Last updated on 2020-03-07 11:48:11 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0 | 19.87 | 27.92 | 47.79 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.0 | 12.93 | 21.80 | 34.73 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.0 | 63.95 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.0 | 59.63 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.0 | 61.00 | 60.00 | 121.00 | NOTE | |
r-devel-windows-ix86+x86_64-gcc8 | 1.0 | 47.00 | 56.00 | 103.00 | NOTE | |
r-patched-linux-x86_64 | 1.0 | 16.16 | 24.63 | 40.79 | NOTE | |
r-patched-solaris-x86 | 1.0 | 75.00 | NOTE | |||
r-release-linux-x86_64 | 1.0 | 16.23 | 24.45 | 40.68 | NOTE | |
r-release-windows-ix86+x86_64 | 1.0 | 40.00 | 54.00 | 94.00 | NOTE | |
r-release-osx-x86_64 | 1.0 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 1.0 | 37.00 | 54.00 | 91.00 | NOTE | |
r-oldrel-osx-x86_64 | 1.0 | NOTE |
Version: 1.0
Check: R code for possible problems
Result: NOTE
CMF: no visible global function definition for 'rnorm'
Undefined global functions or variables:
rnorm
Consider adding
importFrom("stats", "rnorm")
to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-ix86+x86_64-gcc8, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64, r-release-windows-ix86+x86_64, r-release-osx-x86_64, r-oldrel-windows-ix86+x86_64, r-oldrel-osx-x86_64
Version: 1.0
Check: examples
Result: ERROR
Running examples in 'CMF-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: CMF-package
> ### Title: Collective Matrix Factorization (CMF)
> ### Aliases: CMF-package
> ### Keywords: package
>
> ### ** Examples
>
> require("CMF")
> # Create data for a circular setup with three matrices and three
> # object sets of varying sizes.
> X <- list()
> D <- c(10,20,30)
> inds <- matrix(0,nrow=3,ncol=2)
>
> # Matrix 1 is between sets 1 and 2 and has continuous data
> inds[1,] <- c(1,2)
> X[[1]] <- matrix(rnorm(D[inds[1,1]]*D[inds[1,2]],0,1),nrow=D[inds[1,1]])
>
> # Matrix 2 is between sets 1 and 3 and has binary data
> inds[2,] <- c(1,3)
> X[[2]] <- matrix(round(runif(D[inds[2,1]]*D[inds[2,2]],0,1)),nrow=D[inds[2,1]])
>
> # Matrix 3 is between sets 2 and 3 and has count data
> inds[3,] <- c(2,3)
> X[[3]] <- matrix(round(runif(D[inds[3,1]]*D[inds[3,2]],0,6)),nrow=D[inds[3,1]])
>
> # Convert the data into the right format
> triplets <- list()
> for(m in 1:3) triplets[[m]] <- matrix_to_triplets(X[[m]])
>
> # Missing entries correspond to missing rows in the triple representation
> # so they can be removed from training data by simply taking a subset
> # of the rows.
> train <- list()
> test <- list()
> keepForTraining <- c(100,200,300)
> for(m in 1:3) {
+ subset <- sample(nrow(triplets[[m]]))[1:keepForTraining[m]]
+ train[[m]] <- triplets[[m]][subset,]
+ test[[m]] <- triplets[[m]][setdiff(1:nrow(triplets[[m]]),subset),]
+ }
>
> # Learn the model with the correct likelihoods
> K <- 4
> likelihood <- c("gaussian","bernoulli","poisson")
> opts <- getCMFopts()
> opts$iter.max <- 10 # Less iterations for faster computation
> model <- CMF(train,inds,K,likelihood,D,test=test,opts=opts)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
CMF
--- call from context ---
p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
--- call from argument ---
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[, 1]) >
max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
--- R stacktrace ---
where 1: p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
where 2: CMF(train, inds, K, likelihood, D, test = test, opts = opts)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (mat, max_row, max_col)
{
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[,
1]) > max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
print("Input not of class 'matrix'")
return(FALSE)
}
<bytecode: 0x2797648>
<environment: namespace:CMF>
--- function search by body ---
Function p_check_sparsity in namespace CMF has this body.
----------- END OF FAILURE REPORT --------------
Error in if (class(mat) == "matrix") { : the condition has length > 1
Calls: CMF -> p_check_sparsity
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 1.0
Check: examples
Result: ERROR
Running examples in ‘CMF-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: CMF-package
> ### Title: Collective Matrix Factorization (CMF)
> ### Aliases: CMF-package
> ### Keywords: package
>
> ### ** Examples
>
> require("CMF")
> # Create data for a circular setup with three matrices and three
> # object sets of varying sizes.
> X <- list()
> D <- c(10,20,30)
> inds <- matrix(0,nrow=3,ncol=2)
>
> # Matrix 1 is between sets 1 and 2 and has continuous data
> inds[1,] <- c(1,2)
> X[[1]] <- matrix(rnorm(D[inds[1,1]]*D[inds[1,2]],0,1),nrow=D[inds[1,1]])
>
> # Matrix 2 is between sets 1 and 3 and has binary data
> inds[2,] <- c(1,3)
> X[[2]] <- matrix(round(runif(D[inds[2,1]]*D[inds[2,2]],0,1)),nrow=D[inds[2,1]])
>
> # Matrix 3 is between sets 2 and 3 and has count data
> inds[3,] <- c(2,3)
> X[[3]] <- matrix(round(runif(D[inds[3,1]]*D[inds[3,2]],0,6)),nrow=D[inds[3,1]])
>
> # Convert the data into the right format
> triplets <- list()
> for(m in 1:3) triplets[[m]] <- matrix_to_triplets(X[[m]])
>
> # Missing entries correspond to missing rows in the triple representation
> # so they can be removed from training data by simply taking a subset
> # of the rows.
> train <- list()
> test <- list()
> keepForTraining <- c(100,200,300)
> for(m in 1:3) {
+ subset <- sample(nrow(triplets[[m]]))[1:keepForTraining[m]]
+ train[[m]] <- triplets[[m]][subset,]
+ test[[m]] <- triplets[[m]][setdiff(1:nrow(triplets[[m]]),subset),]
+ }
>
> # Learn the model with the correct likelihoods
> K <- 4
> likelihood <- c("gaussian","bernoulli","poisson")
> opts <- getCMFopts()
> opts$iter.max <- 10 # Less iterations for faster computation
> model <- CMF(train,inds,K,likelihood,D,test=test,opts=opts)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
CMF
--- call from context ---
p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
--- call from argument ---
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[, 1]) >
max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
--- R stacktrace ---
where 1: p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
where 2: CMF(train, inds, K, likelihood, D, test = test, opts = opts)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (mat, max_row, max_col)
{
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[,
1]) > max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
print("Input not of class 'matrix'")
return(FALSE)
}
<bytecode: 0x5581ac6b6338>
<environment: namespace:CMF>
--- function search by body ---
Function p_check_sparsity in namespace CMF has this body.
----------- END OF FAILURE REPORT --------------
Error in if (class(mat) == "matrix") { : the condition has length > 1
Calls: CMF -> p_check_sparsity
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.0
Check: compiled code
Result: NOTE
File ‘CMF/libs/CMF.so’:
Found no calls to: ‘R_registerRoutines’, ‘R_useDynamicSymbols’
It is good practice to register native routines and to disable symbol
search.
See ‘Writing portable packages’ in the ‘Writing R Extensions’ manual.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 1.0
Check: examples
Result: ERROR
Running examples in ‘CMF-Ex.R’ failed
The error most likely occurred in:
> ### Name: CMF-package
> ### Title: Collective Matrix Factorization (CMF)
> ### Aliases: CMF-package
> ### Keywords: package
>
> ### ** Examples
>
> require("CMF")
> # Create data for a circular setup with three matrices and three
> # object sets of varying sizes.
> X <- list()
> D <- c(10,20,30)
> inds <- matrix(0,nrow=3,ncol=2)
>
> # Matrix 1 is between sets 1 and 2 and has continuous data
> inds[1,] <- c(1,2)
> X[[1]] <- matrix(rnorm(D[inds[1,1]]*D[inds[1,2]],0,1),nrow=D[inds[1,1]])
>
> # Matrix 2 is between sets 1 and 3 and has binary data
> inds[2,] <- c(1,3)
> X[[2]] <- matrix(round(runif(D[inds[2,1]]*D[inds[2,2]],0,1)),nrow=D[inds[2,1]])
>
> # Matrix 3 is between sets 2 and 3 and has count data
> inds[3,] <- c(2,3)
> X[[3]] <- matrix(round(runif(D[inds[3,1]]*D[inds[3,2]],0,6)),nrow=D[inds[3,1]])
>
> # Convert the data into the right format
> triplets <- list()
> for(m in 1:3) triplets[[m]] <- matrix_to_triplets(X[[m]])
>
> # Missing entries correspond to missing rows in the triple representation
> # so they can be removed from training data by simply taking a subset
> # of the rows.
