if (length(sigma.u.dyn) == 1)
     sigma.u.dyn <- rep(sigma.u.dyn, NV)
     if (length(sigma.v.dyn) != NV)
     stop(paste0("the length of 'sigma.v.dyn' must be 1 or NV"))
     if (length(sigma.u.dyn) != NV)
     stop(paste0("the length of 'sigma.u.dyn' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.dyn)
     sqrt_v <- sqrt(sigma.v.dyn)
     sigma <- ((sqrt_u %*% t(sqrt_u)) * u_corr) %x% Gamma_u_f(rho.dyn,
     T)[[1]] + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v_f(rho.dyn, T)[[1]]
     }
     }
     if (!(missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))) {
     if (missing(rho.RY) | missing(sigma.v.RY) | missing(sigma.u.RY))
     stop("some parameters missing for Rao-Yu model")
     Gamma_v <- matrix(1, nrow = T, ncol = T)
     Gamma_b <- matrix(rep(1:T, times = T), nrow = T, ncol = T)
     Gamma_s <- abs(Gamma_b - t(Gamma_b))
     if (rho.RY > 0) {
     Gamma_u <- rho.RY^(Gamma_s)/(1 - rho.RY^2)
     }
     else {
     Gamma_u <- diag(T)
     }
     if (NV == 1) {
     if (length(sigma.v.RY) != 1 | length(sigma.u.RY) !=
     1)
     stop("wrong length for 'sigma.v.RY' or 'sigma.u.RY'")
     sigma <- sigma + sigma.v.RY * Gamma_v + sigma.u.RY *
     Gamma_u
     }
     else {
     if (missing(rho.u.RY))
     stop("'rho.u.RY' must be specified")
     len.rho <- (NV * (NV - 1))/2
     if (length(rho.u.RY) == 1 & NV > 2)
     rho.u.RY <- rep(rho.u.RY, len.rho)
     if (length(rho.u.RY) != len.rho)
     stop(paste0("the length of 'rho.u.RY' must be 1 or (NV*(NV+1))/2"))
     u_corr <- diag(1, NV)
     for (i in 2:NV) for (j in 1:(i - 1)) {
     u_corr[i, j] <- u_corr[j, i] <- rho.u.RY[((i -
     2) * (i - 1))/2 + j]
     }
     if (length(sigma.v.RY) == 1)
     sigma.v.RY <- rep(sigma.v.RY, NV)
     if (length(sigma.u.RY) == 1)
     sigma.u.RY <- rep(sigma.u.RY, NV)
     if (length(sigma.v.RY) != NV)
     stop(paste0("the length of 'sigma.v.RY' must be 1 or NV"))
     if (length(sigma.u.RY) != NV)
     stop(paste0("the length of 'sigma.u.RY' must be 1 or NV"))
     sqrt_u <- sqrt(sigma.u.RY)
     sqrt_v <- sqrt(sigma.v.RY)
     sigma <- sigma + ((sqrt_u %*% t(sqrt_u)) * u_corr) %x%
     Gamma_u + ((sqrt_v %*% t(sqrt_v)) * u_corr) %x%
     Gamma_v
     }
     }
     if (NV == 1) {
     y <- rep(0, D * T)
     if (conditional.mean) {
     y.mean <- rep(0, D * T)
     for (i in 1:D) {
     y.mean[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma, tol = tol)
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e[[i]], tol = tol)
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- y.mean[((i -
     1) * T + 1):(i * T)] + mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     }
     }
     else {
     for (i in 1:D) {
     y[((i - 1) * T + 1):(i * T)] <- mvrnorm(mu = mu,
     Sigma = sigma + sigma.e, tol = tol)
     }
     }
     }
     }
     else {
     y <- matrix(0, nrow = D * T, ncol = NV)
     if (conditional.mean) {
     y.mean <- matrix(0, nrow = D * T, ncol = NV)
     for (i in 1:D) {
     y.mean.temp <- mvrnorm(mu = mu, Sigma = sigma,
     tol = tol)
     for (nv in 1:NV) {
     y.mean[((i - 1) * T + 1):(i * T), nv] <- y.mean.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     if (class(sigma.e) == "list") {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e[[i]],
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e[[i]], tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     else {
     if (conditional.mean) {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma.e,
     tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.mean[((i -
     1) * T + 1):(i * T), nv] + y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     else {
     for (i in 1:D) {
     y.temp <- mvrnorm(mu = mu, Sigma = sigma +
     sigma.e, tol = tol)
     for (nv in 1:NV) {
     y[((i - 1) * T + 1):(i * T), nv] <- y.temp[((nv -
     1) * T + 1):(nv * T)]
     }
     }
     }
     }
     }
     if (conditional.mean) {
     return(list(y = y, y.mean = y.mean))
     }
     else {
     return(y)
     }
    }
    <bytecode: 0x7d20990>
    <environment: namespace:sae2>
     --- function search by body ---
    Function mvrnormSeries in namespace sae2 has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(sigma.e) == "list") { : the condition has length > 1
    Calls: data.frame -> mvrnormSeries
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0-1
Check: examples
Result: ERROR
    Running examples in ‘sae2-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: geo_ratios
    > ### Title: Compute rates or ratios for a set of geographic entities over a
    > ### set of years
    > ### Aliases: geo_ratios
    >
    > ### ** Examples
    >
    > require(survey)
    > require(MASS)
    > D <- 20 # number of domains
    > T <- 5 # number of years
    > samp <- 16 # number of sample cases per domain
    > set.seed(1)
    > # use conditional.mean=TRUE to generate true small area values
    > # without sampling error
    > Y.list <- mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    + sigma.u.dyn=.19, sigma.e=diag(5), conditional.mean=TRUE)
    > # generate sampling errors
    > e <- rnorm(samp * T * D, mean=0, sd=4)
    > Y <- Y.list[[2]] + tapply(e, rep(1:100, each=16), mean)
    > data <- data.frame(Y=Y, X=rep(1:T, times=D))
    > # model fit with the true sampling variances
    > result.dyn <- eblupDyn(Y ~ X, D, T, vardir = diag(100), data=data)
    Error in y - X %*% B_Est : non-conformable arrays
    Calls: eblupDyn -> dynRYfit
    Execution halted
Flavors: r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64