CRAN Package Check Results for Package stheoreme

Last updated on 2020-02-19 10:49:12 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.2 4.99 27.20 32.19 ERROR
r-devel-linux-x86_64-debian-gcc 1.2 3.36 21.15 24.51 ERROR
r-devel-linux-x86_64-fedora-clang 1.2 38.31 ERROR
r-devel-linux-x86_64-fedora-gcc 1.2 36.74 ERROR
r-devel-windows-ix86+x86_64 1.2 8.00 35.00 43.00 NOTE
r-devel-windows-ix86+x86_64-gcc8 1.2 11.00 37.00 48.00 NOTE
r-patched-linux-x86_64 1.2 2.98 24.35 27.33 NOTE
r-patched-solaris-x86 1.2 51.60 NOTE
r-release-linux-x86_64 1.2 2.97 25.24 28.21 NOTE
r-release-windows-ix86+x86_64 1.2 7.00 53.00 60.00 NOTE
r-release-osx-x86_64 1.2 NOTE
r-oldrel-windows-ix86+x86_64 1.2 5.00 35.00 40.00 NOTE
r-oldrel-osx-x86_64 1.2 NOTE

Check Details

Version: 1.2
Check: R code for possible problems
Result: NOTE
    d1spectrum: no visible global function definition for 'fft'
    d2spectrum: no visible global function definition for 'fft'
    plot.d1nat: no visible global function definition for 'plot'
    plot.d1nat: no visible global function definition for 'lines'
    plot.d1nat: no visible global function definition for 'legend'
    plot.d1nat: no visible global function definition for 'title'
    plot.d1spec: no visible global function definition for 'plot'
    plot.d1spec: no visible global function definition for 'lines'
    plot.d1spec: no visible global function definition for 'legend'
    plot.d1spec: no visible global function definition for 'title'
    plot.d2spec: no visible global function definition for 'plot'
    plot.d2spec: no visible global function definition for 'lines'
    plot.d2spec: no visible global function definition for 'legend'
    plot.d2spec: no visible global function definition for 'title'
    plot.pvalign: no visible global function definition for 'plot'
    plot.pvalign: no visible global function definition for 'lines'
    plot.pvalign: no visible global function definition for 'legend'
    plot.pvalign: no visible global function definition for 'title'
    print.d1nat: no visible global function definition for 'plot'
    print.d1spec: no visible global function definition for 'plot'
    print.d2spec: no visible global function definition for 'plot'
    print.pvalign: no visible global function definition for 'plot'
    utild1bin: no visible global function definition for 'median'
    utild1bin: no visible global function definition for 'sd'
    utild1clean: no visible global function definition for 'sd'
    utild1filt: no visible global function definition for 'convolve'
    Undefined global functions or variables:
     convolve fft legend lines median plot sd title
    Consider adding
     importFrom("graphics", "legend", "lines", "plot", "title")
     importFrom("stats", "convolve", "fft", "median", "sd")
    to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64

Version: 1.2
Check: examples
Result: ERROR
    Running examples in 'stheoreme-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: cxds.stheorem
    > ### Title: Renormalized Entropy Shift Estimation
    > ### Aliases: cxds.stheorem
    >
    > ### ** Examples
    >
    > #quazi-gaussian probability vectors with equal means & different variances
    > f0 <- c(0.0,0.1,0.4,0.4,0.1,0.0)
    > f1 <- c(0.1,0.15,0.25,0.25,0.15,0.1)
    > cxds.stheorem(distribution0=f0, distribution1=f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.529250590526317 {0to1} = 0.0909350028886473 {0to1} + 0.438315587637669 {0to1}
    >
    > #quazi-gaussian bin counts with shift between means
    > h0 <- c(2,2,17,6,1,1,1,0)
    > h1 <- c(2,3,5,7,7,4,1,0)
    > crit.stheorem(h0, h1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.8836).
    