> train <- list()
> test <- list()
> keepForTraining <- c(100,200,300)
> for(m in 1:3) {
+ subset <- sample(nrow(triplets[[m]]))[1:keepForTraining[m]]
+ train[[m]] <- triplets[[m]][subset,]
+ test[[m]] <- triplets[[m]][setdiff(1:nrow(triplets[[m]]),subset),]
+ }
>
> # Learn the model with the correct likelihoods
> K <- 4
> likelihood <- c("gaussian","bernoulli","poisson")
> opts <- getCMFopts()
> opts$iter.max <- 10 # Less iterations for faster computation
> model <- CMF(train,inds,K,likelihood,D,test=test,opts=opts)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
CMF
--- call from context ---
p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
--- call from argument ---
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[, 1]) >
max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
--- R stacktrace ---
where 1: p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
where 2: CMF(train, inds, K, likelihood, D, test = test, opts = opts)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (mat, max_row, max_col)
{
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[,
1]) > max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
print("Input not of class 'matrix'")
return(FALSE)
}
<bytecode: 0x1ebb190>
<environment: namespace:CMF>
--- function search by body ---
Function p_check_sparsity in namespace CMF has this body.
----------- END OF FAILURE REPORT --------------
Error in if (class(mat) == "matrix") { : the condition has length > 1
Calls: CMF -> p_check_sparsity
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 1.0
Check: examples
Result: ERROR
Running examples in ‘CMF-Ex.R’ failed
The error most likely occurred in:
> ### Name: CMF-package
> ### Title: Collective Matrix Factorization (CMF)
> ### Aliases: CMF-package
> ### Keywords: package
>
> ### ** Examples
>
> require("CMF")
> # Create data for a circular setup with three matrices and three
> # object sets of varying sizes.
> X <- list()
> D <- c(10,20,30)
> inds <- matrix(0,nrow=3,ncol=2)
>
> # Matrix 1 is between sets 1 and 2 and has continuous data
> inds[1,] <- c(1,2)
> X[[1]] <- matrix(rnorm(D[inds[1,1]]*D[inds[1,2]],0,1),nrow=D[inds[1,1]])
>
> # Matrix 2 is between sets 1 and 3 and has binary data
> inds[2,] <- c(1,3)
> X[[2]] <- matrix(round(runif(D[inds[2,1]]*D[inds[2,2]],0,1)),nrow=D[inds[2,1]])
>
> # Matrix 3 is between sets 2 and 3 and has count data
> inds[3,] <- c(2,3)
> X[[3]] <- matrix(round(runif(D[inds[3,1]]*D[inds[3,2]],0,6)),nrow=D[inds[3,1]])
>
> # Convert the data into the right format
> triplets <- list()
> for(m in 1:3) triplets[[m]] <- matrix_to_triplets(X[[m]])
>
> # Missing entries correspond to missing rows in the triple representation
> # so they can be removed from training data by simply taking a subset
> # of the rows.
> train <- list()
> test <- list()
> keepForTraining <- c(100,200,300)
> for(m in 1:3) {
+ subset <- sample(nrow(triplets[[m]]))[1:keepForTraining[m]]
+ train[[m]] <- triplets[[m]][subset,]
+ test[[m]] <- triplets[[m]][setdiff(1:nrow(triplets[[m]]),subset),]
+ }
>
> # Learn the model with the correct likelihoods
> K <- 4
> likelihood <- c("gaussian","bernoulli","poisson")
> opts <- getCMFopts()
> opts$iter.max <- 10 # Less iterations for faster computation
> model <- CMF(train,inds,K,likelihood,D,test=test,opts=opts)
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
CMF
--- call from context ---
p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
--- call from argument ---
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[, 1]) >
max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
--- R stacktrace ---
where 1: p_check_sparsity(X[[i]], D[inds[i, 1]], D[inds[i, 2]])
where 2: CMF(train, inds, K, likelihood, D, test = test, opts = opts)
--- value of length: 2 type: logical ---
[1] TRUE FALSE
--- function from context ---
function (mat, max_row, max_col)
{
if (class(mat) == "matrix") {
if (ncol(mat) != 3 | min(mat[, 1:2]) < 1 | max(mat[,
1]) > max_row | max(mat[, 2]) > max_col) {
print("Matrix not in coordinate/triplet format")
return(FALSE)
}
else {
return(TRUE)
}
}
print("Input not of class 'matrix'")
return(FALSE)
}
<bytecode: 0x241c7d0>
<environment: namespace:CMF>
--- function search by body ---
Function p_check_sparsity in namespace CMF has this body.
----------- END OF FAILURE REPORT --------------
Error in if (class(mat) == "matrix") { : the condition has length > 1
Calls: CMF -> p_check_sparsity
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc