CRAN Package Check Results for Package tnam

Last updated on 2020-03-07 11:48:32 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.6.5 27.42 93.78 121.20 ERROR
r-devel-linux-x86_64-debian-gcc 1.6.5 20.31 72.96 93.27 ERROR
r-devel-linux-x86_64-fedora-clang 1.6.5 152.86 ERROR
r-devel-linux-x86_64-fedora-gcc 1.6.5 142.73 ERROR
r-devel-windows-ix86+x86_64 1.6.5 79.00 139.00 218.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.6.5 60.00 141.00 201.00 OK
r-patched-linux-x86_64 1.6.5 21.26 78.78 100.04 OK
r-patched-solaris-x86 1.6.5 191.90 OK
r-release-linux-x86_64 1.6.5 22.39 78.05 100.44 OK
r-release-windows-ix86+x86_64 1.6.5 53.00 127.00 180.00 OK
r-release-osx-x86_64 1.6.5 OK
r-oldrel-windows-ix86+x86_64 1.6.5 38.00 124.00 162.00 OK
r-oldrel-osx-x86_64 1.6.5 OK

Check Details

Version: 1.6.5
Check: examples
Result: ERROR
    Running examples in 'tnam-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: tnam
    > ### Title: Fit (temporal) network autocorrelation models
    > ### Aliases: tnam tnamdata
    >
    > ### ** Examples
    >
    > # The following example models delinquency among adolescents at
    > # multiple time steps as a function of (1) their nodal attributes
    > # like sex or religion, (2) their peers' delinquency levels, (3)
    > # their own and their peers' past delinquency behavior, and (4)
    > # their structural position in the network. See ?knecht for
    > # details on the dataset. Before estimating the model, all data
    > # should be labeled with the names of the nodes such that tnam
    > # is able to merge the information on multiple nodes across time
    > # points.
    >
    > library("tnam")
    > data("knecht")
    >
    > # prepare the dependent variable y
    > delinquency <- as.data.frame(delinquency)
    > rownames(delinquency) <- letters
    >
    > # replace structural zeros (denoted as 10) and add row labels
    > friendship[[3]][friendship[[3]] == 10] <- NA
    > friendship[[4]][friendship[[4]] == 10] <- NA
    > for (i in 1:length(friendship)) {
    + rownames(friendship[[i]]) <- letters
    + }
    >
    > # prepare the covariates sex and religion
    > sex <- demographics$sex
    > names(sex) <- letters
    > sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
    > religion <- demographics$religion
    > names(religion) <- letters
    > religion <- list(t1 = religion, t2 = religion, t3 = religion,
    + t4 = religion)
    >
    > # Estimate the model. The first term is the sex of the respondent,
    > # the second term is the religion of the respondent, the third
    > # term is the previous delinquency behavior of the respondent,
    > # the fourth term is the delinquency behavior of direct friends,
    > # the fifth term is the delinquency behavior of indirect friends
    > # at a path distance of 2, the sixth effect is the past delinquency
    > # of direct friends, the seventh term indicates whether the
    > # respondent has any contacts at all, and the last term captures
    > # the effect of the betweenness centrality of the respondent on
    > # his or her behavior. Apparently, previous behavior, being an
    > # isolate, and religion seem to have an effect on delinquency in
    > # this dataset. There is also a slight positive trend over time,
    > # and direct friends exert a minor effect (not significant).
    > # Note that a linear model may not be the best specification for
    > # modeling the ordered categorical delinquency variable, but it
    > # suffice here for illustration purposes.
    >
    > model1 <- tnam(
    + delinquency ~
    + covariate(sex, coefname = "sex") +
    + covariate(religion, coefname = "religion") +
    + covariate(delinquency, lag = 1, exponent = 1) +
    + netlag(delinquency, friendship) +
    + netlag(delinquency, friendship, pathdist = 2, decay = 1) +
    + netlag(delinquency, friendship, lag = 1) +
    + degreedummy(friendship, deg = 0, reverse = TRUE) +
    + centrality(friendship, type = "betweenness"),
    + re.node = TRUE, time.linear = TRUE
    + )
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    tnam
     --- call from context ---
    checkDataTypes(y = y, networks = networks, lag = lag)
     --- call from argument ---
    if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
    }
     --- R stacktrace ---
    where 1: checkDataTypes(y = y, networks = networks, lag = lag)
    where 2: netlag(delinquency, friendship)
    where 3: eval(parse(text = rhs[i]))
    where 4: eval(parse(text = rhs[i]))
    where 5: tnamdata(formula, center.y = center.y)
    where 6: tnam(delinquency ~ covariate(sex, coefname = "sex") + covariate(religion,
     coefname = "religion") + covariate(delinquency, lag = 1,
     exponent = 1) + netlag(delinquency, friendship) + netlag(delinquency,
     friendship, pathdist = 2, decay = 1) + netlag(delinquency,
     friendship, lag = 1) + degreedummy(friendship, deg = 0, reverse = TRUE) +
     centrality(friendship, type = "betweenness"), re.node = TRUE,
     time.linear = TRUE)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (y, networks = NULL, lag = 0)
    {
     if (is.null(y) && is.null(networks)) {
     stop("No 'y' and 'networks' arguments were provided.")