    > cxds.stheorem(h0, h1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.452797516823042 {0to1} = -0.125108179247243 {0to1} + 0.577905696070284 {0to1}
    where dS consists of two:
    -0.125108179247243 {0to1} = -0.124496242898291 {0to2} + -0.000611936348951181 {2to1}
    
    >
    > #example of 2-step analysis with Klimontovich's S-theorem for 2
    > # arrays of outcomes {s0,s1}:
    > s0<-rep(c(1:11,2),256)
    > s1<-rep(c(2,3,3,4,5,5,5),55)
    > # step a. Create probability vectors
    > b<-d1nat(s0,s1,brks=12); b
    Call:
    d1nat.default(sample0 = s0, sample1 = s1, brks = 12)
    Two probability mass functions ($f0,$f1) have been generated at the common scale of values ($midpoints)
    Statistics summary:
     expctd var fsum xmin xmax n mod1 mod2 mod3 H_val
    f0 5.652778 9.3123071 1 1 11 12 2.25 1.416667 3.083333 2.369382
    f1 3.797619 0.8786848 1 1 11 12 4.75 3.083333 2.250000 1.277034
     H_max
    f0 2.484907
    f1 2.484907
    > # step b. Compare samples with Klimontovich's S-theorem
    > crit.stheorem(b$f0,b$f1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.9604).
    
    > cxds.stheorem(b$f0,b$f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    -1.0923478602283 {0to1} = 0.0638527099574505 {0to1} + -1.15620057018575 {0to1}
    where dS consists of two:
    0.0638527099574505 {0to1} = 1e-15 {0to2} + 0.0638527099574495 {2to1}
    
    >
    > #example of 3-step analysis with Klimontovich's S-theorem to study two gratings
    > # random vs regular
    > s0<-array(c(rep(0,640),rep(1,640)), c(320,320))
    > s1<-array(runif(5120,0,1), c(64,80))
    > # step a. Binarize (to make s1 comparable with s0 by its nature as a grating)
    > a<-utild2bin(s0, s1, method='med')
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    stheoreme
     --- call from context ---
    utild2bin(s0, s1, method = "med")
     --- call from argument ---
    if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
    }
     --- R stacktrace ---
    where 1: utild2bin(s0, s1, method = "med")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (d2arr0, d2arr1, method = "mean", trsh = 0, inverted = FALSE)
    {
     if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
     }
     return(utild1bin(d2arr0, d2arr1, method = method, trsh = trsh,
     inverted = inverted, d2 = TRUE))
    }
    <bytecode: 0x1a531d0>
    <environment: namespace:stheoreme>
     --- function search by body ---
    Function utild2bin in namespace stheoreme has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") { :
     the condition has length > 1
    Calls: utild2bin
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.2
Check: examples
Result: ERROR
    Running examples in ‘stheoreme-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: cxds.stheorem
    > ### Title: Renormalized Entropy Shift Estimation
    > ### Aliases: cxds.stheorem
    >
    > ### ** Examples
    >
    > #quazi-gaussian probability vectors with equal means & different variances
    > f0 <- c(0.0,0.1,0.4,0.4,0.1,0.0)
    > f1 <- c(0.1,0.15,0.25,0.25,0.15,0.1)
    > cxds.stheorem(distribution0=f0, distribution1=f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.529250590526317 {0to1} = 0.0909350028886473 {0to1} + 0.438315587637669 {0to1}
    >
    > #quazi-gaussian bin counts with shift between means
    > h0 <- c(2,2,17,6,1,1,1,0)
    > h1 <- c(2,3,5,7,7,4,1,0)
    > crit.stheorem(h0, h1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.8836).
    
    > cxds.stheorem(h0, h1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.452797516823042 {0to1} = -0.125108179247243 {0to1} + 0.577905696070284 {0to1}
    where dS consists of two:
    -0.125108179247243 {0to1} = -0.124496242898291 {0to2} + -0.000611936348951181 {2to1}
    
    >
    > #example of 2-step analysis with Klimontovich's S-theorem for 2
    > # arrays of outcomes {s0,s1}:
    > s0<-rep(c(1:11,2),256)
    > s1<-rep(c(2,3,3,4,5,5,5),55)
    > # step a. Create probability vectors
    > b<-d1nat(s0,s1,brks=12); b
    Call:
    d1nat.default(sample0 = s0, sample1 = s1, brks = 12)
    Two probability mass functions ($f0,$f1) have been generated at the common scale of values ($midpoints)
    Statistics summary:
     expctd var fsum xmin xmax n mod1 mod2 mod3 H_val
    f0 5.652778 9.3123071 1 1 11 12 2.25 1.416667 3.083333 2.369382
    f1 3.797619 0.8786848 1 1 11 12 4.75 3.083333 2.250000 1.277034
     H_max
    f0 2.484907
    f1 2.484907
    > # step b. Compare samples with Klimontovich's S-theorem
    > crit.stheorem(b$f0,b$f1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.9604).
    
    > cxds.stheorem(b$f0,b$f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    -1.0923478602283 {0to1} = 0.0638527099574505 {0to1} + -1.15620057018575 {0to1}
    where dS consists of two:
    0.0638527099574505 {0to1} = 1e-15 {0to2} + 0.0638527099574495 {2to1}
    
    >
    > #example of 3-step analysis with Klimontovich's S-theorem to study two gratings
    > # random vs regular
    > s0<-array(c(rep(0,640),rep(1,640)), c(320,320))
    > s1<-array(runif(5120,0,1), c(64,80))
    > # step a. Binarize (to make s1 comparable with s0 by its nature as a grating)
    > a<-utild2bin(s0, s1, method='med')
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    stheoreme
     --- call from context ---
    utild2bin(s0, s1, method = "med")
     --- call from argument ---
    if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
    }
     --- R stacktrace ---
    where 1: utild2bin(s0, s1, method = "med")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (d2arr0, d2arr1, method = "mean", trsh = 0, inverted = FALSE)
    {
     if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
     }
     return(utild1bin(d2arr0, d2arr1, method = method, trsh = trsh,
     inverted = inverted, d2 = TRUE))
    }
    <bytecode: 0x55c0d5a908f0>
    <environment: namespace:stheoreme>
     --- function search by body ---
    Function utild2bin in namespace stheoreme has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") { :
     the condition has length > 1
    Calls: utild2bin
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.2
Check: examples
Result: ERROR
    Running examples in ‘stheoreme-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: cxds.stheorem
    > ### Title: Renormalized Entropy Shift Estimation
    > ### Aliases: cxds.stheorem
    >
    > ### ** Examples
    >
    > #quazi-gaussian probability vectors with equal means & different variances
    > f0 <- c(0.0,0.1,0.4,0.4,0.1,0.0)
    > f1 <- c(0.1,0.15,0.25,0.25,0.15,0.1)
    > cxds.stheorem(distribution0=f0, distribution1=f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.529250590526317 {0to1} = 0.0909350028886473 {0to1} + 0.438315587637669 {0to1}
    >
    > #quazi-gaussian bin counts with shift between means
    > h0 <- c(2,2,17,6,1,1,1,0)
    > h1 <- c(2,3,5,7,7,4,1,0)
    > crit.stheorem(h0, h1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.8836).
    
    > cxds.stheorem(h0, h1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.452797516823042 {0to1} = -0.125108179247243 {0to1} + 0.577905696070284 {0to1}
    where dS consists of two:
    -0.125108179247243 {0to1} = -0.124496242898291 {0to2} + -0.000611936348951181 {2to1}
    
    >
    > #example of 2-step analysis with Klimontovich's S-theorem for 2
    > # arrays of outcomes {s0,s1}:
    > s0<-rep(c(1:11,2),256)
    > s1<-rep(c(2,3,3,4,5,5,5),55)
    > # step a. Create probability vectors
    > b<-d1nat(s0,s1,brks=12); b
    Call:
    d1nat.default(sample0 = s0, sample1 = s1, brks = 12)
    Two probability mass functions ($f0,$f1) have been generated at the common scale of values ($midpoints)
    Statistics summary:
     expctd var fsum xmin xmax n mod1 mod2 mod3 H_val
    f0 5.652778 9.3123071 1 1 11 12 2.25 1.416667 3.083333 2.369382
    f1 3.797619 0.8786848 1 1 11 12 4.75 3.083333 2.250000 1.277034
     H_max
    f0 2.484907
    f1 2.484907
    > # step b. Compare samples with Klimontovich's S-theorem
    > crit.stheorem(b$f0,b$f1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.9604).
    
    > cxds.stheorem(b$f0,b$f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    -1.0923478602283 {0to1} = 0.0638527099574505 {0to1} + -1.15620057018575 {0to1}
    where dS consists of two:
    0.0638527099574505 {0to1} = 1e-15 {0to2} + 0.0638527099574495 {2to1}
    
