CRAN Package Check Results for Package FDboost

Last updated on 2020-05-29 10:47:21 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.3-2 18.93 200.70 219.63 ERROR
r-devel-linux-x86_64-debian-gcc 0.3-2 15.19 155.66 170.85 ERROR
r-devel-linux-x86_64-fedora-clang 0.3-2 283.10 ERROR
r-devel-linux-x86_64-fedora-gcc 0.3-2 265.70 ERROR
r-devel-windows-ix86+x86_64 0.3-2 40.00 279.00 319.00 ERROR
r-patched-linux-x86_64 0.3-2 16.70 206.88 223.58 OK
r-patched-solaris-x86 0.3-2 392.00 OK
r-release-linux-x86_64 0.3-2 19.10 205.45 224.55 OK
r-release-osx-x86_64 0.3-2 OK
r-release-windows-ix86+x86_64 0.3-2 32.00 215.00 247.00 OK
r-oldrel-osx-x86_64 0.3-2 OK
r-oldrel-windows-ix86+x86_64 0.3-2 26.00 224.00 250.00 OK

Check Details

Version: 0.3-2
Check: tests
Result: ERROR
     Running 'general_tests.R' [9s/9s]
    Running the tests in 'tests/general_tests.R' failed.
    Complete output:
     >
     >
     > library(FDboost)
     Loading required package: mboost
     Loading required package: parallel
     Loading required package: stabs
     This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
     for a complete list of changes.
    
     This is FDboost 0.3-2.
     >
     > ################################################################
     > ######### simulate some data
     >
     > if(require(refund)){
     +
     + ## simulate a small data set
     + set.seed(230)
     + pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
     + pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
     +
     + dat <- as.list(pffr_data)
     + dat$tvals <- attr(pffr_data, "yindex")
     + dat$svals <- attr(pffr_data, "xindex")
     +
     + dat$Y_scalar <- dat$Y[ , 10]
     +
     + dat$Y_long <- c(dat$Y)
     + dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
     + dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
     +
     +
     + ################################################################
     + ######### model fit
     +
     + ## response matrix for response observed on one common grid
     + m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## response in long format
     + ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
     + id = ~ id_long,
     + offset_control = o_control(k_min = 10),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## scalar response
     + ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
     + + bbs(xsmoo, knots = 6, df = 2, differences = 1)
     + + bols(xte1, df = 2)
     + + bols(xte2, df = 2),
     + timeformula = NULL,
     + control = boost_control(mstop = 50), data = dat)
     +
     + ## GAMLSS with functional response
     + mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat,
     + method = "noncyclic")
     +
     +
     + ################################################################
     + ######### test some methods and utility functions
     +
     + ## test plot()
     + par(mfrow = c(1,1))
     + plot(m, ask = FALSE)
     + plot(ml, ask = FALSE)
     + plot(ms, ask = FALSE)
     + plot(mlss$mu, ask = FALSE)
     + plot(mlss$sigma, ask = FALSE)
     +
     + ## test applyFolds()
     + set.seed(123)
     + applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
     + applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
     + applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
     +
     + ## test cvrisk()
     + set.seed(123)
     + cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
     + cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
     + cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
     + cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
     + grid = 1:5, trace = FALSE)
     +
     +
     + }
     Loading required package: refund
     Use a smooth offset.
     Use a smooth offset for irregular data.
     No smooth offsets over time are used, just global scalar offsets.
     No integration weights are used to compute the loss for the functional response.
     ..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
     All folds encountered an error.
     Original error message(s):
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     In addition: Warning messages:
     1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
     2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
     3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
     2 function calls resulted in an error
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.3-2
Check: tests
Result: ERROR
     Running ‘general_tests.R’ [7s/9s]
    Running the tests in ‘tests/general_tests.R’ failed.
    Complete output:
     >
     >
     > library(FDboost)
     Loading required package: mboost
     Loading required package: parallel
     Loading required package: stabs
     This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
     for a complete list of changes.
    
     This is FDboost 0.3-2.
     >
     > ################################################################
     > ######### simulate some data
     >
     > if(require(refund)){
     +
     + ## simulate a small data set
     + set.seed(230)
     + pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
     + pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
     +
     + dat <- as.list(pffr_data)
     + dat$tvals <- attr(pffr_data, "yindex")
     + dat$svals <- attr(pffr_data, "xindex")
     +
     + dat$Y_scalar <- dat$Y[ , 10]
     +
     + dat$Y_long <- c(dat$Y)
     + dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
     + dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
     +
     +
     + ################################################################
     + ######### model fit
     +
     + ## response matrix for response observed on one common grid
     + m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## response in long format
     + ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
     + id = ~ id_long,
     + offset_control = o_control(k_min = 10),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## scalar response
     + ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
     + + bbs(xsmoo, knots = 6, df = 2, differences = 1)
     + + bols(xte1, df = 2)
     + + bols(xte2, df = 2),
     + timeformula = NULL,
     + control = boost_control(mstop = 50), data = dat)
     +
     + ## GAMLSS with functional response
     + mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat,
     + method = "noncyclic")
     +
     +
     + ################################################################
     + ######### test some methods and utility functions
     +
     + ## test plot()
     + par(mfrow = c(1,1))
     + plot(m, ask = FALSE)
     + plot(ml, ask = FALSE)
     + plot(ms, ask = FALSE)
     + plot(mlss$mu, ask = FALSE)
     + plot(mlss$sigma, ask = FALSE)
     +
     + ## test applyFolds()
     + set.seed(123)
     + applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
     + applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
     + applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
     +
     + ## test cvrisk()
     + set.seed(123)
     + cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
     + cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
     + cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
     + cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
     + grid = 1:5, trace = FALSE)
     +
     +
     + }
     Loading required package: refund
     Use a smooth offset.
     Use a smooth offset for irregular data.
     No smooth offsets over time are used, just global scalar offsets.
     No integration weights are used to compute the loss for the functional response.
     ..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
     All folds encountered an error.
     Original error message(s):
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     In addition: Warning messages:
     1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
     2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
     3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
     2 function calls resulted in an error
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3-2
Check: tests
Result: ERROR
     Running ‘general_tests.R’ [11s/18s]
    Running the tests in ‘tests/general_tests.R’ failed.
    Complete output:
     >
     >
     > library(FDboost)
     Loading required package: mboost
     Loading required package: parallel
     Loading required package: stabs
     This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
     for a complete list of changes.
    
     This is FDboost 0.3-2.
     >
     > ################################################################
     > ######### simulate some data
     >
     > if(require(refund)){
     +
     + ## simulate a small data set
     + set.seed(230)
     + pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
     + pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
     +
     + dat <- as.list(pffr_data)
     + dat$tvals <- attr(pffr_data, "yindex")
     + dat$svals <- attr(pffr_data, "xindex")
     +
     + dat$Y_scalar <- dat$Y[ , 10]
     +
     + dat$Y_long <- c(dat$Y)
     + dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
     + dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
     +
     +
     + ################################################################
     + ######### model fit
     +
     + ## response matrix for response observed on one common grid
     + m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## response in long format
     + ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
     + id = ~ id_long,
     + offset_control = o_control(k_min = 10),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## scalar response
     + ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
     + + bbs(xsmoo, knots = 6, df = 2, differences = 1)
     + + bols(xte1, df = 2)
     + + bols(xte2, df = 2),
     + timeformula = NULL,
     + control = boost_control(mstop = 50), data = dat)
     +
     + ## GAMLSS with functional response
     + mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat,
     + method = "noncyclic")
     +
     +
     + ################################################################
     + ######### test some methods and utility functions
     +
     + ## test plot()
     + par(mfrow = c(1,1))
     + plot(m, ask = FALSE)
     + plot(ml, ask = FALSE)
     + plot(ms, ask = FALSE)
     + plot(mlss$mu, ask = FALSE)
     + plot(mlss$sigma, ask = FALSE)
     +
     + ## test applyFolds()
     + set.seed(123)
     + applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
     + applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
     + applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
     +
     + ## test cvrisk()
     + set.seed(123)
     + cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
     + cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
     + cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
     + cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
     + grid = 1:5, trace = FALSE)
     +
     +
     + }
     Loading required package: refund
     Use a smooth offset.
     Use a smooth offset for irregular data.
     No smooth offsets over time are used, just global scalar offsets.
     No integration weights are used to compute the loss for the functional response.
     ..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
     All folds encountered an error.
     Original error message(s):
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     In addition: Warning messages:
     1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
     2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
     3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
     2 function calls resulted in an error
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.3-2
Check: tests
Result: ERROR
     Running ‘general_tests.R’ [11s/13s]
    Running the tests in ‘tests/general_tests.R’ failed.
    Complete output:
     >
     >
     > library(FDboost)
     Loading required package: mboost
     Loading required package: parallel
     Loading required package: stabs
     This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
     for a complete list of changes.
    
     This is FDboost 0.3-2.
     >
     > ################################################################
     > ######### simulate some data
     >
     > if(require(refund)){
     +
     + ## simulate a small data set
     + set.seed(230)
     + pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
     + pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
     +
     + dat <- as.list(pffr_data)
     + dat$tvals <- attr(pffr_data, "yindex")
     + dat$svals <- attr(pffr_data, "xindex")
     +
     + dat$Y_scalar <- dat$Y[ , 10]
     +
     + dat$Y_long <- c(dat$Y)
     + dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
     + dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
     +
     +
     + ################################################################
     + ######### model fit
     +
     + ## response matrix for response observed on one common grid
     + m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## response in long format
     + ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
     + id = ~ id_long,
     + offset_control = o_control(k_min = 10),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## scalar response
     + ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
     + + bbs(xsmoo, knots = 6, df = 2, differences = 1)
     + + bols(xte1, df = 2)
     + + bols(xte2, df = 2),
     + timeformula = NULL,
     + control = boost_control(mstop = 50), data = dat)
     +
     + ## GAMLSS with functional response
     + mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat,
     + method = "noncyclic")
     +
     +
     + ################################################################
     + ######### test some methods and utility functions
     +
     + ## test plot()
     + par(mfrow = c(1,1))
     + plot(m, ask = FALSE)
     + plot(ml, ask = FALSE)
     + plot(ms, ask = FALSE)
     + plot(mlss$mu, ask = FALSE)
     + plot(mlss$sigma, ask = FALSE)
     +
     + ## test applyFolds()
     + set.seed(123)
     + applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
     + applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
     + applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
     +
     + ## test cvrisk()
     + set.seed(123)
     + cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
     + cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
     + cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
     + cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
     + grid = 1:5, trace = FALSE)
     +
     +
     + }
     Loading required package: refund
     Use a smooth offset.
     Use a smooth offset for irregular data.
     No smooth offsets over time are used, just global scalar offsets.
     No integration weights are used to compute the loss for the functional response.
     ..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
     All folds encountered an error.
     Original error message(s):
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     In addition: Warning messages:
     1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
     2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
     3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
     2 function calls resulted in an error
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.3-2
Check: tests
Result: ERROR
     Running 'general_tests.R' [10s]
    Running the tests in 'tests/general_tests.R' failed.
    Complete output:
     >
     >
     > library(FDboost)
     Loading required package: mboost
     Loading required package: parallel
     Loading required package: stabs
     This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
     for a complete list of changes.
    
     This is FDboost 0.3-2.
     >
     > ################################################################
     > ######### simulate some data
     >
     > if(require(refund)){
     +
     + ## simulate a small data set
     + set.seed(230)
     + pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
     + pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
     +
     + dat <- as.list(pffr_data)
     + dat$tvals <- attr(pffr_data, "yindex")
     + dat$svals <- attr(pffr_data, "xindex")
     +
     + dat$Y_scalar <- dat$Y[ , 10]
     +
     + dat$Y_long <- c(dat$Y)
     + dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
     + dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
     +
     +
     + ################################################################
     + ######### model fit
     +
     + ## response matrix for response observed on one common grid
     + m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## response in long format
     + ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
     + + bsignal(X1, svals, knots = 6, df = 4)
     + + bbsc(xsmoo, knots = 6, df = 4)
     + + bolsc(xte1, df = 4)
     + + brandomc(xte2, df = 4),
     + timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
     + id = ~ id_long,
     + offset_control = o_control(k_min = 10),
     + control = boost_control(mstop = 10), data = dat)
     +
     + ## scalar response
     + ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
     + + bbs(xsmoo, knots = 6, df = 2, differences = 1)
     + + bols(xte1, df = 2)
     + + bols(xte2, df = 2),
     + timeformula = NULL,
     + control = boost_control(mstop = 50), data = dat)
     +
     + ## GAMLSS with functional response
     + mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
     + timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
     + control = boost_control(mstop = 10), data = dat,
     + method = "noncyclic")
     +
     +
     + ################################################################
     + ######### test some methods and utility functions
     +
     + ## test plot()
     + par(mfrow = c(1,1))
     + plot(m, ask = FALSE)
     + plot(ml, ask = FALSE)
     + plot(ms, ask = FALSE)
     + plot(mlss$mu, ask = FALSE)
     + plot(mlss$sigma, ask = FALSE)
     +
     + ## test applyFolds()
     + set.seed(123)
     + applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
     + applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
     + applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
     +
     + ## test cvrisk()
     + set.seed(123)
     + cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
     + cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
     + cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
     + cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
     + grid = 1:5, trace = FALSE)
     +
     +
     + }
     Loading required package: refund
     Use a smooth offset.
     Use a smooth offset for irregular data.
     No smooth offsets over time are used, just global scalar offsets.
     No integration weights are used to compute the loss for the functional response.
     ..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
     All folds encountered an error.
     Original error message(s):
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
     id has to be integers 1, 2, 3,..., N.
     In addition: Warning messages:
     1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
     2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
     3: In df2lambda(X, df = args$df, lambda = args$lambda, dmat = K, weights = w, :
     estimated degrees of freedom differ from 'df' by -1.25920418980741e-07
     4: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by 1.55844865901145e-08
     5: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
     estimated degrees of freedom differ from 'df' by -1.75215468800616e-08
     Execution halted
Flavor: r-devel-windows-ix86+x86_64