     }
     stopmsg <- paste0("The data type of the 'y' argument is '",
     class(y), "'. 'y' must be provided as a numeric vector, a list of numeric ",
     "vectors, or a data frame with numeric columns.")
     if (is.null(y)) {
     }
     else if (class(y) == "list") {
     }
     else if (class(y) == "data.frame") {
     time.steps <- ncol(y)
     y.copy <- y
     y <- list()
     for (i in 1:ncol(y.copy)) {
     y[[i]] <- y.copy[, i]
     names(y[[i]]) <- rownames(y.copy)
     }
     rm(y.copy)
     }
     else if (class(y) == "matrix") {
     stop(stopmsg)
     }
     else if (class(y) == "integer") {
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }
     else if (class(y) == "numeric") {
     y <- list(y)
     }
     else if (class(y) == "character") {
     y <- list(y)
     }
     else {
     tryCatch({
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     if (!is.null(y)) {
     for (i in 1:length(y)) {
     cl <- class(y[[i]])
     stopmsg <- paste0("At t=", i, ", 'y' contains ",
     cl, " objects. 'y' ", "must be provided as a numeric vector, a list of numeric vectors, ",
     "or a data frame with numeric columns.")
     if (is.integer(y[[i]])) {
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }
     else if (cl == "character") {
     stop(stopmsg)
     }
     else {
     tryCatch({
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     }
     }
     if (is.null(networks)) {
     }
     else if (class(networks) == "matrix") {
     networks <- list(networks)
     }
     else if (class(networks) == "network") {
     networks <- list(as.matrix(networks))
     }
     else if (class(networks) == "list") {
     }
     else {
     networks <- list(networks)
     }
     if (!is.null(networks)) {
     for (i in 1:length(networks)) {
     if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
     }
     if (storage.mode(networks[[i]]) != "numeric") {
     tryCatch({
     storage.mode(networks[[i]]) <- "numeric"
     }, error = function(e) {
     stop(paste0("At t=", i, ", the matrix in the 'networks' list does ",
     "not contain numeric values."))
     })
     }
     }
     }
     if (!is.null(y) && !is.null(networks) && length(y) != length(networks)) {
     if (length(y) == 1 && length(networks) > 1) {
     stop(paste("'y' has only one time step, but the network has multiple ",
     "time steps."))
     }
     else if (length(y) > 1 && length(networks) == 1) {
     for (i in length(y)) {
     networks[[i]] <- networks[[1]]
     }
     }
     else {
     stop(paste0("There should be the same number of elements in 'y' and ",
     "'networks'. There are ", length(y), " elements in 'y' and ",
     length(networks), " elements in 'networks'."))
     }
     }
     if (!is.null(y) && !is.null(networks)) {
     for (i in 1:length(y)) {
     if (length(y[[i]]) != nrow(networks[[i]])) {
     if (is.null(rownames(networks[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the network (matrix) does not contain row names."))
     }
     else if (is.null(names(y[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the elements in 'y' are not named."))
     }
     else {
     message(paste0("Dimensions of 'y' and 'networks' do not match at ",
     "t=", i, ". Trying to adjust them mutually."))
     y[[i]] <- xergm.common::adjust(y[[i]], networks[[i]],
     add = FALSE)
     networks[[i]] <- xergm.common::adjust(networks[[i]],
     y[[i]], add = FALSE)
     }
     }
     if (!is.null(names(y[[i]])) && !is.null(rownames(networks[[i]])) &&
     !all(names(y[[i]]) == rownames(networks[[i]]))) {
     warning(paste("At t=", i, "the names of 'y' and the row names of",
     "'networks' do not match."))
     }
     if (is.null(rownames(networks[[i]])) && !is.null(names(y[[i]]))) {
     rownames(networks[[i]]) <- names(y[[i]])
     }
     else if (is.null(names(y[[i]])) && !is.null(rownames(networks[[i]]))) {
     names(y[[i]]) <- rownames(networks[[i]])
     }
     else if (is.null(rownames(networks[[i]])) && is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     }
     }
     }
     if (is.null(y)) {
     for (i in 1:length(networks)) {
     if (is.null(rownames(networks[[i]]))) {
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     if (i > 1) {
     if (nrow(networks[[i]]) != nrow(networks[[i -
     1]])) {
     stop(paste0("No row names in 'networks' at t=",
     i, ". Tried to ", "create custom row names, but the dimensions differ from ",
     "the previous time point."))
     }
     if (!all(rownames(networks[[i]]) == rownames(networks[[i -
     1]]))) {
     stop(paste0("At t=", i, ", the row names of the network matrix ",
     "do not match the row names of the previous time step."))
     }
     }
     }
     }
     }
     if (is.null(networks)) {
     for (i in 1:length(y)) {
     if (is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     if (i > 1) {
     if (length(y[[i]]) != length(y[[i - 1]])) {
     stop(paste0("No names in 'y' vector at t=",
     i, ". Tried to ", "create custom names, but the length differs from ",
     "the previous time point."))
     }
     if (!all(names(y[[i]]) == names(y[[i - 1]]))) {
     stop(paste0("At t=", i, ", the names of the 'y' vector ",
     "do not match the names of the previous time step."))
     }
     }
     }
     }
     }
     if (!is.null(y)) {
     n <- length(y)
     }
     else {
     n <- length(networks)
     }
     if (!is.numeric(lag)) {
     stop("The 'lag' argument must be numeric.")
     }
     else if (length(lag) > 1) {
     stop("The 'lag' argument must be of length 1.")
     }
     else if (lag < 0) {
     stop("The 'lag' argument must be >= 0.")
     }
     else if (n - lag < 1) {
     if (n == 1) {
     stop(paste("A lag of", lag, "was specified, but there is only",
     "one time step."))
     }
     else {
     stop(paste("A lag of", lag, "was specified, but there are only",
     n, "time steps."))
