Last updated on 2020-06-15 08:53:16 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 2.4.0 | 17.63 | 153.18 | 170.81 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 2.4.0 | 15.06 | 113.10 | 128.16 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 2.4.0 | 215.76 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 2.4.0 | 215.39 | ERROR | |||
r-devel-windows-ix86+x86_64 | 2.4.0 | 51.00 | 155.00 | 206.00 | ERROR | |
r-patched-linux-x86_64 | 2.4.0 | 15.71 | 145.81 | 161.52 | ERROR | |
r-patched-solaris-x86 | 2.4.0 | 305.60 | ERROR | |||
r-release-linux-x86_64 | 2.4.0 | 19.09 | 143.40 | 162.49 | ERROR | |
r-release-osx-x86_64 | 2.4.0 | OK | ||||
r-release-windows-ix86+x86_64 | 2.4.0 | 47.00 | 210.00 | 257.00 | ERROR | |
r-oldrel-osx-x86_64 | 2.4.0 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 2.4.0 | 55.00 | 135.00 | 190.00 | ERROR |
Version: 2.4.0
Check: examples
Result: ERROR
Running examples in 'healthcareai-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: add_best_levels
> ### Title: Build efficient features from high-cardinality,
> ### multiple-membership factors
> ### Aliases: add_best_levels get_best_levels
>
> ### ** Examples
>
> set.seed(45796)
>
> # We have two tables we want to use in our models:
> # - df is the model table. It has the outcomes (survived), and we want one
> # prediction for each row in df
> # - meds has detailed information on each row (patient) in df. Each patient
> # may have zero, one, or more observations (drugs) in meds, and meds may
> # have associated values (doses).
>
> df <- tibble::tibble(
+ patient = paste0("Z", sample(10, 5)),
+ age = sample(20:80, 5),
+ survived = sample(c("N", "Y"), 5, replace = TRUE, prob = c(1, 2))
+ )
>
> meds <- tibble::tibble(
+ patient = sample(df$patient, 10, replace = TRUE),
+ drug = sample(c("Quinapril", "Vancomycin", "Ibuprofen",
+ "Paclitaxel", "Epinephrine", "Dexamethasone"),
+ 10, replace = TRUE),
+ dose = sample(c(100, 250), 10, replace = TRUE)
+ )
>
> # Identify three drugs likely to be good predictors of survival
>
> get_best_levels(d = df,
+ longsheet = meds,
+ id = patient,
+ groups = drug,
+ outcome = survived,
+ n_levels = 3)
Error: Problem with `filter()` input `..1`.
x object 'patient' not found
i Input `..1` is `n_distinct(patient) >= min_obs`.
i The error occured in group 1: drug = "Dexamethasone".
Backtrace:
x
1. \-healthcareai::get_best_levels(...)
2. \-`%>%`(...)
3. +-base::withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
4. \-base::eval(quote(`_fseq`(`_lhs`)), env, env)
5. \-base::eval(quote(`_fseq`(`_lhs`)), env, env)
6. \-healthcareai:::`_fseq`(`_lhs`)
7. \-magrittr::freduce(value, `_function_list`)
8. \-function_list[[i]](value)
9. +-dplyr::filter(., n_distinct(!!id) >= min_obs)
10. \-dplyr:::filter.data.frame(., n_distinct(!!id) >= min_obs)
11. \-dplyr:::filter_rows(.data, ...)
12. \-base::tryCatch(...)
13. \-base:::tryCatchList(expr, classes, parentenv, handlers)
14. \-base:::tryCatchOne(expr, names, parentenv, hand
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 2.4.0
Check: examples
Result: ERROR
Running examples in ‘healthcareai-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: add_best_levels
> ### Title: Build efficient features from high-cardinality,
> ### multiple-membership factors
> ### Aliases: add_best_levels get_best_levels
>
> ### ** Examples
>
> set.seed(45796)
>
> # We have two tables we want to use in our models:
> # - df is the model table. It has the outcomes (survived), and we want one
> # prediction for each row in df
> # - meds has detailed information on each row (patient) in df. Each patient
> # may have zero, one, or more observations (drugs) in meds, and meds may
> # have associated values (doses).
>
> df <- tibble::tibble(
+ patient = paste0("Z", sample(10, 5)),
+ age = sample(20:80, 5),
+ survived = sample(c("N", "Y"), 5, replace = TRUE, prob = c(1, 2))
+ )
>
> meds <- tibble::tibble(
+ patient = sample(df$patient, 10, replace = TRUE),
+ drug = sample(c("Quinapril", "Vancomycin", "Ibuprofen",
+ "Paclitaxel", "Epinephrine", "Dexamethasone"),
+ 10, replace = TRUE),
+ dose = sample(c(100, 250), 10, replace = TRUE)
+ )
>
> # Identify three drugs likely to be good predictors of survival
>
> get_best_levels(d = df,
+ longsheet = meds,
+ id = patient,
+ groups = drug,
+ outcome = survived,
+ n_levels = 3)
Error: Problem with `filter()` input `..1`.
✖ object 'patient' not found
ℹ Input `..1` is `n_distinct(patient) >= min_obs`.
ℹ The error occured in group 1: drug = "Dexamethasone".
Backtrace:
█
1. └─healthcareai::get_best_levels(...)
2. └─`%>%`(...)