    >
    > #example of 3-step analysis with Klimontovich's S-theorem to study two gratings
    > # random vs regular
    > s0<-array(c(rep(0,640),rep(1,640)), c(320,320))
    > s1<-array(runif(5120,0,1), c(64,80))
    > # step a. Binarize (to make s1 comparable with s0 by its nature as a grating)
    > a<-utild2bin(s0, s1, method='med')
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    stheoreme
     --- call from context ---
    utild2bin(s0, s1, method = "med")
     --- call from argument ---
    if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
    }
     --- R stacktrace ---
    where 1: utild2bin(s0, s1, method = "med")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (d2arr0, d2arr1, method = "mean", trsh = 0, inverted = FALSE)
    {
     if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
     }
     return(utild1bin(d2arr0, d2arr1, method = method, trsh = trsh,
     inverted = inverted, d2 = TRUE))
    }
    <bytecode: 0x20f8fa0>
    <environment: namespace:stheoreme>
     --- function search by body ---
    Function utild2bin in namespace stheoreme has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") { :
     the condition has length > 1
    Calls: utild2bin
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.2
Check: examples
Result: ERROR
    Running examples in ‘stheoreme-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: cxds.stheorem
    > ### Title: Renormalized Entropy Shift Estimation
    > ### Aliases: cxds.stheorem
    >
    > ### ** Examples
    >
    > #quazi-gaussian probability vectors with equal means & different variances
    > f0 <- c(0.0,0.1,0.4,0.4,0.1,0.0)
    > f1 <- c(0.1,0.15,0.25,0.25,0.15,0.1)
    > cxds.stheorem(distribution0=f0, distribution1=f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.529250590526317 {0to1} = 0.0909350028886473 {0to1} + 0.438315587637669 {0to1}
    >
    > #quazi-gaussian bin counts with shift between means
    > h0 <- c(2,2,17,6,1,1,1,0)
    > h1 <- c(2,3,5,7,7,4,1,0)
    > crit.stheorem(h0, h1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.8836).
    
    > cxds.stheorem(h0, h1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    0.452797516823042 {0to1} = -0.125108179247243 {0to1} + 0.577905696070284 {0to1}
    where dS consists of two:
    -0.125108179247243 {0to1} = -0.124496242898291 {0to2} + -0.000611936348951181 {2to1}
    
    >
    > #example of 2-step analysis with Klimontovich's S-theorem for 2
    > # arrays of outcomes {s0,s1}:
    > s0<-rep(c(1:11,2),256)
    > s1<-rep(c(2,3,3,4,5,5,5),55)
    > # step a. Create probability vectors
    > b<-d1nat(s0,s1,brks=12); b
    Call:
    d1nat.default(sample0 = s0, sample1 = s1, brks = 12)
    Two probability mass functions ($f0,$f1) have been generated at the common scale of values ($midpoints)
    Statistics summary:
     expctd var fsum xmin xmax n mod1 mod2 mod3 H_val
    f0 5.652778 9.3123071 1 1 11 12 2.25 1.416667 3.083333 2.369382
    f1 3.797619 0.8786848 1 1 11 12 4.75 3.083333 2.250000 1.277034
     H_max
    f0 2.484907
    f1 2.484907
    > # step b. Compare samples with Klimontovich's S-theorem
    > crit.stheorem(b$f0,b$f1)
    
     S-theorem convergence criterion
    
    System evolution from state0 to state1 is thermodynamically possible through an indirect
     medium state2 (R^2 = 0.9604).
    
    > cxds.stheorem(b$f0,b$f1)
    
     S-theorem open system evolution model
    
    Overall entropy shift {H1-H0 = dS + dI}:
    -1.0923478602283 {0to1} = 0.0638527099574505 {0to1} + -1.15620057018575 {0to1}
    where dS consists of two:
    0.0638527099574505 {0to1} = 1e-15 {0to2} + 0.0638527099574495 {2to1}
    
    >
    > #example of 3-step analysis with Klimontovich's S-theorem to study two gratings
    > # random vs regular
    > s0<-array(c(rep(0,640),rep(1,640)), c(320,320))
    > s1<-array(runif(5120,0,1), c(64,80))
    > # step a. Binarize (to make s1 comparable with s0 by its nature as a grating)
    > a<-utild2bin(s0, s1, method='med')
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    stheoreme
     --- call from context ---
    utild2bin(s0, s1, method = "med")
     --- call from argument ---
    if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
    }
     --- R stacktrace ---
    where 1: utild2bin(s0, s1, method = "med")
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (d2arr0, d2arr1, method = "mean", trsh = 0, inverted = FALSE)
    {
     if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") {
     stop("One of the arrays has < 2 dimensions")
     }
     return(utild1bin(d2arr0, d2arr1, method = method, trsh = trsh,
     inverted = inverted, d2 = TRUE))
    }
    <bytecode: 0x28dbe30>
    <environment: namespace:stheoreme>
     --- function search by body ---
    Function utild2bin in namespace stheoreme has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(d2arr0) != "matrix" | class(d2arr1) != "matrix") { :
     the condition has length > 1
    Calls: utild2bin
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc