CRAN Package Check Results for Package HotDeckImputation

Last updated on 2020-03-13 16:46:45 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1.0 5.04 21.82 26.86 ERROR
r-devel-linux-x86_64-debian-gcc 1.1.0 3.20 17.44 20.64 ERROR
r-devel-linux-x86_64-fedora-clang 1.1.0 34.30 ERROR
r-devel-linux-x86_64-fedora-gcc 1.1.0 30.34 ERROR
r-devel-windows-ix86+x86_64 1.1.0 13.00 39.00 52.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.1.0 13.00 39.00 52.00 OK
r-patched-linux-x86_64 1.1.0 3.55 19.75 23.30 OK
r-patched-solaris-x86 1.1.0 58.30 OK
r-release-linux-x86_64 1.1.0 3.59 19.78 23.37 OK
r-release-windows-ix86+x86_64 1.1.0 13.00 39.00 52.00 OK
r-release-osx-x86_64 1.1.0 OK
r-oldrel-windows-ix86+x86_64 1.1.0 10.00 37.00 47.00 OK
r-oldrel-osx-x86_64 1.1.0 OK

Check Details

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in 'HotDeckImputation-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: impute.NN_HD
    > ### Title: The Nearest Neighbor Hot Deck Algorithms
    > ### Aliases: impute.NN_HD
    > ### Keywords: NA manip optimize multivariate
    >
    > ### ** Examples
    >
    > #Set the random seed to an arbitrary number
    > set.seed(421)
    >
    > #Generate random integer matrix size 10x4
    > Y<-matrix(sample(x=1:100,size=10*4),nrow=10)
    >
    > #remove 5 values, ensuring one complete covariate and 5 donors
    > Y[-c(1:5),-1][sample(1:15,size=5)]<-NA
    >
    > #Impute using various different (arbitrarily chosen) settings
    > impute.NN_HD(DATA=Y,distance="man",weights="var")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    HotDeckImputation
     --- call from context ---
    impute.NN_HD(DATA = Y, distance = "man", weights = "var")
     --- call from argument ---
    if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data, weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
    } else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
    }
     --- R stacktrace ---
    where 1: impute.NN_HD(DATA = Y, distance = "man", weights = "var")
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (DATA = NULL, distance = "man", weights = "range", attributes = "sim",
     comp = "rw_dist", donor_limit = Inf, optimal_donor = "no",
     list_donors_recipients = NULL, diagnose = NULL)
    {
     arguements <- list(distance = distance, weights = weights,
     attributes = attributes, comp = comp, donor_limit = donor_limit,
     optimal_donor = optimal_donor, list_donors_recipients = list_donors_recipients,
     diagnose = diagnose)
     original_data <- DATA
     if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data,
     weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
     }
     else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
     }
     n <- dim(DATA)[1]
     m <- dim(DATA)[2]
     if (attributes == "sim") {
     if (is.null(list_donors_recipients)) {
     list_donors_recipients <- .create.dr_list(DATA = DATA,
     attributes = attributes)
     }
     if (!is.matrix(distance)) {
     distance <- .calculate.distancematrix(DATA = DATA,
     distance = distance, weights = weights, comp = comp,
     list_donors_recipients)
     }
     donor_limit <- .create.donorlimit(donor_limit = donor_limit,
     list_donors_recipients = list_donors_recipients)
     list_recip_donor <- .match.donor_recipient(list_donors_recipients = list_donors_recipients,
     distance = distance, optimal_donor = optimal_donor,
     donor_limit = donor_limit)
     envir <- as.environment(".GlobalEnv")
     .dump_diagnostics(diagnose = diagnose, diagnostics = list(arguements = arguements,
     distances = distance, list_donors_recipients = list_recip_donor),
     envir = envir)
     DATA <- .impute(DATA = original_data, list_recip_donor = list_recip_donor,
     recoded = recoded)
     }
     else {
     stop("Unimplemented way of handling attributes used: \"seq \"")
     }
     return(DATA)
    }
    <bytecode: 0x1d819b8>
    <environment: namespace:HotDeckImputation>
     --- function search by body ---
    Function impute.NN_HD in namespace HotDeckImputation has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(DATA) == "data.frame") { :
     the condition has length > 1
    Calls: impute.NN_HD
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘HotDeckImputation-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: impute.NN_HD
    > ### Title: The Nearest Neighbor Hot Deck Algorithms
    > ### Aliases: impute.NN_HD
    > ### Keywords: NA manip optimize multivariate
    >
    > ### ** Examples
    >
    > #Set the random seed to an arbitrary number
    > set.seed(421)
    >
    > #Generate random integer matrix size 10x4
    > Y<-matrix(sample(x=1:100,size=10*4),nrow=10)
    >
    > #remove 5 values, ensuring one complete covariate and 5 donors
    > Y[-c(1:5),-1][sample(1:15,size=5)]<-NA
    >
    > #Impute using various different (arbitrarily chosen) settings
    > impute.NN_HD(DATA=Y,distance="man",weights="var")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    HotDeckImputation
     --- call from context ---
    impute.NN_HD(DATA = Y, distance = "man", weights = "var")
     --- call from argument ---
    if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data, weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
    } else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
    }
     --- R stacktrace ---
    where 1: impute.NN_HD(DATA = Y, distance = "man", weights = "var")
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (DATA = NULL, distance = "man", weights = "range", attributes = "sim",
     comp = "rw_dist", donor_limit = Inf, optimal_donor = "no",
     list_donors_recipients = NULL, diagnose = NULL)
    {
     arguements <- list(distance = distance, weights = weights,
     attributes = attributes, comp = comp, donor_limit = donor_limit,
     optimal_donor = optimal_donor, list_donors_recipients = list_donors_recipients,
     diagnose = diagnose)
     original_data <- DATA
     if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data,
     weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
     }
     else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
     }
     n <- dim(DATA)[1]
     m <- dim(DATA)[2]
     if (attributes == "sim") {
     if (is.null(list_donors_recipients)) {
     list_donors_recipients <- .create.dr_list(DATA = DATA,
     attributes = attributes)
     }
     if (!is.matrix(distance)) {
     distance <- .calculate.distancematrix(DATA = DATA,
     distance = distance, weights = weights, comp = comp,
     list_donors_recipients)
     }
     donor_limit <- .create.donorlimit(donor_limit = donor_limit,
     list_donors_recipients = list_donors_recipients)
     list_recip_donor <- .match.donor_recipient(list_donors_recipients = list_donors_recipients,
     distance = distance, optimal_donor = optimal_donor,
     donor_limit = donor_limit)
     envir <- as.environment(".GlobalEnv")
     .dump_diagnostics(diagnose = diagnose, diagnostics = list(arguements = arguements,
     distances = distance, list_donors_recipients = list_recip_donor),
     envir = envir)
     DATA <- .impute(DATA = original_data, list_recip_donor = list_recip_donor,
     recoded = recoded)
     }
     else {
     stop("Unimplemented way of handling attributes used: \"seq \"")
     }
     return(DATA)
    }
    <bytecode: 0x5645f38522f8>
    <environment: namespace:HotDeckImputation>
     --- function search by body ---
    Function impute.NN_HD in namespace HotDeckImputation has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(DATA) == "data.frame") { :
     the condition has length > 1
    Calls: impute.NN_HD
    Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.1.0
Check: compiled code
Result: NOTE
    File ‘HotDeckImputation/libs/HotDeckImputation.so’:
     Found no calls to: ‘R_registerRoutines’, ‘R_useDynamicSymbols’
    
    It is good practice to register native routines and to disable symbol
    search.
    
    See ‘Writing portable packages’ in the ‘Writing R Extensions’ manual.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘HotDeckImputation-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: impute.NN_HD
    > ### Title: The Nearest Neighbor Hot Deck Algorithms
    > ### Aliases: impute.NN_HD
    > ### Keywords: NA manip optimize multivariate
    >
    > ### ** Examples
    >
    > #Set the random seed to an arbitrary number
    > set.seed(421)
    >
    > #Generate random integer matrix size 10x4
    > Y<-matrix(sample(x=1:100,size=10*4),nrow=10)
    >
    > #remove 5 values, ensuring one complete covariate and 5 donors
    > Y[-c(1:5),-1][sample(1:15,size=5)]<-NA
    >
    > #Impute using various different (arbitrarily chosen) settings
    > impute.NN_HD(DATA=Y,distance="man",weights="var")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    HotDeckImputation
     --- call from context ---
    impute.NN_HD(DATA = Y, distance = "man", weights = "var")
     --- call from argument ---
    if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data, weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
    } else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
    }
     --- R stacktrace ---
    where 1: impute.NN_HD(DATA = Y, distance = "man", weights = "var")
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (DATA = NULL, distance = "man", weights = "range", attributes = "sim",
     comp = "rw_dist", donor_limit = Inf, optimal_donor = "no",
     list_donors_recipients = NULL, diagnose = NULL)
    {
     arguements <- list(distance = distance, weights = weights,
     attributes = attributes, comp = comp, donor_limit = donor_limit,
     optimal_donor = optimal_donor, list_donors_recipients = list_donors_recipients,
     diagnose = diagnose)
     original_data <- DATA
     if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data,
     weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
     }
     else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
     }
     n <- dim(DATA)[1]
     m <- dim(DATA)[2]
     if (attributes == "sim") {
     if (is.null(list_donors_recipients)) {
     list_donors_recipients <- .create.dr_list(DATA = DATA,
     attributes = attributes)
     }
     if (!is.matrix(distance)) {
     distance <- .calculate.distancematrix(DATA = DATA,
     distance = distance, weights = weights, comp = comp,
     list_donors_recipients)
     }
     donor_limit <- .create.donorlimit(donor_limit = donor_limit,
     list_donors_recipients = list_donors_recipients)
     list_recip_donor <- .match.donor_recipient(list_donors_recipients = list_donors_recipients,
     distance = distance, optimal_donor = optimal_donor,
     donor_limit = donor_limit)
     envir <- as.environment(".GlobalEnv")
     .dump_diagnostics(diagnose = diagnose, diagnostics = list(arguements = arguements,
     distances = distance, list_donors_recipients = list_recip_donor),
     envir = envir)
     DATA <- .impute(DATA = original_data, list_recip_donor = list_recip_donor,
     recoded = recoded)
     }
     else {
     stop("Unimplemented way of handling attributes used: \"seq \"")
     }
     return(DATA)
    }
    <bytecode: 0x17a1840>
    <environment: namespace:HotDeckImputation>
     --- function search by body ---
    Function impute.NN_HD in namespace HotDeckImputation has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(DATA) == "data.frame") { :
     the condition has length > 1
    Calls: impute.NN_HD
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.1.0
Check: examples
Result: ERROR
    Running examples in ‘HotDeckImputation-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: impute.NN_HD
    > ### Title: The Nearest Neighbor Hot Deck Algorithms
    > ### Aliases: impute.NN_HD
    > ### Keywords: NA manip optimize multivariate
    >
    > ### ** Examples
    >
    > #Set the random seed to an arbitrary number
    > set.seed(421)
    >
    > #Generate random integer matrix size 10x4
    > Y<-matrix(sample(x=1:100,size=10*4),nrow=10)
    >
    > #remove 5 values, ensuring one complete covariate and 5 donors
    > Y[-c(1:5),-1][sample(1:15,size=5)]<-NA
    >
    > #Impute using various different (arbitrarily chosen) settings
    > impute.NN_HD(DATA=Y,distance="man",weights="var")
     ----------- FAILURE REPORT --------------
     --- failure: the condition has length > 1 ---
     --- srcref ---
    :
     --- package (from environment) ---
    HotDeckImputation
     --- call from context ---
    impute.NN_HD(DATA = Y, distance = "man", weights = "var")
     --- call from argument ---
    if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data, weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
    } else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
    }
     --- R stacktrace ---
    where 1: impute.NN_HD(DATA = Y, distance = "man", weights = "var")
    
     --- value of length: 2 type: logical ---
    [1] FALSE FALSE
     --- function from context ---
    function (DATA = NULL, distance = "man", weights = "range", attributes = "sim",
     comp = "rw_dist", donor_limit = Inf, optimal_donor = "no",
     list_donors_recipients = NULL, diagnose = NULL)
    {
     arguements <- list(distance = distance, weights = weights,
     attributes = attributes, comp = comp, donor_limit = donor_limit,
     optimal_donor = optimal_donor, list_donors_recipients = list_donors_recipients,
     diagnose = diagnose)
     original_data <- DATA
     if (class(DATA) == "data.frame") {
     DATA <- .DATA_recode(DATA)
     recoded <- TRUE
     weights <- .create.weightsvector(DATA = original_data,
     weights = weights)
     weights <- weights[DATA$weightsindex]
     DATA <- DATA$DATA_recode
     }
     else {
     DATA <- data.matrix(DATA)
     weights <- .create.weightsvector(DATA = DATA, weights = weights)
     recoded <- FALSE
     }
     n <- dim(DATA)[1]
     m <- dim(DATA)[2]
     if (attributes == "sim") {
     if (is.null(list_donors_recipients)) {
     list_donors_recipients <- .create.dr_list(DATA = DATA,
     attributes = attributes)
     }
     if (!is.matrix(distance)) {
     distance <- .calculate.distancematrix(DATA = DATA,
     distance = distance, weights = weights, comp = comp,
     list_donors_recipients)
     }
     donor_limit <- .create.donorlimit(donor_limit = donor_limit,
     list_donors_recipients = list_donors_recipients)
     list_recip_donor <- .match.donor_recipient(list_donors_recipients = list_donors_recipients,
     distance = distance, optimal_donor = optimal_donor,
     donor_limit = donor_limit)
     envir <- as.environment(".GlobalEnv")
     .dump_diagnostics(diagnose = diagnose, diagnostics = list(arguements = arguements,
     distances = distance, list_donors_recipients = list_recip_donor),
     envir = envir)
     DATA <- .impute(DATA = original_data, list_recip_donor = list_recip_donor,
     recoded = recoded)
     }
     else {
     stop("Unimplemented way of handling attributes used: \"seq \"")
     }
     return(DATA)
    }
    <bytecode: 0x2942bc0>
    <environment: namespace:HotDeckImputation>
     --- function search by body ---
    Function impute.NN_HD in namespace HotDeckImputation has this body.
     ----------- END OF FAILURE REPORT --------------
    Error in if (class(DATA) == "data.frame") { :
     the condition has length > 1
    Calls: impute.NN_HD
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc