CRAN Package Check Results for Package portes

Last updated on 2020-05-17 05:46:45 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 3.0 ERROR
r-devel-linux-x86_64-debian-gcc 3.0 6.68 61.10 67.78 ERROR
r-devel-linux-x86_64-fedora-clang 3.0 104.44 ERROR
r-devel-linux-x86_64-fedora-gcc 3.0 103.10 ERROR
r-devel-windows-ix86+x86_64 3.0 24.00 148.00 172.00 OK
r-patched-linux-x86_64 3.0 8.54 78.83 87.37 ERROR
r-patched-solaris-x86 3.0 140.70 ERROR
r-release-linux-x86_64 3.0 9.42 78.20 87.62 ERROR
r-release-osx-x86_64 3.0 OK
r-release-windows-ix86+x86_64 3.0 37.00 149.00 186.00 OK
r-oldrel-osx-x86_64 3.0 OK
r-oldrel-windows-ix86+x86_64 3.0 14.00 98.00 112.00 OK

Check Details

Version: 3.0
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: 'TSA'
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-patched-solaris-x86, r-release-linux-x86_64

Version: 3.0
Check: Rd cross-references
Result: NOTE
    Unknown package 'TSA' in Rd xrefs
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-release-linux-x86_64

Version: 3.0
Check: examples
Result: ERROR
    Running examples in 'portes-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: BoxPierce
    > ### Title: The Univariate-Multivariate Box and Pierce Portmanteau Test
    > ### Aliases: BoxPierce
    > ### Keywords: Portmanteau Test
    >
    > ### ** Examples
    >
    > x <- rnorm(100)
    > BoxPierce(x) ## univariate test
     lags statistic df p-value
     5 3.365573 5 0.6438184
     10 5.656600 10 0.8432421
     15 6.411116 15 0.9719842
     20 10.784097 20 0.9516304
     25 14.805770 25 0.9458056
     30 18.070877 30 0.9573747
    > x <- cbind(rnorm(100),rnorm(100))
    > BoxPierce(x) ## multivariate test
     lags statistic df p-value
     5 21.57526 20 0.3639953
     10 46.56519 40 0.2203640
     15 68.17104 60 0.2192425
     20 80.06079 80 0.4770587
     25 93.89001 100 0.6531214
     30 109.78629 120 0.7374883
    > ##
    > ##
    > ## Annual flow of the river Nile at Aswan - 1871 to 1970
    > fit <- arima(Nile, c(1, 0, 1))
    > lags <- c(5, 10, 20)
    > ## Apply the univariate test statistic on the fitted model
    > BoxPierce(fit, lags) ## Correct (no need to specify order)
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > BoxPierce(fit, lags, order = 2) ## Correct
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > ## Apply the test statistic on the residuals and set order = 2
    > res <- resid(fit)
    > BoxPierce(res, lags) ## Wrong (order is needed!)
     lags statistic df p-value
     5 1.278883 5 0.9370895
     10 9.002228 10 0.5318922
     20 12.767895 20 0.8871190
    > BoxPierce(res, lags, order = 2) ## Correct
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > ##
    > ##
    > ## Quarterly, west German investment, income, and consumption from 1960 Q1 to 1982 Q4
    > data(WestGerman)
    > DiffData <- matrix(numeric(3 * 91), ncol = 3)
    > for (i in 1:3)
    + DiffData[, i] <- diff(log(WestGerman[, i]), lag = 1)
    > fit <- ar.ols(DiffData, intercept = TRUE, order.max = 2)
    > lags <- c(5,10)
    > ## Apply the test statistic on the fitted model
    > BoxPierce(fit,lags) ## Correct (no need to specify order)
     lags statistic df p-value
     5 29.13889 27 0.3541968
     10 66.82771 72 0.6502032
    > ## Apply the test statistic on the residuals where order = 2
    > res <- ts((fit$resid)[-(1:2), ])
    > BoxPierce(res,lags) ## Wrong (order is needed!)
     lags statistic df p-value
     5 29.13889 45 0.9678196
     10 66.82771 90 0.9679689
    > BoxPierce(res,lags,order = 2) ## Correct
     lags statistic df p-value
     5 29.13889 27 0.3541968
     10 66.82771 72 0.6502032
    > ##
    > ##
    > ## Monthly log stock returns of Intel corporation data: Test for ARCH Effects
    > monthintel <- as.ts(monthintel)
    > BoxPierce(monthintel) ## Usual test
     lags statistic df p-value
     5 4.666889 5 0.45786938
     10 14.364748 10 0.15699489
     15 23.120348 15 0.08161787
     20 24.000123 20 0.24238680
     25 29.617977 25 0.23891229
     30 31.943703 30 0.37015020
    > BoxPierce(monthintel,squared.residuals=TRUE) ## Test for ARCH effects
     lags statistic df p-value
     5 40.78073 5 1.039009e-07
     10 49.57872 10 3.189915e-07
     15 81.90133 15 3.131517e-11
     20 86.50575 20 3.006796e-10
     25 87.54737 25 7.161478e-09
     30 88.55017 30 1.087505e-07
    > ##
    > ##
    > ## Test for seasonality
    > ## Accidental Deaths in the US 1973 - 1978
    > seasonal.arima <- arima(USAccDeaths, order = c(0,1,1), seasonal = list(order = c(0,1,1)))
    > BoxPierce(seasonal.arima, lags = 5, season = 12)
     lags statistic df p-value
     5 0.5845238 3 0.899966
    > ## Quarterly U.K. economic time series from 1957 Q3 to 1967 Q4
    > cd <- EconomicUK[,1]
    > cd.fit <- arima(cd,order=c(0,1,0),seasonal=list(order=c(0,1,1),period=4))
    > BoxPierce(cd.fit, lags = c(5,10), season = 4)
     lags statistic df p-value
     5 1.307341 4 0.8601288
     10 1.918594 9 0.9926904
    > ##
    > ##
    > #### Write a function to fit a model: Apply portmanteau test on fitted obj with class "list"
    > ## Example 1
    > require("FitAR")
    Loading required package: FitAR
    Loading required package: lattice
    Loading required package: leaps
    Loading required package: ltsa
    Loading required package: bestglm
    
    Attaching package: 'FitAR'
    
    The following object is masked from 'package:forecast':
    
     BoxCox
    
    > FitModel <- function(data){
    + fit <- FitAR(z=data,p=2)
    + p <- length(fit$phiHat)
    + order <- p
    + res <- fit$res
    + list(res=res,order=order)
    + }
    > Fit <- FitModel(Nile)
    > BoxPierce(Fit)
     lags statistic df p-value
     5 1.158604 3 0.7629488
     10 9.847560 8 0.2758887
     15 13.158988 13 0.4356074
     20 15.144813 18 0.6520008
     25 16.276022 23 0.8432003
     30 19.215107 28 0.8913678
    > detach(package:FitAR)
    > ##
    > ## Example 2
    > require("TSA")
    Loading required package: TSA
    Warning in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
     there is no package called 'TSA'
    > FitModel <- function(data){
    + fit <- TSA::tar(y=log(data),p1=4,p2=4,d=3,a=0.1,b=0.9,print=FALSE)
    + res <- ts(fit$std.res)
    + p1 <- fit$p1
    + p2 <- fit$p2
    + order <- max(p1, p2)
    + parSpec <- list(res=res,order=order)
    + parSpec
    + }
    > data(prey.eq)
    Warning in data(prey.eq) : data set 'prey.eq' not found
    > Fit <- FitModel(prey.eq)
    Error in loadNamespace(name) : there is no package called 'TSA'
    Calls: FitModel ... loadNamespace -> withRestarts -> withOneRestart -> doWithOneRestart
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64

Version: 3.0
Check: examples
Result: ERROR
    Running examples in ‘portes-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: BoxPierce
    > ### Title: The Univariate-Multivariate Box and Pierce Portmanteau Test
    > ### Aliases: BoxPierce
    > ### Keywords: Portmanteau Test
    >
    > ### ** Examples
    >
    > x <- rnorm(100)
    > BoxPierce(x) ## univariate test
     lags statistic df p-value
     5 3.365573 5 0.6438184
     10 5.656600 10 0.8432421
     15 6.411116 15 0.9719842
     20 10.784097 20 0.9516304
     25 14.805770 25 0.9458056
     30 18.070877 30 0.9573747
    > x <- cbind(rnorm(100),rnorm(100))
    > BoxPierce(x) ## multivariate test
     lags statistic df p-value
     5 21.57526 20 0.3639953
     10 46.56519 40 0.2203640
     15 68.17104 60 0.2192425
     20 80.06079 80 0.4770587
     25 93.89001 100 0.6531214
     30 109.78629 120 0.7374883
    > ##
    > ##
    > ## Annual flow of the river Nile at Aswan - 1871 to 1970
    > fit <- arima(Nile, c(1, 0, 1))
    > lags <- c(5, 10, 20)
    > ## Apply the univariate test statistic on the fitted model
    > BoxPierce(fit, lags) ## Correct (no need to specify order)
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > BoxPierce(fit, lags, order = 2) ## Correct
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > ## Apply the test statistic on the residuals and set order = 2
    > res <- resid(fit)
    > BoxPierce(res, lags) ## Wrong (order is needed!)
     lags statistic df p-value
     5 1.278883 5 0.9370895
     10 9.002228 10 0.5318922
     20 12.767895 20 0.8871190
    > BoxPierce(res, lags, order = 2) ## Correct
     lags statistic df p-value
     5 1.278883 3 0.7341534
     10 9.002228 8 0.3421081
     20 12.767895 18 0.8051730
    > ##
    > ##
    > ## Quarterly, west German investment, income, and consumption from 1960 Q1 to 1982 Q4
    > data(WestGerman)
    > DiffData <- matrix(numeric(3 * 91), ncol = 3)
    > for (i in 1:3)
    + DiffData[, i] <- diff(log(WestGerman[, i]), lag = 1)
    > fit <- ar.ols(DiffData, intercept = TRUE, order.max = 2)
    > lags <- c(5,10)
    > ## Apply the test statistic on the fitted model
    > BoxPierce(fit,lags) ## Correct (no need to specify order)
     lags statistic df p-value
     5 29.13889 27 0.3541968
     10 66.82771 72 0.6502032
    > ## Apply the test statistic on the residuals where order = 2
    > res <- ts((fit$resid)[-(1:2), ])
    > BoxPierce(res,lags) ## Wrong (order is needed!)
     lags statistic df p-value
     5 29.13889 45 0.9678196
     10 66.82771 90 0.9679689
    > BoxPierce(res,lags,order = 2) ## Correct
     lags statistic df p-value
     5 29.13889 27 0.3541968
     10 66.82771 72 0.6502032
    > ##
    > ##
    > ## Monthly log stock returns of Intel corporation data: Test for ARCH Effects
    > monthintel <- as.ts(monthintel)
    > BoxPierce(monthintel) ## Usual test
     lags statistic df p-value
     5 4.666889 5 0.45786938
     10 14.364748 10 0.15699489
     15 23.120348 15 0.08161787
     20 24.000123 20 0.24238680
     25 29.617977 25 0.23891229
     30 31.943703 30 0.37015020
    > BoxPierce(monthintel,squared.residuals=TRUE) ## Test for ARCH effects
     lags statistic df p-value
     5 40.78073 5 1.039009e-07
     10 49.57872 10 3.189915e-07
     15 81.90133 15 3.131517e-11
     20 86.50575 20 3.006796e-10
     25 87.54737 25 7.161478e-09
     30 88.55017 30 1.087505e-07
    > ##
    > ##
    > ## Test for seasonality
    > ## Accidental Deaths in the US 1973 - 1978
    > seasonal.arima <- arima(USAccDeaths, order = c(0,1,1), seasonal = list(order = c(0,1,1)))
    > BoxPierce(seasonal.arima, lags = 5, season = 12)
     lags statistic df p-value
     5 0.5845238 3 0.899966
    > ## Quarterly U.K. economic time series from 1957 Q3 to 1967 Q4
    > cd <- EconomicUK[,1]
    > cd.fit <- arima(cd,order=c(0,1,0),seasonal=list(order=c(0,1,1),period=4))
    > BoxPierce(cd.fit, lags = c(5,10), season = 4)
     lags statistic df p-value
     5 1.307341 4 0.8601288
     10 1.918594 9 0.9926904
    > ##
    > ##
    > #### Write a function to fit a model: Apply portmanteau test on fitted obj with class "list"
    > ## Example 1
    > require("FitAR")
    Loading required package: FitAR
    Loading required package: lattice
    Loading required package: leaps
    Loading required package: ltsa
    Loading required package: bestglm
    
    Attaching package: ‘FitAR’
    
    The following object is masked from ‘package:forecast’:
    
     BoxCox
    
    > FitModel <- function(data){
    + fit <- FitAR(z=data,p=2)
    + p <- length(fit$phiHat)
    + order <- p
    + res <- fit$res
    + list(res=res,order=order)
    + }
    > Fit <- FitModel(Nile)
    > BoxPierce(Fit)
     lags statistic df p-value
     5 1.158604 3 0.7629488
     10 9.847560 8 0.2758887
     15 13.158988 13 0.4356074
     20 15.144813 18 0.6520008
     25 16.276022 23 0.8432003
     30 19.215107 28 0.8913678
    > detach(package:FitAR)
    > ##
    > ## Example 2
    > require("TSA")
    Loading required package: TSA
    Warning in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
     there is no package called ‘TSA’
    > FitModel <- function(data){
    + fit <- TSA::tar(y=log(data),p1=4,p2=4,d=3,a=0.1,b=0.9,print=FALSE)
    + res <- ts(fit$std.res)
    + p1 <- fit$p1
    + p2 <- fit$p2
    + order <- max(p1, p2)
    + parSpec <- list(res=res,order=order)
    + parSpec
    + }
    > data(prey.eq)
    Warning in data(prey.eq) : data set ‘prey.eq’ not found
    > Fit <- FitModel(prey.eq)
    Error in loadNamespace(name) : there is no package called ‘TSA’
    Calls: FitModel ... loadNamespace -> withRestarts -> withOneRestart -> doWithOneRestart
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86