     }
     }
     objects <- list()
     objects$y <- y
     objects$networks <- networks
     objects$time.steps <- n
     if (!is.null(y)) {
     objects$n <- lapply(y, length)
     objects$nodelabels <- unlist(lapply(y, names))
     }
     else {
     objects$n <- lapply(networks, nrow)
     objects$nodelabels <- unlist(lapply(networks, rownames))
     }
     names(objects$nodelabels) <- NULL
     return(objects)
    }
    <bytecode: 0x61aa4e8>
    <environment: namespace:tnam>
     --- function search by body ---
    Function checkDataTypes in namespace tnam has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(networks[[i]]) != "matrix") { :
     the condition has length > 1
    Calls: tnam ... tnamdata -> eval -> eval -> netlag -> checkDataTypes
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.6.5
Check: examples
Result: ERROR
    Running examples in ‘tnam-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: tnam
    > ### Title: Fit (temporal) network autocorrelation models
    > ### Aliases: tnam tnamdata
    >
    > ### ** Examples
    >
    > # The following example models delinquency among adolescents at
    > # multiple time steps as a function of (1) their nodal attributes
    > # like sex or religion, (2) their peers' delinquency levels, (3)
    > # their own and their peers' past delinquency behavior, and (4)
    > # their structural position in the network. See ?knecht for
    > # details on the dataset. Before estimating the model, all data
    > # should be labeled with the names of the nodes such that tnam
    > # is able to merge the information on multiple nodes across time
    > # points.
    >
    > library("tnam")
    > data("knecht")
    >
    > # prepare the dependent variable y
    > delinquency <- as.data.frame(delinquency)
    > rownames(delinquency) <- letters
    >
    > # replace structural zeros (denoted as 10) and add row labels
    > friendship[[3]][friendship[[3]] == 10] <- NA
    > friendship[[4]][friendship[[4]] == 10] <- NA
    > for (i in 1:length(friendship)) {
    + rownames(friendship[[i]]) <- letters
    + }
    >
    > # prepare the covariates sex and religion
    > sex <- demographics$sex
    > names(sex) <- letters
    > sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
    > religion <- demographics$religion
    > names(religion) <- letters
    > religion <- list(t1 = religion, t2 = religion, t3 = religion,
    + t4 = religion)
    >
    > # Estimate the model. The first term is the sex of the respondent,
    > # the second term is the religion of the respondent, the third
    > # term is the previous delinquency behavior of the respondent,
    > # the fourth term is the delinquency behavior of direct friends,
    > # the fifth term is the delinquency behavior of indirect friends
    > # at a path distance of 2, the sixth effect is the past delinquency
    > # of direct friends, the seventh term indicates whether the
    > # respondent has any contacts at all, and the last term captures
    > # the effect of the betweenness centrality of the respondent on
    > # his or her behavior. Apparently, previous behavior, being an
    > # isolate, and religion seem to have an effect on delinquency in
    > # this dataset. There is also a slight positive trend over time,
    > # and direct friends exert a minor effect (not significant).
    > # Note that a linear model may not be the best specification for
    > # modeling the ordered categorical delinquency variable, but it
    > # suffice here for illustration purposes.
    >
    > model1 <- tnam(
    + delinquency ~
    + covariate(sex, coefname = "sex") +
    + covariate(religion, coefname = "religion") +
    + covariate(delinquency, lag = 1, exponent = 1) +
    + netlag(delinquency, friendship) +
    + netlag(delinquency, friendship, pathdist = 2, decay = 1) +
    + netlag(delinquency, friendship, lag = 1) +
    + degreedummy(friendship, deg = 0, reverse = TRUE) +
    + centrality(friendship, type = "betweenness"),
    + re.node = TRUE, time.linear = TRUE
    + )
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    tnam
     --- call from context ---
    checkDataTypes(y = y, networks = networks, lag = lag)
     --- call from argument ---
    if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
    }
     --- R stacktrace ---
    where 1: checkDataTypes(y = y, networks = networks, lag = lag)
    where 2: netlag(delinquency, friendship)
    where 3: eval(parse(text = rhs[i]))
    where 4: eval(parse(text = rhs[i]))
    where 5: tnamdata(formula, center.y = center.y)
    where 6: tnam(delinquency ~ covariate(sex, coefname = "sex") + covariate(religion,
     coefname = "religion") + covariate(delinquency, lag = 1,
     exponent = 1) + netlag(delinquency, friendship) + netlag(delinquency,
     friendship, pathdist = 2, decay = 1) + netlag(delinquency,
     friendship, lag = 1) + degreedummy(friendship, deg = 0, reverse = TRUE) +
     centrality(friendship, type = "betweenness"), re.node = TRUE,
     time.linear = TRUE)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (y, networks = NULL, lag = 0)
    {
     if (is.null(y) && is.null(networks)) {
     stop("No 'y' and 'networks' arguments were provided.")
     }
     stopmsg <- paste0("The data type of the 'y' argument is '",
     class(y), "'. 'y' must be provided as a numeric vector, a list of numeric ",
     "vectors, or a data frame with numeric columns.")
     if (is.null(y)) {
     }
     else if (class(y) == "list") {
     }
     else if (class(y) == "data.frame") {
     time.steps <- ncol(y)
     y.copy <- y
     y <- list()
     for (i in 1:ncol(y.copy)) {
     y[[i]] <- y.copy[, i]
     names(y[[i]]) <- rownames(y.copy)
     }
     rm(y.copy)
     }
     else if (class(y) == "matrix") {
     stop(stopmsg)
     }
     else if (class(y) == "integer") {
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }
     else if (class(y) == "numeric") {
     y <- list(y)
     }
     else if (class(y) == "character") {
     y <- list(y)
     }
     else {
     tryCatch({
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     if (!is.null(y)) {
     for (i in 1:length(y)) {
     cl <- class(y[[i]])
     stopmsg <- paste0("At t=", i, ", 'y' contains ",
     cl, " objects. 'y' ", "must be provided as a numeric vector, a list of numeric vectors, ",
     "or a data frame with numeric columns.")
     if (is.integer(y[[i]])) {
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }
     else if (cl == "character") {
     stop(stopmsg)
     }
     else {
     tryCatch({
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     }
     }
     if (is.null(networks)) {
     }
     else if (class(networks) == "matrix") {
     networks <- list(networks)
     }
     else if (class(networks) == "network") {
     networks <- list(as.matrix(networks))
     }
     else if (class(networks) == "list") {
     }
     else {
     networks <- list(networks)
     }
     if (!is.null(networks)) {
     for (i in 1:length(networks)) {
     if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
     }
     if (storage.mode(networks[[i]]) != "numeric") {
     tryCatch({
     storage.mode(networks[[i]]) <- "numeric"
     }, error = function(e) {
     stop(paste0("At t=", i, ", the matrix in the 'networks' list does ",
     "not contain numeric values."))
     })
     }
     }
     }
     if (!is.null(y) && !is.null(networks) && length(y) != length(networks)) {
     if (length(y) == 1 && length(networks) > 1) {
     stop(paste("'y' has only one time step, but the network has multiple ",
     "time steps."))
     }
     else if (length(y) > 1 && length(networks) == 1) {
     for (i in length(y)) {
     networks[[i]] <- networks[[1]]
     }
     }
     else {
     stop(paste0("There should be the same number of elements in 'y' and ",
     "'networks'. There are ", length(y), " elements in 'y' and ",
     length(networks), " elements in 'networks'."))
     }
     }
     if (!is.null(y) && !is.null(networks)) {
     for (i in 1:length(y)) {
     if (length(y[[i]]) != nrow(networks[[i]])) {
     if (is.null(rownames(networks[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the network (matrix) does not contain row names."))
     }
     else if (is.null(names(y[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the elements in 'y' are not named."))
     }
     else {
     message(paste0("Dimensions of 'y' and 'networks' do not match at ",
     "t=", i, ". Trying to adjust them mutually."))
     y[[i]] <- xergm.common::adjust(y[[i]], networks[[i]],
     add = FALSE)
     networks[[i]] <- xergm.common::adjust(networks[[i]],
     y[[i]], add = FALSE)
     }
     }
     if (!is.null(names(y[[i]])) && !is.null(rownames(networks[[i]])) &&
     !all(names(y[[i]]) == rownames(networks[[i]]))) {
     warning(paste("At t=", i, "the names of 'y' and the row names of",
     "'networks' do not match."))
     }
     if (is.null(rownames(networks[[i]])) && !is.null(names(y[[i]]))) {
     rownames(networks[[i]]) <- names(y[[i]])
     }
     else if (is.null(names(y[[i]])) && !is.null(rownames(networks[[i]]))) {
     names(y[[i]]) <- rownames(networks[[i]])
     }
     else if (is.null(rownames(networks[[i]])) && is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     }
     }
     }
     if (is.null(y)) {
     for (i in 1:length(networks)) {
     if (is.null(rownames(networks[[i]]))) {
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     if (i > 1) {
     if (nrow(networks[[i]]) != nrow(networks[[i -
     1]])) {
     stop(paste0("No row names in 'networks' at t=",
     i, ". Tried to ", "create custom row names, but the dimensions differ from ",
     "the previous time point."))
     }
     if (!all(rownames(networks[[i]]) == rownames(networks[[i -
     1]]))) {
     stop(paste0("At t=", i, ", the row names of the network matrix ",
     "do not match the row names of the previous time step."))
     }
     }
     }
     }
     }
     if (is.null(networks)) {
     for (i in 1:length(y)) {
     if (is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     if (i > 1) {
     if (length(y[[i]]) != length(y[[i - 1]])) {
     stop(paste0("No names in 'y' vector at t=",
     i, ". Tried to ", "create custom names, but the length differs from ",
     "the previous time point."))
     }
     if (!all(names(y[[i]]) == names(y[[i - 1]]))) {
     stop(paste0("At t=", i, ", the names of the 'y' vector ",
     "do not match the names of the previous time step."))
     }
     }
     }
     }
     }
     if (!is.null(y)) {
     n <- length(y)
     }
     else {
     n <- length(networks)
     }
     if (!is.numeric(lag)) {
     stop("The 'lag' argument must be numeric.")
     }
     else if (length(lag) > 1) {
     stop("The 'lag' argument must be of length 1.")
     }
     else if (lag < 0) {
     stop("The 'lag' argument must be >= 0.")
     }
     else if (n - lag < 1) {
     if (n == 1) {
     stop(paste("A lag of", lag, "was specified, but there is only",
     "one time step."))
     }
     else {
     stop(paste("A lag of", lag, "was specified, but there are only",
     n, "time steps."))
     }
     }
     objects <- list()
     objects$y <- y
     objects$networks <- networks
     objects$time.steps <- n
     if (!is.null(y)) {
     objects$n <- lapply(y, length)
     objects$nodelabels <- unlist(lapply(y, names))
     }
     else {
     objects$n <- lapply(networks, nrow)
     objects$nodelabels <- unlist(lapply(networks, rownames))
     }
     names(objects$nodelabels) <- NULL
     return(objects)
    }
    <bytecode: 0x558087e492a8>
    <environment: namespace:tnam>
     --- function search by body ---
    Function checkDataTypes in namespace tnam has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(networks[[i]]) != "matrix") { :
     the condition has length > 1
    Calls: tnam ... tnamdata -> eval -> eval -> netlag -> checkDataTypes
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.6.5
Check: examples
Result: ERROR
    Running examples in ‘tnam-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: tnam
    > ### Title: Fit (temporal) network autocorrelation models
    > ### Aliases: tnam tnamdata
    >
    > ### ** Examples
    >
    > # The following example models delinquency among adolescents at
    > # multiple time steps as a function of (1) their nodal attributes
    > # like sex or religion, (2) their peers' delinquency levels, (3)
    > # their own and their peers' past delinquency behavior, and (4)
    > # their structural position in the network. See ?knecht for
    > # details on the dataset. Before estimating the model, all data
    > # should be labeled with the names of the nodes such that tnam
    > # is able to merge the information on multiple nodes across time
    > # points.
    >
    > library("tnam")
    > data("knecht")
    >
    > # prepare the dependent variable y
    > delinquency <- as.data.frame(delinquency)
    > rownames(delinquency) <- letters
    >
    > # replace structural zeros (denoted as 10) and add row labels
    > friendship[[3]][friendship[[3]] == 10] <- NA
    > friendship[[4]][friendship[[4]] == 10] <- NA
    > for (i in 1:length(friendship)) {
    + rownames(friendship[[i]]) <- letters
    + }
    >
    > # prepare the covariates sex and religion
    > sex <- demographics$sex
    > names(sex) <- letters
    > sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
    > religion <- demographics$religion
    > names(religion) <- letters
    > religion <- list(t1 = religion, t2 = religion, t3 = religion,
    + t4 = religion)
    >
    > # Estimate the model. The first term is the sex of the respondent,
    > # the second term is the religion of the respondent, the third
    > # term is the previous delinquency behavior of the respondent,
    > # the fourth term is the delinquency behavior of direct friends,
    > # the fifth term is the delinquency behavior of indirect friends
    > # at a path distance of 2, the sixth effect is the past delinquency
    > # of direct friends, the seventh term indicates whether the
    > # respondent has any contacts at all, and the last term captures
    > # the effect of the betweenness centrality of the respondent on
    > # his or her behavior. Apparently, previous behavior, being an
    > # isolate, and religion seem to have an effect on delinquency in
    > # this dataset. There is also a slight positive trend over time,
    > # and direct friends exert a minor effect (not significant).
    > # Note that a linear model may not be the best specification for
    > # modeling the ordered categorical delinquency variable, but it
    > # suffice here for illustration purposes.
    >
    > model1 <- tnam(
    + delinquency ~
    + covariate(sex, coefname = "sex") +
    + covariate(religion, coefname = "religion") +
    + covariate(delinquency, lag = 1, exponent = 1) +
    + netlag(delinquency, friendship) +
    + netlag(delinquency, friendship, pathdist = 2, decay = 1) +
    + netlag(delinquency, friendship, lag = 1) +
    + degreedummy(friendship, deg = 0, reverse = TRUE) +
    + centrality(friendship, type = "betweenness"),
    + re.node = TRUE, time.linear = TRUE
    + )
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    tnam
     --- call from context ---
    checkDataTypes(y = y, networks = networks, lag = lag)
     --- call from argument ---
    if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
    }
     --- R stacktrace ---
    where 1: checkDataTypes(y = y, networks = networks, lag = lag)
    where 2: netlag(delinquency, friendship)
    where 3: eval(parse(text = rhs[i]))
    where 4: eval(parse(text = rhs[i]))
    where 5: tnamdata(formula, center.y = center.y)
    where 6: tnam(delinquency ~ covariate(sex, coefname = "sex") + covariate(religion,
     coefname = "religion") + covariate(delinquency, lag = 1,
     exponent = 1) + netlag(delinquency, friendship) + netlag(delinquency,
     friendship, pathdist = 2, decay = 1) + netlag(delinquency,
     friendship, lag = 1) + degreedummy(friendship, deg = 0, reverse = TRUE) +
     centrality(friendship, type = "betweenness"), re.node = TRUE,
     time.linear = TRUE)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (y, networks = NULL, lag = 0)
    {
     if (is.null(y) && is.null(networks)) {
     stop("No 'y' and 'networks' arguments were provided.")
     }
     stopmsg <- paste0("The data type of the 'y' argument is '",
     class(y), "'. 'y' must be provided as a numeric vector, a list of numeric ",
     "vectors, or a data frame with numeric columns.")
     if (is.null(y)) {
     }
     else if (class(y) == "list") {
     }
     else if (class(y) == "data.frame") {
     time.steps <- ncol(y)
     y.copy <- y
     y <- list()
     for (i in 1:ncol(y.copy)) {
     y[[i]] <- y.copy[, i]
     names(y[[i]]) <- rownames(y.copy)
     }
     rm(y.copy)
     }
     else if (class(y) == "matrix") {
     stop(stopmsg)
     }
     else if (class(y) == "integer") {
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }
     else if (class(y) == "numeric") {
     y <- list(y)
     }
     else if (class(y) == "character") {
     y <- list(y)
     }
     else {
     tryCatch({
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     if (!is.null(y)) {
     for (i in 1:length(y)) {
     cl <- class(y[[i]])
     stopmsg <- paste0("At t=", i, ", 'y' contains ",
     cl, " objects. 'y' ", "must be provided as a numeric vector, a list of numeric vectors, ",
     "or a data frame with numeric columns.")
     if (is.integer(y[[i]])) {
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }
     else if (cl == "character") {
     stop(stopmsg)
     }
     else {
     tryCatch({
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     }
     }
     if (is.null(networks)) {
     }
     else if (class(networks) == "matrix") {
     networks <- list(networks)
     }
     else if (class(networks) == "network") {
     networks <- list(as.matrix(networks))
     }
     else if (class(networks) == "list") {
     }
     else {
     networks <- list(networks)
     }
     if (!is.null(networks)) {
     for (i in 1:length(networks)) {
     if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
     }
     if (storage.mode(networks[[i]]) != "numeric") {
     tryCatch({
     storage.mode(networks[[i]]) <- "numeric"
     }, error = function(e) {
     stop(paste0("At t=", i, ", the matrix in the 'networks' list does ",
     "not contain numeric values."))
     })
     }
     }
     }
     if (!is.null(y) && !is.null(networks) && length(y) != length(networks)) {
     if (length(y) == 1 && length(networks) > 1) {
     stop(paste("'y' has only one time step, but the network has multiple ",
     "time steps."))
     }
     else if (length(y) > 1 && length(networks) == 1) {
     for (i in length(y)) {
     networks[[i]] <- networks[[1]]
     }
     }
     else {
     stop(paste0("There should be the same number of elements in 'y' and ",
     "'networks'. There are ", length(y), " elements in 'y' and ",
     length(networks), " elements in 'networks'."))
     }
     }
     if (!is.null(y) && !is.null(networks)) {
     for (i in 1:length(y)) {
     if (length(y[[i]]) != nrow(networks[[i]])) {
     if (is.null(rownames(networks[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the network (matrix) does not contain row names."))
     }
     else if (is.null(names(y[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the elements in 'y' are not named."))
     }
     else {
     message(paste0("Dimensions of 'y' and 'networks' do not match at ",
     "t=", i, ". Trying to adjust them mutually."))
     y[[i]] <- xergm.common::adjust(y[[i]], networks[[i]],
     add = FALSE)
     networks[[i]] <- xergm.common::adjust(networks[[i]],
     y[[i]], add = FALSE)
     }
     }
     if (!is.null(names(y[[i]])) && !is.null(rownames(networks[[i]])) &&
     !all(names(y[[i]]) == rownames(networks[[i]]))) {
     warning(paste("At t=", i, "the names of 'y' and the row names of",
     "'networks' do not match."))
     }
     if (is.null(rownames(networks[[i]])) && !is.null(names(y[[i]]))) {
     rownames(networks[[i]]) <- names(y[[i]])
     }
     else if (is.null(names(y[[i]])) && !is.null(rownames(networks[[i]]))) {
     names(y[[i]]) <- rownames(networks[[i]])
     }
     else if (is.null(rownames(networks[[i]])) && is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     }
     }
     }
     if (is.null(y)) {
     for (i in 1:length(networks)) {
     if (is.null(rownames(networks[[i]]))) {
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     if (i > 1) {
     if (nrow(networks[[i]]) != nrow(networks[[i -
     1]])) {
     stop(paste0("No row names in 'networks' at t=",
     i, ". Tried to ", "create custom row names, but the dimensions differ from ",
     "the previous time point."))
     }
     if (!all(rownames(networks[[i]]) == rownames(networks[[i -
     1]]))) {
     stop(paste0("At t=", i, ", the row names of the network matrix ",
     "do not match the row names of the previous time step."))
     }
     }
     }
     }
     }
     if (is.null(networks)) {
     for (i in 1:length(y)) {
     if (is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     if (i > 1) {
     if (length(y[[i]]) != length(y[[i - 1]])) {
     stop(paste0("No names in 'y' vector at t=",
     i, ". Tried to ", "create custom names, but the length differs from ",
     "the previous time point."))
     }
     if (!all(names(y[[i]]) == names(y[[i - 1]]))) {
     stop(paste0("At t=", i, ", the names of the 'y' vector ",
     "do not match the names of the previous time step."))
     }
     }
     }
     }
     }
     if (!is.null(y)) {
     n <- length(y)
     }
     else {
     n <- length(networks)
     }
     if (!is.numeric(lag)) {
     stop("The 'lag' argument must be numeric.")
     }
     else if (length(lag) > 1) {
     stop("The 'lag' argument must be of length 1.")
     }
     else if (lag < 0) {
     stop("The 'lag' argument must be >= 0.")
     }
     else if (n - lag < 1) {
     if (n == 1) {
     stop(paste("A lag of", lag, "was specified, but there is only",
     "one time step."))
     }
     else {
     stop(paste("A lag of", lag, "was specified, but there are only",
     n, "time steps."))
     }
     }
     objects <- list()
     objects$y <- y
     objects$networks <- networks
     objects$time.steps <- n
     if (!is.null(y)) {
     objects$n <- lapply(y, length)
     objects$nodelabels <- unlist(lapply(y, names))
     }
     else {
     objects$n <- lapply(networks, nrow)
     objects$nodelabels <- unlist(lapply(networks, rownames))
     }
     names(objects$nodelabels) <- NULL
     return(objects)
    }
    <bytecode: 0x6888950>
    <environment: namespace:tnam>
     --- function search by body ---
    Function checkDataTypes in namespace tnam has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(networks[[i]]) != "matrix") { :
     the condition has length > 1
    Calls: tnam ... tnamdata -> eval -> eval -> netlag -> checkDataTypes
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.6.5
Check: examples
Result: ERROR
    Running examples in ‘tnam-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: tnam
    > ### Title: Fit (temporal) network autocorrelation models
    > ### Aliases: tnam tnamdata
    >
    > ### ** Examples
    >
    > # The following example models delinquency among adolescents at
    > # multiple time steps as a function of (1) their nodal attributes
    > # like sex or religion, (2) their peers' delinquency levels, (3)
    > # their own and their peers' past delinquency behavior, and (4)
    > # their structural position in the network. See ?knecht for
    > # details on the dataset. Before estimating the model, all data
    > # should be labeled with the names of the nodes such that tnam
    > # is able to merge the information on multiple nodes across time
    > # points.
    >
    > library("tnam")
    > data("knecht")
    >
    > # prepare the dependent variable y
    > delinquency <- as.data.frame(delinquency)
    > rownames(delinquency) <- letters
    >
    > # replace structural zeros (denoted as 10) and add row labels
    > friendship[[3]][friendship[[3]] == 10] <- NA
    > friendship[[4]][friendship[[4]] == 10] <- NA
    > for (i in 1:length(friendship)) {
    + rownames(friendship[[i]]) <- letters
    + }
    >
    > # prepare the covariates sex and religion
    > sex <- demographics$sex
    > names(sex) <- letters
    > sex <- list(t1 = sex, t2 = sex, t3 = sex, t4 = sex)
    > religion <- demographics$religion
    > names(religion) <- letters
    > religion <- list(t1 = religion, t2 = religion, t3 = religion,
    + t4 = religion)
    >
    > # Estimate the model. The first term is the sex of the respondent,
    > # the second term is the religion of the respondent, the third
    > # term is the previous delinquency behavior of the respondent,
    > # the fourth term is the delinquency behavior of direct friends,
    > # the fifth term is the delinquency behavior of indirect friends
    > # at a path distance of 2, the sixth effect is the past delinquency
    > # of direct friends, the seventh term indicates whether the
    > # respondent has any contacts at all, and the last term captures
    > # the effect of the betweenness centrality of the respondent on
    > # his or her behavior. Apparently, previous behavior, being an
    > # isolate, and religion seem to have an effect on delinquency in
    > # this dataset. There is also a slight positive trend over time,
    > # and direct friends exert a minor effect (not significant).
    > # Note that a linear model may not be the best specification for
    > # modeling the ordered categorical delinquency variable, but it
    > # suffice here for illustration purposes.
    >
    > model1 <- tnam(
    + delinquency ~
    + covariate(sex, coefname = "sex") +
    + covariate(religion, coefname = "religion") +
    + covariate(delinquency, lag = 1, exponent = 1) +
    + netlag(delinquency, friendship) +
    + netlag(delinquency, friendship, pathdist = 2, decay = 1) +
    + netlag(delinquency, friendship, lag = 1) +
    + degreedummy(friendship, deg = 0, reverse = TRUE) +
    + centrality(friendship, type = "betweenness"),
    + re.node = TRUE, time.linear = TRUE
    + )
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    tnam
     --- call from context ---
    checkDataTypes(y = y, networks = networks, lag = lag)
     --- call from argument ---
    if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
    }
     --- R stacktrace ---
    where 1: checkDataTypes(y = y, networks = networks, lag = lag)
    where 2: netlag(delinquency, friendship)
    where 3: eval(parse(text = rhs[i]))
    where 4: eval(parse(text = rhs[i]))
    where 5: tnamdata(formula, center.y = center.y)
    where 6: tnam(delinquency ~ covariate(sex, coefname = "sex") + covariate(religion,
     coefname = "religion") + covariate(delinquency, lag = 1,
     exponent = 1) + netlag(delinquency, friendship) + netlag(delinquency,
     friendship, pathdist = 2, decay = 1) + netlag(delinquency,
     friendship, lag = 1) + degreedummy(friendship, deg = 0, reverse = TRUE) +
     centrality(friendship, type = "betweenness"), re.node = TRUE,
     time.linear = TRUE)
    
     --- value of length: 2 type: logical ---
    [1] FALSE TRUE
     --- function from context ---
    function (y, networks = NULL, lag = 0)
    {
     if (is.null(y) && is.null(networks)) {
     stop("No 'y' and 'networks' arguments were provided.")
     }
     stopmsg <- paste0("The data type of the 'y' argument is '",
     class(y), "'. 'y' must be provided as a numeric vector, a list of numeric ",
     "vectors, or a data frame with numeric columns.")
     if (is.null(y)) {
     }
     else if (class(y) == "list") {
     }
     else if (class(y) == "data.frame") {
     time.steps <- ncol(y)
     y.copy <- y
     y <- list()
     for (i in 1:ncol(y.copy)) {
     y[[i]] <- y.copy[, i]
     names(y[[i]]) <- rownames(y.copy)
     }
     rm(y.copy)
     }
     else if (class(y) == "matrix") {
     stop(stopmsg)
     }
     else if (class(y) == "integer") {
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }
     else if (class(y) == "numeric") {
     y <- list(y)
     }
     else if (class(y) == "character") {
     y <- list(y)
     }
     else {
     tryCatch({
     current.names <- names(y)
     y <- as.numeric(y)
     names(y) <- current.names
     y <- list(y)
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     if (!is.null(y)) {
     for (i in 1:length(y)) {
     cl <- class(y[[i]])
     stopmsg <- paste0("At t=", i, ", 'y' contains ",
     cl, " objects. 'y' ", "must be provided as a numeric vector, a list of numeric vectors, ",
     "or a data frame with numeric columns.")
     if (is.integer(y[[i]])) {
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }
     else if (cl == "character") {
     stop(stopmsg)
     }
     else {
     tryCatch({
     current.names <- names(y[[i]])
     y[[i]] <- as.numeric(y[[i]])
     names(y[[i]]) <- current.names
     }, error = function(e) {
     stop(stopmsg)
     })
     }
     }
     }
     if (is.null(networks)) {
     }
     else if (class(networks) == "matrix") {
     networks <- list(networks)
     }
     else if (class(networks) == "network") {
     networks <- list(as.matrix(networks))
     }
     else if (class(networks) == "list") {
     }
     else {
     networks <- list(networks)
     }
     if (!is.null(networks)) {
     for (i in 1:length(networks)) {
     if (class(networks[[i]]) != "matrix") {
     tryCatch({
     networks[[i]] <- as.matrix(networks[[i]])
     }, error = function(e) {
     stop(paste0("At t=", i, ", the object in the 'networks' list could ",
     "not be converted to a matrix object."))
     })
     }
     if (storage.mode(networks[[i]]) != "numeric") {
     tryCatch({
     storage.mode(networks[[i]]) <- "numeric"
     }, error = function(e) {
     stop(paste0("At t=", i, ", the matrix in the 'networks' list does ",
     "not contain numeric values."))
     })
     }
     }
     }
     if (!is.null(y) && !is.null(networks) && length(y) != length(networks)) {
     if (length(y) == 1 && length(networks) > 1) {
     stop(paste("'y' has only one time step, but the network has multiple ",
     "time steps."))
     }
     else if (length(y) > 1 && length(networks) == 1) {
     for (i in length(y)) {
     networks[[i]] <- networks[[1]]
     }
     }
     else {
     stop(paste0("There should be the same number of elements in 'y' and ",
     "'networks'. There are ", length(y), " elements in 'y' and ",
     length(networks), " elements in 'networks'."))
     }
     }
     if (!is.null(y) && !is.null(networks)) {
     for (i in 1:length(y)) {
     if (length(y[[i]]) != nrow(networks[[i]])) {
     if (is.null(rownames(networks[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the network (matrix) does not contain row names."))
     }
     else if (is.null(names(y[[i]]))) {
     stop(paste0("The dimensions of 'y' and 'networks' differ at t=",
     i, ", and the elements in 'y' are not named."))
     }
     else {
     message(paste0("Dimensions of 'y' and 'networks' do not match at ",
     "t=", i, ". Trying to adjust them mutually."))
     y[[i]] <- xergm.common::adjust(y[[i]], networks[[i]],
     add = FALSE)
     networks[[i]] <- xergm.common::adjust(networks[[i]],
     y[[i]], add = FALSE)
     }
     }
     if (!is.null(names(y[[i]])) && !is.null(rownames(networks[[i]])) &&
     !all(names(y[[i]]) == rownames(networks[[i]]))) {
     warning(paste("At t=", i, "the names of 'y' and the row names of",
     "'networks' do not match."))
     }
     if (is.null(rownames(networks[[i]])) && !is.null(names(y[[i]]))) {
     rownames(networks[[i]]) <- names(y[[i]])
     }
     else if (is.null(names(y[[i]])) && !is.null(rownames(networks[[i]]))) {
     names(y[[i]]) <- rownames(networks[[i]])
     }
     else if (is.null(rownames(networks[[i]])) && is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     }
     }
     }
     if (is.null(y)) {
     for (i in 1:length(networks)) {
     if (is.null(rownames(networks[[i]]))) {
     rownames(networks[[i]]) <- 1:nrow(networks[[i]])
     if (i > 1) {
     if (nrow(networks[[i]]) != nrow(networks[[i -
     1]])) {
     stop(paste0("No row names in 'networks' at t=",
     i, ". Tried to ", "create custom row names, but the dimensions differ from ",
     "the previous time point."))
     }
     if (!all(rownames(networks[[i]]) == rownames(networks[[i -
     1]]))) {
     stop(paste0("At t=", i, ", the row names of the network matrix ",
     "do not match the row names of the previous time step."))
     }
     }
     }
     }
     }
     if (is.null(networks)) {
     for (i in 1:length(y)) {
     if (is.null(names(y[[i]]))) {
     names(y[[i]]) <- 1:length(y[[i]])
     if (i > 1) {
     if (length(y[[i]]) != length(y[[i - 1]])) {
     stop(paste0("No names in 'y' vector at t=",
     i, ". Tried to ", "create custom names, but the length differs from ",
     "the previous time point."))
     }
     if (!all(names(y[[i]]) == names(y[[i - 1]]))) {
     stop(paste0("At t=", i, ", the names of the 'y' vector ",
     "do not match the names of the previous time step."))
     }
     }
     }
     }
     }
     if (!is.null(y)) {
     n <- length(y)
     }
     else {
     n <- length(networks)
     }
     if (!is.numeric(lag)) {
     stop("The 'lag' argument must be numeric.")
     }
     else if (length(lag) > 1) {
     stop("The 'lag' argument must be of length 1.")
     }
     else if (lag < 0) {
     stop("The 'lag' argument must be >= 0.")
     }
     else if (n - lag < 1) {
     if (n == 1) {
     stop(paste("A lag of", lag, "was specified, but there is only",
     "one time step."))
     }
     else {
     stop(paste("A lag of", lag, "was specified, but there are only",
     n, "time steps."))
     }
     }
     objects <- list()
     objects$y <- y
     objects$networks <- networks
     objects$time.steps <- n
     if (!is.null(y)) {
     objects$n <- lapply(y, length)
     objects$nodelabels <- unlist(lapply(y, names))
     }
     else {
     objects$n <- lapply(networks, nrow)
     objects$nodelabels <- unlist(lapply(networks, rownames))
     }
     names(objects$nodelabels) <- NULL
     return(objects)
    }
    <bytecode: 0x632b530>
    <environment: namespace:tnam>
     --- function search by body ---
    Function checkDataTypes in namespace tnam has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(networks[[i]]) != "matrix") { :
     the condition has length > 1
    Calls: tnam ... tnamdata -> eval -> eval -> netlag -> checkDataTypes
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc