CRAN Package Check Results for Package gemtc

Last updated on 2020-05-29 10:47:22 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.8-4 9.65 66.87 76.52 ERROR
r-devel-linux-x86_64-debian-gcc 0.8-4 7.94 51.82 59.76 ERROR
r-devel-linux-x86_64-fedora-clang 0.8-4 105.17 ERROR
r-devel-linux-x86_64-fedora-gcc 0.8-4 91.00 ERROR
r-devel-windows-ix86+x86_64 0.8-4 23.00 103.00 126.00 ERROR
r-patched-linux-x86_64 0.8-4 9.34 108.28 117.62 OK
r-patched-solaris-x86 0.8-4 177.70 OK
r-release-linux-x86_64 0.8-4 8.92 107.79 116.71 OK
r-release-osx-x86_64 0.8-4 OK
r-release-windows-ix86+x86_64 0.8-4 18.00 227.00 245.00 OK
r-oldrel-osx-x86_64 0.8-4 OK
r-oldrel-windows-ix86+x86_64 0.8-4 16.00 168.00 184.00 OK

Check Details

Version: 0.8-4
Check: examples
Result: ERROR
    Running examples in 'gemtc-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: atrialFibrillation
    > ### Title: Prevention of stroke in atrial fibrillation patients
    > ### Aliases: atrialFibrillation
    >
    > ### ** Examples
    >
    > # Build a model similar to Model 4(b) from Cooper et al. (2009):
    > classes <- list("control"=c("01"),
    + "anti-coagulant"=c("02","03","04","09"),
    + "anti-platelet"=c("05","06","07","08","10","11","12","16","17"),
    + "mixed"=c("13","14","15"))
    >
    > regressor <- list(coefficient='shared',
    + variable='stroke',
    + classes=classes)
    >
    > model <- mtc.model(atrialFibrillation,
    + type="regression",
    + regressor=regressor,
    + om.scale=10)
    Error in x[...] <- m : NAs are not allowed in subscripted assignments
    Calls: mtc.model ... %in% -> mtc.network.graph -> comp -> [<- -> [<-.factor
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.8-4
Check: tests
Result: ERROR
     Running 'test.R' [13s/14s]
    Running the tests in 'tests/test.R' failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     -- 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ---
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     -- 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     -- 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     -- 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     -- 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     -- 8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.ev
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 10. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 11. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 12. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc::mtc.network(data)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 13. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     -- 14. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 15. Error: mtc.comparisons.baseline only includes baseline comparisons for mu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 16. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     -- 17. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 18. Error: the model generates correctly (@test-unit-mtc.model.use.R#12) ---
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 19. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 20. Error: data.ab missing sampleSize throws error (@test-unit-mtc.model_colu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 21. Error: data.ab missing std.dev throws error (@test-unit-mtc.model_columns
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 22. Error: data.ab missing mean throws error (@test-unit-mtc.model_columns.R#
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 23. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 24. Error: mtc.model.data runs on simple data (@test-unit-mtc.model_data.R#8)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 25. Error: mtc.model.data complains about NAs in data.ab (@test-unit-mtc.mode
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 26. Error: mtc.model.data includes correct fields for data.ab, binom.logit (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 27. Error: mtc.model.data includes correct fields for data.ab, binom.cloglog
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 28. Error: mtc.model.data includes correct fields for data.ab, poisson.log (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 29. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 30. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 31. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 32. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 33. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 34. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 35. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     -- 36. Error: mtc.model refuses duplicated arms (@test-unit-mtc.model_duparm.R#4
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(...)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 37. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 38. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 39. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 40. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 41. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 42. Error: mtc.model.inits - regression parameters have the correct shape (@t
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 43. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 44. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(read.csv("../data/rr-pairwise.csv"))
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 45. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 46. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 47. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 48. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 49. Error: mtc.study.treatment.matrix with 1 study (@test-unit-mtc.study.trea
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 50. Error: mtc.study.treatment.matrix with 2 studies (@test-unit-mtc.study.tr
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 51. Error: non-lexicographical treatment order works correctly (@test-unit-no
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, treatments = treatments)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 52. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     -- 53. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 54. Error: read.mtc.network('luades-smoking.gemtc') has expected result (@tes
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(smoking))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 55. Error: read.mtc.network('parkinson.gemtc') has expected result (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(parkinson))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 56. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     == testthat results ===========================================================
     [ OK: 230 | SKIPPED: 2 | WARNINGS: 0 | FAILED: 56 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.evidence.R#7)
     9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#19)
     1. ...
    
     Error: testthat unit tests failed
     In addition: Warning message:
     In extract_lang(f = comp_lang, y = quote(if (.isMethodsDispatchOn() && :
     devtools is incompatible with the current version of R. `load_all()` may function incorrectly.
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.8-4
Check: tests
Result: ERROR
     Running ‘test.R’ [9s/12s]
    Running the tests in ‘tests/test.R’ failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     ── 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ───
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     ── 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     ── 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     ── 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     ── 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     ── 8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.ev
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 10. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 11. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 12. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc::mtc.network(data)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 13. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     ── 14. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 15. Error: mtc.comparisons.baseline only includes baseline comparisons for mu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 16. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     ── 17. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 18. Error: the model generates correctly (@test-unit-mtc.model.use.R#12) ───
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 19. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 20. Error: data.ab missing sampleSize throws error (@test-unit-mtc.model_colu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 21. Error: data.ab missing std.dev throws error (@test-unit-mtc.model_columns
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 22. Error: data.ab missing mean throws error (@test-unit-mtc.model_columns.R#
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 23. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 24. Error: mtc.model.data runs on simple data (@test-unit-mtc.model_data.R#8)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 25. Error: mtc.model.data complains about NAs in data.ab (@test-unit-mtc.mode
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 26. Error: mtc.model.data includes correct fields for data.ab, binom.logit (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 27. Error: mtc.model.data includes correct fields for data.ab, binom.cloglog
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 28. Error: mtc.model.data includes correct fields for data.ab, poisson.log (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 29. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 30. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 31. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 32. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 33. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 34. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 35. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     ── 36. Error: mtc.model refuses duplicated arms (@test-unit-mtc.model_duparm.R#4
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(...)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 37. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 38. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 39. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 40. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 41. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 42. Error: mtc.model.inits - regression parameters have the correct shape (@t
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 43. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 44. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(read.csv("../data/rr-pairwise.csv"))
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 45. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 46. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 47. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 48. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 49. Error: mtc.study.treatment.matrix with 1 study (@test-unit-mtc.study.trea
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 50. Error: mtc.study.treatment.matrix with 2 studies (@test-unit-mtc.study.tr
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 51. Error: non-lexicographical treatment order works correctly (@test-unit-no
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, treatments = treatments)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 52. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     ── 53. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 54. Error: read.mtc.network('luades-smoking.gemtc') has expected result (@tes
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(smoking))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 55. Error: read.mtc.network('parkinson.gemtc') has expected result (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(parkinson))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 56. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 230 | SKIPPED: 2 | WARNINGS: 0 | FAILED: 56 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.evidence.R#7)
     9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#19)
     1. ...
    
     Error: testthat unit tests failed
     In addition: Warning message:
     In extract_lang(f = comp_lang, y = quote(if (.isMethodsDispatchOn() && :
     devtools is incompatible with the current version of R. `load_all()` may function incorrectly.
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.8-4
Check: examples
Result: ERROR
    Running examples in ‘gemtc-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: atrialFibrillation
    > ### Title: Prevention of stroke in atrial fibrillation patients
    > ### Aliases: atrialFibrillation
    >
    > ### ** Examples
    >
    > # Build a model similar to Model 4(b) from Cooper et al. (2009):
    > classes <- list("control"=c("01"),
    + "anti-coagulant"=c("02","03","04","09"),
    + "anti-platelet"=c("05","06","07","08","10","11","12","16","17"),
    + "mixed"=c("13","14","15"))
    >
    > regressor <- list(coefficient='shared',
    + variable='stroke',
    + classes=classes)
    >
    > model <- mtc.model(atrialFibrillation,
    + type="regression",
    + regressor=regressor,
    + om.scale=10)
    Error in x[...] <- m : NAs are not allowed in subscripted assignments
    Calls: mtc.model ... %in% -> mtc.network.graph -> comp -> [<- -> [<-.factor
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 0.8-4
Check: tests
Result: ERROR
     Running ‘test.R’ [16s/42s]
    Running the tests in ‘tests/test.R’ failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     ── 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ───
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     ── 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     ── 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     ── 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     ── 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     ── 8. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 9. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect.
     Invalid vertex names
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     9. igraph:::`+.igraph`(g, edges.create(e, ...))
     12. igraph:::as.igraph.vs(e1, toadd)
    
     ── 10. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     Invalid vertex names
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     9. igraph:::`+.igraph`(g, edges.create(e, ...))
     12. igraph:::as.igraph.vs(e1, toadd)
    
     ── 11. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 12. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     ── 13. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(mtc.comparisons.baseline(network), equals(mtc.comparisons(network)))
     6. gemtc:::mtc.comparisons(network)
     8. base::`[<-.factor`(...)
    
     ── 14. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     ── 15. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 16. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     Invalid vertex names
     Backtrace:
     1. gemtc::mtc.model(network, likelihood = "normal", link = "identity")
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     19. igraph:::`+.igraph`(g, edges.create(e, ...))
     22. igraph:::as.igraph.vs(e1, toadd)
    
     ── 17. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     Invalid vertex names
     Backtrace:
     1. gemtc::mtc.model(network, likelihood = "normal", link = "identity")
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     19. igraph:::`+.igraph`(g, edges.create(e, ...))
     22. igraph:::as.igraph.vs(e1, toadd)
    
     ── 18. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 19. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 20. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 21. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 22. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 23. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     ── 24. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 25. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 26. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 27. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 28. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 29. Error: mtc.model.inits - regression parameters have the correct shape (@t
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 30. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 31. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     Invalid vertex names
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     10. igraph:::`+.igraph`(g, edges.create(e, ...))
     13. igraph:::as.igraph.vs(e1, toadd)
    
     ── 32. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 33. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 34. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     subscript out of bounds
     Backtrace:
     1. gemtc:::mtc.nr.comparisons(network)
     2. plyr::aaply(...)
     3. plyr::laply(...)
     4. plyr::llply(...)
     7. gemtc:::.fun(piece, ...)
     8. base::rowSums(m[, co, drop = FALSE])
     9. base::is.data.frame(x)
    
     ── 35. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     subscript out of bounds
     Backtrace:
     1. gemtc:::mtc.nr.comparisons(network)
     2. plyr::aaply(...)
     3. plyr::laply(...)
     4. plyr::llply(...)
     7. gemtc:::.fun(piece, ...)
     8. base::rowSums(m[, co, drop = FALSE])
     9. base::is.data.frame(x)
    
     ── 36. Error: non-lexicographical treatment order works correctly (@test-unit-no
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network, type = "nodesplit", t1 = 10, t2 = 11)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.nodesplit(...)
     6. gemtc:::has.indirect.evidence(network, t1, t2)
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 37. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     ── 38. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 39. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 256 | SKIPPED: 2 | WARNINGS: 1 | FAILED: 39 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#20)
     9. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect.evidence.R#49)
     1. ...
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.8-4
Check: tests
Result: ERROR
     Running ‘test.R’ [15s/18s]
    Running the tests in ‘tests/test.R’ failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     ── 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ───
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     ── 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     ── 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     ── 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     ── 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     ── 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     ── 8. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 9. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect.
     Invalid vertex names
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     9. igraph:::`+.igraph`(g, edges.create(e, ...))
     12. igraph:::as.igraph.vs(e1, toadd)
    
     ── 10. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     Invalid vertex names
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     9. igraph:::`+.igraph`(g, edges.create(e, ...))
     12. igraph:::as.igraph.vs(e1, toadd)
    
     ── 11. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 12. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     ── 13. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(mtc.comparisons.baseline(network), equals(mtc.comparisons(network)))
     6. gemtc:::mtc.comparisons(network)
     8. base::`[<-.factor`(...)
    
     ── 14. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     ── 15. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 16. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     Invalid vertex names
     Backtrace:
     1. gemtc::mtc.model(network, likelihood = "normal", link = "identity")
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     19. igraph:::`+.igraph`(g, edges.create(e, ...))
     22. igraph:::as.igraph.vs(e1, toadd)
    
     ── 17. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     Invalid vertex names
     Backtrace:
     1. gemtc::mtc.model(network, likelihood = "normal", link = "identity")
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     19. igraph:::`+.igraph`(g, edges.create(e, ...))
     22. igraph:::as.igraph.vs(e1, toadd)
    
     ── 18. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 19. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 20. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 21. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 22. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 23. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     ── 24. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 25. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 26. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 27. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 28. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 29. Error: mtc.model.inits - regression parameters have the correct shape (@t
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 30. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ── 31. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     Invalid vertex names
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::graph.create(treatments, comparisons, arrow.mode = 0)
     10. igraph:::`+.igraph`(g, edges.create(e, ...))
     13. igraph:::as.igraph.vs(e1, toadd)
    
     ── 32. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 33. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 34. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     subscript out of bounds
     Backtrace:
     1. gemtc:::mtc.nr.comparisons(network)
     2. plyr::aaply(...)
     3. plyr::laply(...)
     4. plyr::llply(...)
     7. gemtc:::.fun(piece, ...)
     8. base::rowSums(m[, co, drop = FALSE])
     9. base::is.data.frame(x)
    
     ── 35. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     subscript out of bounds
     Backtrace:
     1. gemtc:::mtc.nr.comparisons(network)
     2. plyr::aaply(...)
     3. plyr::laply(...)
     4. plyr::llply(...)
     7. gemtc:::.fun(piece, ...)
     8. base::rowSums(m[, co, drop = FALSE])
     9. base::is.data.frame(x)
    
     ── 36. Error: non-lexicographical treatment order works correctly (@test-unit-no
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network, type = "nodesplit", t1 = 10, t2 = 11)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.nodesplit(...)
     6. gemtc:::has.indirect.evidence(network, t1, t2)
     7. gemtc:::mtc.network.graph(n)
     8. gemtc:::comp(network)
     10. base::`[<-.factor`(...)
    
     ── 37. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     ── 38. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     ── 39. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     ══ testthat results ═══════════════════════════════════════════════════════════
     [ OK: 256 | SKIPPED: 2 | WARNINGS: 1 | FAILED: 39 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#20)
     9. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect.evidence.R#49)
     1. ...
    
     Error: testthat unit tests failed
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.8-4
Check: running examples for arch ‘i386’
Result: ERROR
    Running examples in 'gemtc-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: atrialFibrillation
    > ### Title: Prevention of stroke in atrial fibrillation patients
    > ### Aliases: atrialFibrillation
    >
    > ### ** Examples
    >
    > # Build a model similar to Model 4(b) from Cooper et al. (2009):
    > classes <- list("control"=c("01"),
    + "anti-coagulant"=c("02","03","04","09"),
    + "anti-platelet"=c("05","06","07","08","10","11","12","16","17"),
    + "mixed"=c("13","14","15"))
    >
    > regressor <- list(coefficient='shared',
    + variable='stroke',
    + classes=classes)
    >
    > model <- mtc.model(atrialFibrillation,
    + type="regression",
    + regressor=regressor,
    + om.scale=10)
    Error in x[...] <- m : NAs are not allowed in subscripted assignments
    Calls: mtc.model ... %in% -> mtc.network.graph -> comp -> [<- -> [<-.factor
    Execution halted
Flavor: r-devel-windows-ix86+x86_64

Version: 0.8-4
Check: running examples for arch ‘x64’
Result: ERROR
    Running examples in 'gemtc-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: atrialFibrillation
    > ### Title: Prevention of stroke in atrial fibrillation patients
    > ### Aliases: atrialFibrillation
    >
    > ### ** Examples
    >
    > # Build a model similar to Model 4(b) from Cooper et al. (2009):
    > classes <- list("control"=c("01"),
    + "anti-coagulant"=c("02","03","04","09"),
    + "anti-platelet"=c("05","06","07","08","10","11","12","16","17"),
    + "mixed"=c("13","14","15"))
    >
    > regressor <- list(coefficient='shared',
    + variable='stroke',
    + classes=classes)
    >
    > model <- mtc.model(atrialFibrillation,
    + type="regression",
    + regressor=regressor,
    + om.scale=10)
    Error in x[...] <- m : NAs are not allowed in subscripted assignments
    Calls: mtc.model ... %in% -> mtc.network.graph -> comp -> [<- -> [<-.factor
    Execution halted
Flavor: r-devel-windows-ix86+x86_64

Version: 0.8-4
Check: running tests for arch ‘i386’
Result: ERROR
     Running 'test.R' [11s]
    Running the tests in 'tests/test.R' failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     -- 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ---
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     -- 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     -- 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     -- 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     -- 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     -- 8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.ev
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 10. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 11. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 12. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc::mtc.network(data)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 13. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     -- 14. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 15. Error: mtc.comparisons.baseline only includes baseline comparisons for mu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 16. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     -- 17. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 18. Error: the model generates correctly (@test-unit-mtc.model.use.R#12) ---
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 19. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 20. Error: data.ab missing sampleSize throws error (@test-unit-mtc.model_colu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 21. Error: data.ab missing std.dev throws error (@test-unit-mtc.model_columns
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 22. Error: data.ab missing mean throws error (@test-unit-mtc.model_columns.R#
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 23. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 24. Error: mtc.model.data runs on simple data (@test-unit-mtc.model_data.R#8)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 25. Error: mtc.model.data complains about NAs in data.ab (@test-unit-mtc.mode
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 26. Error: mtc.model.data includes correct fields for data.ab, binom.logit (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 27. Error: mtc.model.data includes correct fields for data.ab, binom.cloglog
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 28. Error: mtc.model.data includes correct fields for data.ab, poisson.log (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 29. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 30. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 31. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 32. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 33. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 34. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 35. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     -- 36. Error: mtc.model refuses duplicated arms (@test-unit-mtc.model_duparm.R#4
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(...)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 37. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 38. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 39. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 40. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 41. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 42. Error: mtc.model.inits - regression parameters have the correct shape (@t
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 43. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 44. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(read.csv("../data/rr-pairwise.csv"))
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 45. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 46. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 47. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 48. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 49. Error: mtc.study.treatment.matrix with 1 study (@test-unit-mtc.study.trea
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 50. Error: mtc.study.treatment.matrix with 2 studies (@test-unit-mtc.study.tr
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 51. Error: non-lexicographical treatment order works correctly (@test-unit-no
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, treatments = treatments)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 52. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     -- 53. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 54. Error: read.mtc.network('luades-smoking.gemtc') has expected result (@tes
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(smoking))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 55. Error: read.mtc.network('parkinson.gemtc') has expected result (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(parkinson))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 56. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     == testthat results ===========================================================
     [ OK: 230 | SKIPPED: 2 | WARNINGS: 0 | FAILED: 56 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.evidence.R#7)
     9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#19)
     1. ...
    
     Error: testthat unit tests failed
     In addition: Warning message:
     In extract_lang(f = comp_lang, y = quote(if (.isMethodsDispatchOn() && :
     devtools is incompatible with the current version of R. `load_all()` may function incorrectly.
     Execution halted
Flavor: r-devel-windows-ix86+x86_64

Version: 0.8-4
Check: running tests for arch ‘x64’
Result: ERROR
     Running 'test.R' [12s]
    Running the tests in 'tests/test.R' failed.
    Complete output:
     > library(testthat)
     > test_check('gemtc', filter="unit")
     Loading required package: gemtc
     Loading required package: coda
     -- 1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20) ---
     `x` not equal to `expected`.
     4/4 mismatches (average diff: NaN)
     [1] NA - 1.000 == NA
     [2] NA - 1.500 == NA
     [3] NA - 0.177 == NA
     [4] NA - 0.280 == NA
    
     -- 2. Failure: calculating pairs for relative effect data transforms the mvnorm
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 3. Failure: calculating pairs for relative effect data handles 1-pair case (@
     `x` not equal to `expected`.
     4/4 mismatches (average diff: 0.923)
     [1] 0 - 0.900 == -0.900
     [2] 0 - -1.400 == 1.400
     [3] 0 - 0.690 == -0.690
     [4] 0 - 0.703 == -0.703
    
     -- 4. Failure: calculating pairs for relative effect data handles missing treatm
     `x` not equal to `expected`.
     2/2 mismatches (average diff: 1.05)
     [1] 0 - -1.400 == 1.400
     [2] 0 - 0.703 == -0.703
    
     -- 5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#7
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 2.3 == -2.3
    
     -- 6. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] NA - 1.08 == NA
    
     -- 7. Failure: guess.scale not confused by unrealized study levels (@test-unit-a
     `x` not equal to `expected`.
     1/1 mismatches
     [1] 0 - 1 == -1
    
     -- 8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.ev
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 10. Error: comparison in three-arm trial gives FALSE (@test-unit-has.indirect
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 11. Error: four-arm trials are handled correctly (@test-unit-has.indirect.evi
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 12. Error: data.re is incorporated (@test-unit-has.indirect.evidence.R#101)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc:::has.indirect.evidence(network, "A", "B")
     7. gemtc::mtc.network(data)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 13. Error: Vertices agree between mtc.comparisons and the model tree (@test-u
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc::mtc.model(network)
     2. gemtc:::mtc.model.call("mtc.model", model, ...)
     4. gemtc:::mtc.model.consistency(...)
     17. gemtc:::mtc.network.graph(model[["network"]])
     18. gemtc:::comp(network)
     20. base::`[<-.factor`(...)
    
     -- 14. Error: mtc.comparisons.baseline identical to mtc.comparisons for two-arm
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 15. Error: mtc.comparisons.baseline only includes baseline comparisons for mu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 16. Error: Vertices agree between mtc.network.graph and ume model$graph (@tes
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::mtc.network.graph(network)
     2. gemtc:::comp(network)
     4. base::`[<-.factor`(...)
    
     -- 17. Error: RE data will not introduce duplicate basic parameters (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 18. Error: the model generates correctly (@test-unit-mtc.model.use.R#12) ---
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 19. Error: std.dev + sampleSize is rewritten to std.err (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 20. Error: data.ab missing sampleSize throws error (@test-unit-mtc.model_colu
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 21. Error: data.ab missing std.dev throws error (@test-unit-mtc.model_columns
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 22. Error: data.ab missing mean throws error (@test-unit-mtc.model_columns.R#
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 23. Error: data.ab with std.err does not throw error (@test-unit-mtc.model_co
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 24. Error: mtc.model.data runs on simple data (@test-unit-mtc.model_data.R#8)
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 25. Error: mtc.model.data complains about NAs in data.ab (@test-unit-mtc.mode
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 26. Error: mtc.model.data includes correct fields for data.ab, binom.logit (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 27. Error: mtc.model.data includes correct fields for data.ab, binom.cloglog
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 28. Error: mtc.model.data includes correct fields for data.ab, poisson.log (@
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 29. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 30. Error: mtc.model.data includes correct fields for data.ab, normal.identit
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 31. Error: mtc.model.data includes correct fields for data.ab, binom.logit +
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 32. Error: mtc.model.data omits studies with alpha=0 (powerAdjust) (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 33. Error: mtc.model.data has correct values (1) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 34. Error: mtc.model.data has correct values (2) (@test-unit-mtc.model_data.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 35. Error: not specifying likelihood / link generates warnings (@test-unit-mt
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_warning(...)
     6. gemtc::mtc.model(network, likelihood = "normal")
     7. gemtc:::mtc.model.call("mtc.model", model, ...)
     9. gemtc:::mtc.model.consistency(...)
     22. gemtc:::mtc.network.graph(model[["network"]])
     23. gemtc:::comp(network)
     25. base::`[<-.factor`(...)
    
     -- 36. Error: mtc.model refuses duplicated arms (@test-unit-mtc.model_duparm.R#4
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(...)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 37. Error: mtc.init.mle.regression just returns 0 +/- om.scale (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 38. Error: mtc.linearModel.matrix works correctly (@test-unit-mtc.model_inits
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 39. Error: mtc.linearModel.matrix works correctly for regression (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 40. Error: likelihood.arm.list returns the correct arms (@test-unit-mtc.model
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 41. Error: mtc.model.inits has correct shape (@test-unit-mtc.model_inits.R#24
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 42. Error: mtc.model.inits - regression parameters have the correct shape (@t
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, studies = studies)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 43. Error: mtc.model.inits has correct heterogeneity parameter (@test-unit-mt
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 44. Error: mtc.init correctly restrains the baseline probability (@test-unit-
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(read.csv("../data/rr-pairwise.csv"))
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 45. Error: treatments for data.ab and data.re are merged (@test-unit-mtc.netw
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 46. Error: merged list of arms is correct (@test-unit-mtc.network_data.re.R#8
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 47. Error: mtc.nr.comparisons with a single study (@test-unit-mtc.nr.comparis
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 48. Error: mtc.nr.comparisons with 2 studies (@test-unit-mtc.nr.comparisons.R
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 49. Error: mtc.study.treatment.matrix with 1 study (@test-unit-mtc.study.trea
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 50. Error: mtc.study.treatment.matrix with 2 studies (@test-unit-mtc.study.tr
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 51. Error: non-lexicographical treatment order works correctly (@test-unit-no
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, treatments = treatments)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 52. Error: study names do not mess up nodesplit with RE data (@test-unit-node
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. testthat::expect_that(...)
     6. gemtc::mtc.nodesplit.comparisons(network)
     8. gemtc:::mtc.comparisons(network)
     10. base::`[<-.factor`(...)
    
     -- 53. Error: mixing AB and RE data will not duplicate comparisons (@test-unit-n
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. gemtc::mtc.network(data.ab = data.ab, data.re = data.re)
     2. gemtc:::mtc.network.validate(network)
     3. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 54. Error: read.mtc.network('luades-smoking.gemtc') has expected result (@tes
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(smoking))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 55. Error: read.mtc.network('parkinson.gemtc') has expected result (@test-uni
     all(all.treatments %in% network[["treatments"]][["id"]]) is not TRUE
     Backtrace:
     1. testthat::expect_that(read.mtc.network(file), equals(parkinson))
     6. gemtc::read.mtc.network(file)
     7. gemtc::mtc.network(data.ab, treatments = treatments, description = description)
     8. gemtc:::mtc.network.validate(network)
     9. base::stopifnot(all(all.treatments %in% network[["treatments"]][["id"]]))
    
     -- 56. Error: tree.relative.effect handles a more complex tree (@test-unit-relat
     NAs are not allowed in subscripted assignments
     Backtrace:
     1. gemtc:::minimum.diameter.spanning.tree(mtc.network.graph(network))
     8. gemtc:::mtc.network.graph(network)
     9. gemtc:::comp(network)
     11. base::`[<-.factor`(...)
    
     == testthat results ===========================================================
     [ OK: 230 | SKIPPED: 2 | WARNINGS: 0 | FAILED: 56 ]
     1. Failure: two pairs return a two-row matrix (@test-unit-allpairs.R#20)
     2. Failure: calculating pairs for relative effect data transforms the mvnorm (@test-unit-allpairs.R#33)
     3. Failure: calculating pairs for relative effect data handles 1-pair case (@test-unit-allpairs.R#46)
     4. Failure: calculating pairs for relative effect data handles missing treatments (@test-unit-allpairs.R#60)
     5. Failure: guess.scale handles relative effect data (@test-unit-allpairs.R#76)
     6. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#82)
     7. Failure: guess.scale not confused by unrealized study levels (@test-unit-allpairs.R#86)
     8. Error: single pair-wise comparison gives FALSE (@test-unit-has.indirect.evidence.R#7)
     9. Error: comparison in triangle gives TRUE (@test-unit-has.indirect.evidence.R#19)
     1. ...
    
     Error: testthat unit tests failed
     In addition: Warning message:
     In extract_lang(f = comp_lang, y = quote(if (.isMethodsDispatchOn() && :
     devtools is incompatible with the current version of R. `load_all()` may function incorrectly.
     Execution halted
Flavor: r-devel-windows-ix86+x86_64