3. ├─base::withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
4. └─base::eval(quote(`_fseq`(`_lhs`)), env, env)
5. └─base::eval(quote(`_fseq`(`_lhs`)), env, env)
6. └─healthcareai:::`_fseq`(`_lhs`)
7. └─magrittr::freduce(value, `_function_list`)
8. └─function_list[[i]](value)
9. ├─dplyr::filter(., n_distinct(!!id) >= min_obs)
10. └─dplyr:::filter.data.frame(., n_distinct(!!id) >= min_obs)
11. └─dplyr:::filter_rows(.data, ...)
12. └─base::tryCatch(...)
13. └─base:::tryCatchList(expr, classes, parentenv, handlers)
14.
Execution halted
Flavors: r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 2.4.0
Check: examples
Result: ERROR
Running examples in ‘healthcareai-Ex.R’ failed
The error most likely occurred in:
> ### Name: add_best_levels
> ### Title: Build efficient features from high-cardinality,
> ### multiple-membership factors
> ### Aliases: add_best_levels get_best_levels
>
> ### ** Examples
>
> set.seed(45796)
>
> # We have two tables we want to use in our models:
> # - df is the model table. It has the outcomes (survived), and we want one
> # prediction for each row in df
> # - meds has detailed information on each row (patient) in df. Each patient
> # may have zero, one, or more observations (drugs) in meds, and meds may
> # have associated values (doses).
>
> df <- tibble::tibble(
+ patient = paste0("Z", sample(10, 5)),
+ age = sample(20:80, 5),
+ survived = sample(c("N", "Y"), 5, replace = TRUE, prob = c(1, 2))
+ )
>
> meds <- tibble::tibble(
+ patient = sample(df$patient, 10, replace = TRUE),
+ drug = sample(c("Quinapril", "Vancomycin", "Ibuprofen",
+ "Paclitaxel", "Epinephrine", "Dexamethasone"),
+ 10, replace = TRUE),
+ dose = sample(c(100, 250), 10, replace = TRUE)
+ )
>
> # Identify three drugs likely to be good predictors of survival
>
> get_best_levels(d = df,
+ longsheet = meds,
+ id = patient,
+ groups = drug,
+ outcome = survived,
+ n_levels = 3)
Error: Problem with `filter()` input `..1`.
✖ object 'patient' not found
ℹ Input `..1` is `n_distinct(patient) >= min_obs`.
ℹ The error occured in group 1: drug = "Dexamethasone".
Backtrace:
█
1. └─healthcareai::get_best_levels(...)
2. └─`%>%`(...)
3. ├─base::withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
4. └─base::eval(quote(`_fseq`(`_lhs`)), env, env)
5. └─base::eval(quote(`_fseq`(`_lhs`)), env, env)
6. └─healthcareai:::`_fseq`(`_lhs`)
7. └─magrittr::freduce(value, `_function_list`)
8. └─function_list[[i]](value)
9. ├─dplyr::filter(., n_distinct(!!id) >= min_obs)
10. └─dplyr:::filter.data.frame(., n_distinct(!!id) >= min_obs)
11. └─dplyr:::filter_rows(.data, ...)
12. └─base::tryCatch(...)
13. └─base:::tryCatchList(expr, classes, parentenv, handlers)
14.
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86
Version: 2.4.0
Check: examples
Result: ERROR
Running examples in 'healthcareai-Ex.R' failed
The error most likely occurred in:
> ### Name: add_best_levels
> ### Title: Build efficient features from high-cardinality,
> ### multiple-membership factors
> ### Aliases: add_best_levels get_best_levels
>
> ### ** Examples
>
> set.seed(45796)
>
> # We have two tables we want to use in our models:
> # - df is the model table. It has the outcomes (survived), and we want one
> # prediction for each row in df
> # - meds has detailed information on each row (patient) in df. Each patient
> # may have zero, one, or more observations (drugs) in meds, and meds may
> # have associated values (doses).
>
> df <- tibble::tibble(
+ patient = paste0("Z", sample(10, 5)),
+ age = sample(20:80, 5),
+ survived = sample(c("N", "Y"), 5, replace = TRUE, prob = c(1, 2))
+ )
>
> meds <- tibble::tibble(
+ patient = sample(df$patient, 10, replace = TRUE),
+ drug = sample(c("Quinapril", "Vancomycin", "Ibuprofen",
+ "Paclitaxel", "Epinephrine", "Dexamethasone"),
+ 10, replace = TRUE),
+ dose = sample(c(100, 250), 10, replace = TRUE)
+ )
>
> # Identify three drugs likely to be good predictors of survival
>
> get_best_levels(d = df,
+ longsheet = meds,
+ id = patient,
+ groups = drug,
+ outcome = survived,
+ n_levels = 3)
Error: Problem with `filter()` input `..1`.
x object 'patient' not found
i Input `..1` is `n_distinct(patient) >= min_obs`.
i The error occured in group 1: drug = "Dexamethasone".
Backtrace:
x
1. \-healthcareai::get_best_levels(...)
2. \-`%>%`(...)
3. +-base::withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
4. \-base::eval(quote(`_fseq`(`_lhs`)), env, env)
5. \-base::eval(quote(`_fseq`(`_lhs`)), env, env)
6. \-healthcareai:::`_fseq`(`_lhs`)
7. \-magrittr::freduce(value, `_function_list`)
8. \-function_list[[i]](value)
9. +-dplyr::filter(., n_distinct(!!id) >= min_obs)
10. \-dplyr:::filter.data.frame(., n_distinct(!!id) >= min_obs)
11. \-dplyr:::filter_rows(.data, ...)
12. \-base::tryCatch(...)
13. \-base:::tryCatchList(expr, classes, parentenv, handlers)
14. \-base:::tryCatchOne(expr, names, parentenv, hand
Execution halted
Flavors: r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64