CRAN Package Check Results for Package modelDown

Last updated on 2020-04-03 08:51:32 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.1 6.16 164.79 170.95 OK
r-devel-linux-x86_64-debian-gcc 1.0.1 5.71 138.48 144.19 OK
r-devel-linux-x86_64-fedora-clang 1.0.1 218.90 NOTE
r-devel-linux-x86_64-fedora-gcc 1.0.1 202.86 NOTE
r-devel-windows-ix86+x86_64 1.0.1 19.00 108.00 127.00 OK
r-devel-windows-ix86+x86_64-gcc8 1.0.1 16.00 117.00 133.00 OK
r-patched-linux-x86_64 1.0.1 5.75 160.66 166.41 OK
r-patched-solaris-x86 1.0.1 2072.70 ERROR
r-release-linux-x86_64 1.0.1 4.97 154.50 159.47 OK
r-release-windows-ix86+x86_64 1.0.1 13.00 116.00 129.00 OK
r-release-osx-x86_64 1.0.1 NOTE
r-oldrel-windows-ix86+x86_64 1.0.1 10.00 122.00 132.00 OK
r-oldrel-osx-x86_64 1.0.1 NOTE

Additional issues

donttest

Check Details

Version: 1.0.1
Check: dependencies in R code
Result: NOTE
    Namespaces in Imports field not imported from:
     ‘DALEX’ ‘DT’ ‘auditor’ ‘breakDown’ ‘drifter’ ‘svglite’
     All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86, r-release-osx-x86_64, r-oldrel-osx-x86_64

Version: 1.0.1
Check: tests
Result: ERROR
     Running ‘testthat.R’ [33m/10m]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(testthat)
     > library(DALEX)
     Welcome to DALEX (version: 1.0.1).
     Find examples and detailed introduction at: https://pbiecek.github.io/ema/
     Additional features will be available after installation of: iBreakDown, ggpubr.
     Use 'install_dependencies()' to get all suggested dependencies
     > library(devtools)
     Loading required package: usethis
    
     Attaching package: 'devtools'
    
     The following object is masked from 'package:testthat':
    
     test_file
    
     > library(modelDown)
     >
     > test_check("modelDown")
     Preparation of a new explainer is initiated
     -> model label : ranger ( <1b>[33m default <1b>[39m )
     -> data : 3000 rows 10 cols
     -> target variable : 3000 values
     -> data : A column identical to the target variable `y` has been found in the `data`. ( <1b>[31m WARNING <1b>[39m )
     -> data : It is highly recommended to pass `data` without the target variable column
     -> model_info : package ranger , ver. 0.12.1 , task classification ( <1b>[33m default <1b>[39m )
     -> predict function : function(model, data) { return(predict(model, data)$prediction[, 2]) }
     -> predicted values : numerical, min = 0.0002298507 , mean = 0.6682359 , max = 1
     -> residual function : difference between y and yhat ( <1b>[33m default <1b>[39m )
     -> residuals : numerical, min = -0.6657418 , mean = -0.001569269 , max = 0.7098541
     <1b>[32m A new explainer has been created! <1b>[39m
     Preparation of a new explainer is initiated
     -> model label : lm ( <1b>[33m default <1b>[39m )
     -> data : 3000 rows 10 cols
     -> target variable : 3000 values
     -> data : A column identical to the target variable `y` has been found in the `data`. ( <1b>[31m WARNING <1b>[39m )
     -> data : It is highly recommended to pass `data` without the target variable column
     -> model_info : package stats , ver. 4.0.0 , task regression ( <1b>[33m default <1b>[39m )
     -> predict function : yhat.glm will be used ( <1b>[33m default <1b>[39m )
     -> predicted values : numerical, min = 0.001706436 , mean = 0.6666667 , max = 1
     -> residual function : difference between y and yhat ( <1b>[33m default <1b>[39m )
     -> residuals : numerical, min = -0.9989112 , mean = 1.673979e-09 , max = 0.9848484
     <1b>[32m A new explainer has been created! <1b>[39m
     Preparation of a new explainer is initiated
     -> model label : lm ( <1b>[33m default <1b>[39m )
     -> data : 4000 rows 10 cols
     -> target variable : 4000 values
     -> data : A column identical to the target variable `y` has been found in the `data`. ( <1b>[31m WARNING <1b>[39m )
     -> data : It is highly recommended to pass `data` without the target variable column
     -> model_info : package stats , ver. 4.0.0 , task regression ( <1b>[33m default <1b>[39m )
     -> predict function : yhat.glm will be used ( <1b>[33m default <1b>[39m )
     -> predicted values : numerical, min = 0.001281044 , mean = 0.5 , max = 1
     -> residual function : difference between y and yhat ( <1b>[33m default <1b>[39m )
     -> residuals : numerical, min = -0.9970616 , mean = 1.253319e-09 , max = 0.9891096
     <1b>[32m A new explainer has been created! <1b>[39m
     [1] "Generating auditor..."
     [1] "Generating drifter..."
     Preparation of a new explainer is initiated
     -> model label : model_old
     -> data : 4000 rows 10 cols
     -> target variable : not specified! ( <1b>[31m WARNING <1b>[39m )
     -> model_info : package stats , ver. 4.0.0 , task regression ( <1b>[33m default <1b>[39m )
     -> predict function : predict_function
     -> predicted values : numerical, min = 0.001706436 , mean = 0.5897454 , max = 1
     -> residual function : difference between y and yhat ( <1b>[33m default <1b>[39m )
     <1b>[32m A new explainer has been created! <1b>[39m
     Preparation of a new explainer is initiated
     -> model label : model_new
     -> data : 4000 rows 10 cols
     -> target variable : not specified! ( <1b>[31m WARNING <1b>[39m )
     -> model_info : package stats , ver. 4.0.0 , task regression ( <1b>[33m default <1b>[39m )
     -> predict function : predict_function
     -> predicted values : numerical, min = 0.001706436 , mean = 0.5897454 , max = 1
     -> residual function : difference between y and yhat ( <1b>[33m default <1b>[39m )
     <1b>[32m A new explainer has been created! <1b>[39m
     [1] "Generating model_performance..."
     [1] "Generating variable_importance..."
     [1] "Generating variable_response..."
Flavor: r-patched-solaris-x86