Last updated on 2020-05-29 10:47:21 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.3-2 | 18.93 | 200.70 | 219.63 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.3-2 | 15.19 | 155.66 | 170.85 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.3-2 | 283.10 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.3-2 | 265.70 | ERROR | |||
r-devel-windows-ix86+x86_64 | 0.3-2 | 40.00 | 279.00 | 319.00 | ERROR | |
r-patched-linux-x86_64 | 0.3-2 | 16.70 | 206.88 | 223.58 | OK | |
r-patched-solaris-x86 | 0.3-2 | 392.00 | OK | |||
r-release-linux-x86_64 | 0.3-2 | 19.10 | 205.45 | 224.55 | OK | |
r-release-osx-x86_64 | 0.3-2 | OK | ||||
r-release-windows-ix86+x86_64 | 0.3-2 | 32.00 | 215.00 | 247.00 | OK | |
r-oldrel-osx-x86_64 | 0.3-2 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 0.3-2 | 26.00 | 224.00 | 250.00 | OK |
Version: 0.3-2
Check: tests
Result: ERROR
Running 'general_tests.R' [9s/9s]
Running the tests in 'tests/general_tests.R' failed.
Complete output:
>
>
> library(FDboost)
Loading required package: mboost
Loading required package: parallel
Loading required package: stabs
This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
for a complete list of changes.
This is FDboost 0.3-2.
>
> ################################################################
> ######### simulate some data
>
> if(require(refund)){
+
+ ## simulate a small data set
+ set.seed(230)
+ pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
+ pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
+
+ dat <- as.list(pffr_data)
+ dat$tvals <- attr(pffr_data, "yindex")
+ dat$svals <- attr(pffr_data, "xindex")
+
+ dat$Y_scalar <- dat$Y[ , 10]
+
+ dat$Y_long <- c(dat$Y)
+ dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
+ dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
+
+
+ ################################################################
+ ######### model fit
+
+ ## response matrix for response observed on one common grid
+ m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## response in long format
+ ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
+ id = ~ id_long,
+ offset_control = o_control(k_min = 10),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## scalar response
+ ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
+ + bbs(xsmoo, knots = 6, df = 2, differences = 1)
+ + bols(xte1, df = 2)
+ + bols(xte2, df = 2),
+ timeformula = NULL,
+ control = boost_control(mstop = 50), data = dat)
+
+ ## GAMLSS with functional response
+ mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat,
+ method = "noncyclic")
+
+
+ ################################################################
+ ######### test some methods and utility functions
+
+ ## test plot()
+ par(mfrow = c(1,1))
+ plot(m, ask = FALSE)
+ plot(ml, ask = FALSE)
+ plot(ms, ask = FALSE)
+ plot(mlss$mu, ask = FALSE)
+ plot(mlss$sigma, ask = FALSE)
+
+ ## test applyFolds()
+ set.seed(123)
+ applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
+ applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
+ applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
+
+ ## test cvrisk()
+ set.seed(123)
+ cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
+ cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
+ cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
+ cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
+ grid = 1:5, trace = FALSE)
+
+
+ }
Loading required package: refund
Use a smooth offset.
Use a smooth offset for irregular data.
No smooth offsets over time are used, just global scalar offsets.
No integration weights are used to compute the loss for the functional response.
..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
All folds encountered an error.
Original error message(s):
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
In addition: Warning messages:
1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
2 function calls resulted in an error
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.3-2
Check: tests
Result: ERROR
Running ‘general_tests.R’ [7s/9s]
Running the tests in ‘tests/general_tests.R’ failed.
Complete output:
>
>
> library(FDboost)
Loading required package: mboost
Loading required package: parallel
Loading required package: stabs
This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
for a complete list of changes.
This is FDboost 0.3-2.
>
> ################################################################
> ######### simulate some data
>
> if(require(refund)){
+
+ ## simulate a small data set
+ set.seed(230)
+ pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
+ pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
+
+ dat <- as.list(pffr_data)
+ dat$tvals <- attr(pffr_data, "yindex")
+ dat$svals <- attr(pffr_data, "xindex")
+
+ dat$Y_scalar <- dat$Y[ , 10]
+
+ dat$Y_long <- c(dat$Y)
+ dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
+ dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
+
+
+ ################################################################
+ ######### model fit
+
+ ## response matrix for response observed on one common grid
+ m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## response in long format
+ ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
+ id = ~ id_long,
+ offset_control = o_control(k_min = 10),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## scalar response
+ ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
+ + bbs(xsmoo, knots = 6, df = 2, differences = 1)
+ + bols(xte1, df = 2)
+ + bols(xte2, df = 2),
+ timeformula = NULL,
+ control = boost_control(mstop = 50), data = dat)
+
+ ## GAMLSS with functional response
+ mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat,
+ method = "noncyclic")
+
+
+ ################################################################
+ ######### test some methods and utility functions
+
+ ## test plot()
+ par(mfrow = c(1,1))
+ plot(m, ask = FALSE)
+ plot(ml, ask = FALSE)
+ plot(ms, ask = FALSE)
+ plot(mlss$mu, ask = FALSE)
+ plot(mlss$sigma, ask = FALSE)
+
+ ## test applyFolds()
+ set.seed(123)
+ applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
+ applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
+ applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
+
+ ## test cvrisk()
+ set.seed(123)
+ cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
+ cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
+ cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
+ cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
+ grid = 1:5, trace = FALSE)
+
+
+ }
Loading required package: refund
Use a smooth offset.
Use a smooth offset for irregular data.
No smooth offsets over time are used, just global scalar offsets.
No integration weights are used to compute the loss for the functional response.
..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
All folds encountered an error.
Original error message(s):
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
In addition: Warning messages:
1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
2 function calls resulted in an error
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.3-2
Check: tests
Result: ERROR
Running ‘general_tests.R’ [11s/18s]
Running the tests in ‘tests/general_tests.R’ failed.
Complete output:
>
>
> library(FDboost)
Loading required package: mboost
Loading required package: parallel
Loading required package: stabs
This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
for a complete list of changes.
This is FDboost 0.3-2.
>
> ################################################################
> ######### simulate some data
>
> if(require(refund)){
+
+ ## simulate a small data set
+ set.seed(230)
+ pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
+ pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
+
+ dat <- as.list(pffr_data)
+ dat$tvals <- attr(pffr_data, "yindex")
+ dat$svals <- attr(pffr_data, "xindex")
+
+ dat$Y_scalar <- dat$Y[ , 10]
+
+ dat$Y_long <- c(dat$Y)
+ dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
+ dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
+
+
+ ################################################################
+ ######### model fit
+
+ ## response matrix for response observed on one common grid
+ m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## response in long format
+ ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
+ id = ~ id_long,
+ offset_control = o_control(k_min = 10),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## scalar response
+ ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
+ + bbs(xsmoo, knots = 6, df = 2, differences = 1)
+ + bols(xte1, df = 2)
+ + bols(xte2, df = 2),
+ timeformula = NULL,
+ control = boost_control(mstop = 50), data = dat)
+
+ ## GAMLSS with functional response
+ mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat,
+ method = "noncyclic")
+
+
+ ################################################################
+ ######### test some methods and utility functions
+
+ ## test plot()
+ par(mfrow = c(1,1))
+ plot(m, ask = FALSE)
+ plot(ml, ask = FALSE)
+ plot(ms, ask = FALSE)
+ plot(mlss$mu, ask = FALSE)
+ plot(mlss$sigma, ask = FALSE)
+
+ ## test applyFolds()
+ set.seed(123)
+ applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
+ applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
+ applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
+
+ ## test cvrisk()
+ set.seed(123)
+ cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
+ cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
+ cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
+ cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
+ grid = 1:5, trace = FALSE)
+
+
+ }
Loading required package: refund
Use a smooth offset.
Use a smooth offset for irregular data.
No smooth offsets over time are used, just global scalar offsets.
No integration weights are used to compute the loss for the functional response.
..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
All folds encountered an error.
Original error message(s):
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
In addition: Warning messages:
1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
2 function calls resulted in an error
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.3-2
Check: tests
Result: ERROR
Running ‘general_tests.R’ [11s/13s]
Running the tests in ‘tests/general_tests.R’ failed.
Complete output:
>
>
> library(FDboost)
Loading required package: mboost
Loading required package: parallel
Loading required package: stabs
This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
for a complete list of changes.
This is FDboost 0.3-2.
>
> ################################################################
> ######### simulate some data
>
> if(require(refund)){
+
+ ## simulate a small data set
+ set.seed(230)
+ pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
+ pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
+
+ dat <- as.list(pffr_data)
+ dat$tvals <- attr(pffr_data, "yindex")
+ dat$svals <- attr(pffr_data, "xindex")
+
+ dat$Y_scalar <- dat$Y[ , 10]
+
+ dat$Y_long <- c(dat$Y)
+ dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
+ dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
+
+
+ ################################################################
+ ######### model fit
+
+ ## response matrix for response observed on one common grid
+ m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## response in long format
+ ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
+ id = ~ id_long,
+ offset_control = o_control(k_min = 10),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## scalar response
+ ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
+ + bbs(xsmoo, knots = 6, df = 2, differences = 1)
+ + bols(xte1, df = 2)
+ + bols(xte2, df = 2),
+ timeformula = NULL,
+ control = boost_control(mstop = 50), data = dat)
+
+ ## GAMLSS with functional response
+ mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat,
+ method = "noncyclic")
+
+
+ ################################################################
+ ######### test some methods and utility functions
+
+ ## test plot()
+ par(mfrow = c(1,1))
+ plot(m, ask = FALSE)
+ plot(ml, ask = FALSE)
+ plot(ms, ask = FALSE)
+ plot(mlss$mu, ask = FALSE)
+ plot(mlss$sigma, ask = FALSE)
+
+ ## test applyFolds()
+ set.seed(123)
+ applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
+ applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
+ applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
+
+ ## test cvrisk()
+ set.seed(123)
+ cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
+ cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
+ cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
+ cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
+ grid = 1:5, trace = FALSE)
+
+
+ }
Loading required package: refund
Use a smooth offset.
Use a smooth offset for irregular data.
No smooth offsets over time are used, just global scalar offsets.
No integration weights are used to compute the loss for the functional response.
..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
All folds encountered an error.
Original error message(s):
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
In addition: Warning messages:
1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
3: In papply(1:ncol(folds), function(i) try(dummyfct(weights = folds[, :
2 function calls resulted in an error
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Version: 0.3-2
Check: tests
Result: ERROR
Running 'general_tests.R' [10s]
Running the tests in 'tests/general_tests.R' failed.
Complete output:
>
>
> library(FDboost)
Loading required package: mboost
Loading required package: parallel
Loading required package: stabs
This is mboost 2.9-2. See 'package?mboost' and 'news(package = "mboost")'
for a complete list of changes.
This is FDboost 0.3-2.
>
> ################################################################
> ######### simulate some data
>
> if(require(refund)){
+
+ ## simulate a small data set
+ set.seed(230)
+ pffr_data <- pffrSim(n = 25, nxgrid = 21, nygrid = 19)
+ pffr_data$X1 <- scale(pffr_data$X1, scale = FALSE)
+
+ dat <- as.list(pffr_data)
+ dat$tvals <- attr(pffr_data, "yindex")
+ dat$svals <- attr(pffr_data, "xindex")
+
+ dat$Y_scalar <- dat$Y[ , 10]
+
+ dat$Y_long <- c(dat$Y)
+ dat$tvals_long <- rep(dat$tvals, each = nrow(dat$Y))
+ dat$id_long <- rep(1:nrow(dat$Y), ncol(dat$Y))
+
+
+ ################################################################
+ ######### model fit
+
+ ## response matrix for response observed on one common grid
+ m <- FDboost(Y ~ 1 + bhist(X1, svals, tvals, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## response in long format
+ ml <- FDboost(Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, df = 12)
+ + bsignal(X1, svals, knots = 6, df = 4)
+ + bbsc(xsmoo, knots = 6, df = 4)
+ + bolsc(xte1, df = 4)
+ + brandomc(xte2, df = 4),
+ timeformula = ~ bbs(tvals_long, knots = 8, df = 3, differences = 1),
+ id = ~ id_long,
+ offset_control = o_control(k_min = 10),
+ control = boost_control(mstop = 10), data = dat)
+
+ ## scalar response
+ ms <- FDboost(Y_scalar ~ 1 + bsignal(X1, svals, knots = 6, df = 2)
+ + bbs(xsmoo, knots = 6, df = 2, differences = 1)
+ + bols(xte1, df = 2)
+ + bols(xte2, df = 2),
+ timeformula = NULL,
+ control = boost_control(mstop = 50), data = dat)
+
+ ## GAMLSS with functional response
+ mlss <- FDboostLSS(Y ~ 1 + bsignal(X1, svals, knots = 6, df = 4),
+ timeformula = ~ bbs(tvals, knots = 9, df = 3, differences = 1),
+ control = boost_control(mstop = 10), data = dat,
+ method = "noncyclic")
+
+
+ ################################################################
+ ######### test some methods and utility functions
+
+ ## test plot()
+ par(mfrow = c(1,1))
+ plot(m, ask = FALSE)
+ plot(ml, ask = FALSE)
+ plot(ms, ask = FALSE)
+ plot(mlss$mu, ask = FALSE)
+ plot(mlss$sigma, ask = FALSE)
+
+ ## test applyFolds()
+ set.seed(123)
+ applyFolds(m, folds = cv(rep(1, length(unique(m$id))), B = 2), grid = 0:5)
+ applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), grid = 0:5)
+ applyFolds(ms, folds = cv(rep(1, length(unique(ms$id))), B = 2), grid = 0:5)
+
+ ## test cvrisk()
+ set.seed(123)
+ cvrisk(m, folds = cvLong(id = m$id, weights = model.weights(m), B = 2), grid = 0:5)
+ cvrisk(ml, folds = cvLong(id = ml$id, weights = model.weights(ml), B = 2), grid = 0:5)
+ cvrisk(ms, folds = cvLong(id = ms$id, weights = model.weights(ms), B = 2), grid = 0:5)
+ cvrisk(mlss, folds = cv(model.weights(mlss[[1]]), B = 2),
+ grid = 1:5, trace = FALSE)
+
+
+ }
Loading required package: refund
Use a smooth offset.
Use a smooth offset for irregular data.
No smooth offsets over time are used, just global scalar offsets.
No integration weights are used to compute the loss for the functional response.
..Error in applyFolds(ml, folds = cv(rep(1, length(unique(ml$id))), B = 2), :
All folds encountered an error.
Original error message(s):
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
Error in FDboost(formula = Y_long ~ 1 + bhist(X1, svals, tvals_long, knots = 6, :
id has to be integers 1, 2, 3,..., N.
In addition: Warning messages:
1: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.53589976292778e-08
2: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -3.84134200004382e-08
3: In df2lambda(X, df = args$df, lambda = args$lambda, dmat = K, weights = w, :
estimated degrees of freedom differ from 'df' by -1.25920418980741e-07
4: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by 1.55844865901145e-08
5: In df2lambda(X = diag(rankMatrix(X$X1, method = "qr", warn.t = FALSE) * :
estimated degrees of freedom differ from 'df' by -1.75215468800616e-08
Execution halted
Flavor: r-devel-windows-ix86+x86_64