Last updated on 2020-07-06 19:49:26 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1.4 | 19.93 | 171.06 | 190.99 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.1.4 | 15.28 | 122.59 | 137.87 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.1.4 | 230.28 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.1.4 | 221.22 | ERROR | |||
r-devel-windows-ix86+x86_64 | 0.1.4 | 63.00 | 157.00 | 220.00 | ERROR | |
r-patched-linux-x86_64 | 0.1.4 | 16.43 | 157.65 | 174.08 | ERROR | |
r-patched-solaris-x86 | 0.1.4 | 302.40 | ERROR | |||
r-release-linux-x86_64 | 0.1.4 | 19.34 | 158.25 | 177.59 | ERROR | |
r-release-osx-x86_64 | 0.1.4 | WARN | ||||
r-release-windows-ix86+x86_64 | 0.1.4 | 44.00 | 156.00 | 200.00 | ERROR | |
r-oldrel-osx-x86_64 | 0.1.4 | WARN | ||||
r-oldrel-windows-ix86+x86_64 | 0.1.4 | 52.00 | 215.00 | 267.00 | ERROR |
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in 'rabhit-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: hapDendo
> ### Title: Hierarchical clustering of haplotypes graphical output
> ### Aliases: hapDendo
>
> ### ** Examples
>
> # Plotting haplotype hierarchical clustering based on the Jaccard distance
> hapDendo(samplesHaplotype)
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.50 1.00 1.00 NaN 0.00
[31] 1.00 0.75 1.00 0.50 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 1.00 1.00 0.25
[46] 0.00 0.50 1.00 0.50 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.50 0.75 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.00 1.00 0.50 NaN 0.50
[31] 0.50 0.25 0.00 0.00 1.00 0.50 0.50 0.00 0.00 0.00 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 0.50 0.00 0.00 0.50 1.00 0.00 0.50 0.00 1.00 0.50 1.00 0.00
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.00 0.00 1.00 0.00
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.50 NaN 0.50
[31] 1.00 0.25 0.00 0.50 1.00 0.00 0.50 0.00 0.50 0.50 1.00 1.00 1.00 1.00 0.75
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.00
[61] 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00 1.00 0.50 0.50 0.25 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50 NaN 0.00
[31] 0.75 0.00 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50
[46] 1.00 0.50 1.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.00 1.00 0.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 0.75 NaN 0.00 0.75 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 0.50 0.00 0.25 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 NaN 1.00
[31] 0.50 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.75
[46] 0.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 0.00
[61] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.50 0.75 1.00 0.00 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 NaN 0.50
[31] 0.25 0.00 1.00 0.50 1.00 0.00 0.50 1.00 0.50 0.50 1.00 1.00 1.00 0.50 1.00
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 0.50 0.00 0.50 1.00 1.00 0.50 1.00 0.50
[61] 1.00 0.00 0.50 1.00 1.00 1.00 1.00 0.50 0.75 0.00 0.50 0.25 1.00 0.50
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 0.5000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 0.5000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.5000000
[57] 1.0000000 0.5000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 0.7500000 NaN
[71] 0.5000000 0.7500000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 0.00 0.25 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.50 0.50 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.75 0.50 0.50 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 0.00 0.50 1.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.25 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 0.75 0.25 1.00 0.50 1.00 0.50 0.00 1.00 0.50 0.50 1.00 0.00 1.00 0.50 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.00 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 1.00
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 1.0000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 1.0000000 0.5000000 0.0000000 NaN 0.5000000 0.5000000
[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 NaN NaN
[71] 1.0000000 1.0000000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 1.00 0.50 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 NaN 0.50 0.75 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 1.00 0.50 0.00 NaN 1.00 0.25 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 NaN NaN 0.00 1.00 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 1.50 0.50 1.00 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.00 1.00 2.00 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 NaN 0.50 0.25 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[31] 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[46] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 NaN 1.00 0.75 1.00 1.00 1.00 1.00
[61] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NaN NaN 1.00 1.50 1.00 1.00
Error: Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
Backtrace:
x
1. +-rabhit::hapDendo(samplesHaplotype)
2. | \-dplyr::bind_rows(haplo_db_clust_texture, tmp_point)
3. | \-vctrs::vec_rbind(!!!dots, .names_to = .id)
4. +-vctrs:::vec_ptype2.data.frame.grouped_df(...)
5. | \-vctrs:::gdf_ptype2(x, y, ...)
6. | \-vctrs::df_ptype2(x, y, ...)
7. \-vctrs::vec_default_ptype2(...)
8. \-vctrs::stop_incompatible_type(...)
9. \-vctrs:::stop_incompatible(...)
10. \-vctrs:::stop_vctrs(...)
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.1.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building 'RAbHIT-vignette.Rmd' using rmarkdown
Loading required package: ggplot2
RAbHIT version: 0.1.4
Quitting from lines 198-200 (RAbHIT-vignette.Rmd)
Error: processing vignette 'RAbHIT-vignette.Rmd' failed with diagnostics:
Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
--- failed re-building 'RAbHIT-vignette.Rmd'
SUMMARY: processing the following file failed:
'RAbHIT-vignette.Rmd'
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in ‘rabhit-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: hapDendo
> ### Title: Hierarchical clustering of haplotypes graphical output
> ### Aliases: hapDendo
>
> ### ** Examples
>
> # Plotting haplotype hierarchical clustering based on the Jaccard distance
> hapDendo(samplesHaplotype)
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.50 1.00 1.00 NaN 0.00
[31] 1.00 0.75 1.00 0.50 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 1.00 1.00 0.25
[46] 0.00 0.50 1.00 0.50 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.50 0.75 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.00 1.00 0.50 NaN 0.50
[31] 0.50 0.25 0.00 0.00 1.00 0.50 0.50 0.00 0.00 0.00 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 0.50 0.00 0.00 0.50 1.00 0.00 0.50 0.00 1.00 0.50 1.00 0.00
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.00 0.00 1.00 0.00
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.50 NaN 0.50
[31] 1.00 0.25 0.00 0.50 1.00 0.00 0.50 0.00 0.50 0.50 1.00 1.00 1.00 1.00 0.75
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.00
[61] 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00 1.00 0.50 0.50 0.25 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50 NaN 0.00
[31] 0.75 0.00 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50
[46] 1.00 0.50 1.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.00 1.00 0.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 0.75 NaN 0.00 0.75 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 0.50 0.00 0.25 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 NaN 1.00
[31] 0.50 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.75
[46] 0.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 0.00
[61] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.50 0.75 1.00 0.00 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 NaN 0.50
[31] 0.25 0.00 1.00 0.50 1.00 0.00 0.50 1.00 0.50 0.50 1.00 1.00 1.00 0.50 1.00
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 0.50 0.00 0.50 1.00 1.00 0.50 1.00 0.50
[61] 1.00 0.00 0.50 1.00 1.00 1.00 1.00 0.50 0.75 0.00 0.50 0.25 1.00 0.50
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 0.5000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 0.5000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.5000000
[57] 1.0000000 0.5000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 0.7500000 NaN
[71] 0.5000000 0.7500000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 0.00 0.25 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.50 0.50 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.75 0.50 0.50 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 0.00 0.50 1.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.25 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 0.75 0.25 1.00 0.50 1.00 0.50 0.00 1.00 0.50 0.50 1.00 0.00 1.00 0.50 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.00 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 1.00
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 1.0000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 1.0000000 0.5000000 0.0000000 NaN 0.5000000 0.5000000
[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 NaN NaN
[71] 1.0000000 1.0000000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 1.00 0.50 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 NaN 0.50 0.75 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 1.00 0.50 0.00 NaN 1.00 0.25 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 NaN NaN 0.00 1.00 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 1.50 0.50 1.00 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.00 1.00 2.00 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 NaN 0.50 0.25 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[31] 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[46] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 NaN 1.00 0.75 1.00 1.00 1.00 1.00
[61] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NaN NaN 1.00 1.50 1.00 1.00
Error: Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
Backtrace:
█
1. ├─rabhit::hapDendo(samplesHaplotype)
2. │ └─dplyr::bind_rows(haplo_db_clust_texture, tmp_point)
3. │ └─vctrs::vec_rbind(!!!dots, .names_to = .id)
4. ├─vctrs:::vec_ptype2.data.frame.grouped_df(...)
5. │ └─vctrs:::gdf_ptype2(x, y, ...)
6. │ └─vctrs::df_ptype2(x, y, ...)
7. └─vctrs::vec_default_ptype2(...)
8. └─vctrs::stop_incompatible_type(...)
9. └─vctrs:::stop_incompatible(...)
10. └─vctrs:::stop_vctrs(...)
Execution halted
Flavors: r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in ‘rabhit-Ex.R’ failed
The error most likely occurred in:
> ### Name: hapDendo
> ### Title: Hierarchical clustering of haplotypes graphical output
> ### Aliases: hapDendo
>
> ### ** Examples
>
> # Plotting haplotype hierarchical clustering based on the Jaccard distance
> hapDendo(samplesHaplotype)
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.50 1.00 1.00 NaN 0.00
[31] 1.00 0.75 1.00 0.50 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 1.00 1.00 0.25
[46] 0.00 0.50 1.00 0.50 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.50 0.75 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.00 1.00 0.50 NaN 0.50
[31] 0.50 0.25 0.00 0.00 1.00 0.50 0.50 0.00 0.00 0.00 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 0.50 0.00 0.00 0.50 1.00 0.00 0.50 0.00 1.00 0.50 1.00 0.00
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.00 0.00 1.00 0.00
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.50 NaN 0.50
[31] 1.00 0.25 0.00 0.50 1.00 0.00 0.50 0.00 0.50 0.50 1.00 1.00 1.00 1.00 0.75
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.00
[61] 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00 1.00 0.50 0.50 0.25 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50 NaN 0.00
[31] 0.75 0.00 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50
[46] 1.00 0.50 1.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.00 1.00 0.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 0.75 NaN 0.00 0.75 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 0.50 0.00 0.25 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 NaN 1.00
[31] 0.50 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.75
[46] 0.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 0.00
[61] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.50 0.75 1.00 0.00 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 NaN 0.50
[31] 0.25 0.00 1.00 0.50 1.00 0.00 0.50 1.00 0.50 0.50 1.00 1.00 1.00 0.50 1.00
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 0.50 0.00 0.50 1.00 1.00 0.50 1.00 0.50
[61] 1.00 0.00 0.50 1.00 1.00 1.00 1.00 0.50 0.75 0.00 0.50 0.25 1.00 0.50
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 0.5000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 0.5000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.5000000
[57] 1.0000000 0.5000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 0.7500000 NaN
[71] 0.5000000 0.7500000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 0.00 0.25 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.50 0.50 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.75 0.50 0.50 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 0.00 0.50 1.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.25 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 0.75 0.25 1.00 0.50 1.00 0.50 0.00 1.00 0.50 0.50 1.00 0.00 1.00 0.50 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.00 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 1.00
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 1.0000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 1.0000000 0.5000000 0.0000000 NaN 0.5000000 0.5000000
[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 NaN NaN
[71] 1.0000000 1.0000000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 1.00 0.50 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 NaN 0.50 0.75 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 1.00 0.50 0.00 NaN 1.00 0.25 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 NaN NaN 0.00 1.00 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 1.50 0.50 1.00 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.00 1.00 2.00 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 NaN 0.50 0.25 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[31] 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[46] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 NaN 1.00 0.75 1.00 1.00 1.00 1.00
[61] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NaN NaN 1.00 1.50 1.00 1.00
Error: Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
Backtrace:
█
1. ├─rabhit::hapDendo(samplesHaplotype)
2. │ └─dplyr::bind_rows(haplo_db_clust_texture, tmp_point)
3. │ └─vctrs::vec_rbind(!!!dots, .names_to = .id)
4. ├─vctrs:::vec_ptype2.data.frame.grouped_df(...)
5. │ └─vctrs:::gdf_ptype2(x, y, ...)
6. │ └─vctrs::df_ptype2(x, y, ...)
7. └─vctrs::vec_default_ptype2(...)
8. └─vctrs::stop_incompatible_type(...)
9. └─vctrs:::stop_incompatible(...)
10. └─vctrs:::stop_vctrs(...)
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86
Version: 0.1.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
--- re-building ‘RAbHIT-vignette.Rmd’ using rmarkdown
Loading required package: ggplot2
RAbHIT version: 0.1.4
Quitting from lines 198-200 (RAbHIT-vignette.Rmd)
Error: processing vignette 'RAbHIT-vignette.Rmd' failed with diagnostics:
Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
--- failed re-building ‘RAbHIT-vignette.Rmd’
SUMMARY: processing the following file failed:
‘RAbHIT-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in 'rabhit-Ex.R' failed
The error most likely occurred in:
> ### Name: hapDendo
> ### Title: Hierarchical clustering of haplotypes graphical output
> ### Aliases: hapDendo
>
> ### ** Examples
>
> # Plotting haplotype hierarchical clustering based on the Jaccard distance
> hapDendo(samplesHaplotype)
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.50 1.00 1.00 NaN 0.00
[31] 1.00 0.75 1.00 0.50 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 1.00 1.00 0.25
[46] 0.00 0.50 1.00 0.50 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.00 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.50 0.75 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.50 0.00 1.00 0.50 NaN 0.50
[31] 0.50 0.25 0.00 0.00 1.00 0.50 0.50 0.00 0.00 0.00 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 0.50 0.00 0.00 0.50 1.00 0.00 0.50 0.00 1.00 0.50 1.00 0.00
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.50 1.00 NaN 0.00 0.00 1.00 0.00
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.50 NaN 0.50
[31] 1.00 0.25 0.00 0.50 1.00 0.00 0.50 0.00 0.50 0.50 1.00 1.00 1.00 1.00 0.75
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.00
[61] 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00 1.00 0.50 0.50 0.25 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50 NaN 0.00
[31] 0.75 0.00 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50
[46] 1.00 0.50 1.00 0.50 0.50 0.00 0.50 0.50 0.00 0.00 0.00 1.00 0.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 0.75 NaN 0.00 0.75 1.00 0.50
[1] 1.00 1.00 1.00 0.50 1.00 0.50 0.00 0.25 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 NaN 1.00
[31] 0.50 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.75
[46] 0.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 0.00
[61] 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.50 0.75 1.00 0.00 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 NaN 0.50
[31] 0.25 0.00 1.00 0.50 1.00 0.00 0.50 1.00 0.50 0.50 1.00 1.00 1.00 0.50 1.00
[46] 0.50 1.00 1.00 1.00 0.50 0.50 0.00 0.50 0.00 0.50 1.00 1.00 0.50 1.00 0.50
[61] 1.00 0.00 0.50 1.00 1.00 1.00 1.00 0.50 0.75 0.00 0.50 0.25 1.00 0.50
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 0.5000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 0.5000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 0.0000000 0.5000000 0.0000000 0.0000000 0.5000000 0.5000000
[57] 1.0000000 0.5000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 0.7500000 NaN
[71] 0.5000000 0.7500000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 0.00 0.25 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.50 0.50 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.75 0.50 0.50 1.00 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 0.00 0.50 1.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 0.50 0.00 0.00 0.50 1.00 0.00 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.25 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 0.75 0.25 1.00 0.50 1.00 0.50 0.00 1.00 0.50 0.50 1.00 0.00 1.00 0.50 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.00 1.00 0.50 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 1.00
[1] 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 1.0000000
[8] 0.2500000 1.0000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
[22] 0.0000000 0.5000000 1.0000000 1.0000000 0.5000000 1.0000000 1.0000000
[29] NaN 0.5000000 1.0000000 0.2500000 0.0000000 1.0000000 1.0000000
[36] 0.5000000 0.5000000 0.0000000 0.5000000 0.5000000 1.0000000 0.0000000
[43] 1.0000000 1.0000000 0.6666667 0.5000000 1.0000000 1.0000000 0.5000000
[50] 0.5000000 1.0000000 0.5000000 0.0000000 NaN 0.5000000 0.5000000
[57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.5000000
[64] 1.0000000 1.0000000 0.5000000 1.0000000 0.5000000 NaN NaN
[71] 1.0000000 1.0000000 1.0000000 0.5000000
[1] 1.00 1.00 1.00 0.50 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 NaN 0.50
[31] 1.00 0.50 0.00 0.50 1.00 1.00 0.50 0.00 0.50 0.50 1.00 0.50 1.00 1.00 0.50
[46] 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.00 NaN 0.50 0.75 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.25 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 0.50 NaN 1.00
[31] 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75
[46] 1.00 0.50 1.00 1.00 0.50 1.00 0.50 0.00 NaN 1.00 0.25 1.00 1.00 1.00 0.00
[61] 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.00 NaN NaN 0.00 1.00 1.00 0.50
[1] 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 NaN 0.50
[31] 1.50 0.50 1.00 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.00 1.00 2.00 0.75
[46] 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 NaN 0.50 0.25 1.00 1.00 1.00 0.50
[61] 1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 NaN NaN 0.50 1.50 1.00 1.00
[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[16] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
[31] 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00
[46] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 NaN 1.00 0.75 1.00 1.00 1.00 1.00
[61] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NaN NaN 1.00 1.50 1.00 1.00
Error: Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
Backtrace:
x
1. +-rabhit::hapDendo(samplesHaplotype)
2. | \-dplyr::bind_rows(haplo_db_clust_texture, tmp_point)
3. | \-vctrs::vec_rbind(!!!dots, .names_to = .id)
4. +-vctrs:::vec_ptype2.data.frame.grouped_df(...)
5. | \-vctrs:::gdf_ptype2(x, y, ...)
6. | \-vctrs::df_ptype2(x, y, ...)
7. \-vctrs::vec_default_ptype2(...)
8. \-vctrs::stop_incompatible_type(...)
9. \-vctrs:::stop_incompatible(...)
10. \-vctrs:::stop_vctrs(...)
Execution halted
Flavors: r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64
Version: 0.1.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘RAbHIT-vignette.Rmd’ using rmarkdown
Warning in engine$weave(file, quiet = quiet, encoding = enc) :
Pandoc (>= 1.12.3) and/or pandoc-citeproc not available. Falling back to R Markdown v1.
Loading required package: ggplot2
RAbHIT version: 0.1.4
Quitting from lines 198-200 (RAbHIT-vignette.Rmd)
Error: processing vignette 'RAbHIT-vignette.Rmd' failed with diagnostics:
Can't combine `..1$SUBJECT` <logical> and `..2$SUBJECT` <character>.
--- failed re-building ‘RAbHIT-vignette.Rmd’
SUMMARY: processing the following file failed:
‘RAbHIT-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavor: r-patched-solaris-x86
Version: 0.1.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘RAbHIT-vignette.Rmd’ using rmarkdown
Loading required package: ggplot2
RAbHIT version: 0.1.4
Fontconfig error: Cannot load default config file
PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please make sure the phantomjs executable can be found via the PATH variable.
dyld: lazy symbol binding failed: Symbol not found: ____chkstk_darwin
Referenced from: /usr/local/bin/pandoc (which was built for Mac OS X 10.15)
Expected in: /usr/lib/libSystem.B.dylib
dyld: Symbol not found: ____chkstk_darwin
Referenced from: /usr/local/bin/pandoc (which was built for Mac OS X 10.15)
Expected in: /usr/lib/libSystem.B.dylib
Error: processing vignette 'RAbHIT-vignette.Rmd' failed with diagnostics:
pandoc document conversion failed with error 6
--- failed re-building ‘RAbHIT-vignette.Rmd’
SUMMARY: processing the following file failed:
‘RAbHIT-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavor: r-release-osx-x86_64
Version: 0.1.4
Check: re-building of vignette outputs
Result: WARN
Error(s) in re-building vignettes:
...
--- re-building ‘RAbHIT-vignette.Rmd’ using rmarkdown
Warning in engine$weave(file, quiet = quiet, encoding = enc) :
Pandoc (>= 1.12.3) and/or pandoc-citeproc not available. Falling back to R Markdown v1.
Loading required package: ggplot2
RAbHIT version: 0.1.4
Warning: Ignoring unknown aesthetics: text
Warning: Ignoring unknown aesthetics: text
PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please make sure the phantomjs executable can be found via the PATH variable.
Quitting from lines 299-301 (RAbHIT-vignette.Rmd)
Error: processing vignette 'RAbHIT-vignette.Rmd' failed with diagnostics:
cannot open the connection
--- failed re-building ‘RAbHIT-vignette.Rmd’
SUMMARY: processing the following file failed:
‘RAbHIT-vignette.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavor: r-oldrel-osx-x86_64