CRAN Package Check Results for Package tidyseurat

Last updated on 2020-09-25 07:50:07 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.8 26.35 276.66 303.01 OK
r-devel-linux-x86_64-debian-gcc 0.1.8 22.08 206.79 228.87 OK
r-devel-linux-x86_64-fedora-clang 0.1.8 446.25 WARN
r-devel-linux-x86_64-fedora-gcc 0.1.8 472.73 OK
r-devel-windows-ix86+x86_64 0.1.8 69.00 301.00 370.00 OK
r-patched-linux-x86_64 0.1.8 29.20 261.25 290.45 OK
r-patched-solaris-x86 0.1.8 420.70 WARN
r-release-linux-x86_64 0.1.8 26.02 259.43 285.45 OK
r-release-macos-x86_64 0.1.8 WARN
r-release-windows-ix86+x86_64 0.1.8 59.00 271.00 330.00 OK
r-oldrel-macos-x86_64 0.1.8 WARN
r-oldrel-windows-ix86+x86_64 0.1.8 59.00 247.00 306.00 WARN

Check Details

Version: 0.1.8
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     'SingleCellSignalR', 'dittoSeq'
Flavors: r-devel-linux-x86_64-fedora-clang, r-patched-solaris-x86, r-release-macos-x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in vst(umi = new("dgCMatrix", i = c(1L, 5L, 8L, 11L, 22L, 30L, 33L, :
     The 'show_progress' argument is deprecated as of v0.3. Use 'verbosity' instead.
    Calculating cell attributes from input UMI matrix: log_umi
    Variance stabilizing transformation of count matrix of size 220 by 80
    Model formula is y ~ log_umi
    Get Negative Binomial regression parameters per gene
    Using 220 genes, 80 cells
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Second step: Get residuals using fitted parameters for 220 genes
    Computing corrected count matrix for 220 genes
    Calculating gene attributes
    Wall clock passed: Time difference of 1.688021 secs
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    For a more efficient implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the limma package
    --------------------------------------------
    install.packages('BiocManager')
    BiocManager::install('limma')
    --------------------------------------------
    After installation of limma, Seurat will automatically use the more
    efficient implementation (no further action necessary).
    This message will be shown once per session
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    16:20:12 UMAP embedding parameters a = 0.9922 b = 1.112
    16:20:12 Read 80 rows and found 15 numeric columns
    16:20:12 Using Annoy for neighbor search, n_neighbors = 30
    16:20:12 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    16:20:12 Writing NN index file to temp file /tmp/RtmpFf3rwP/working_dir/RtmpY0gYaK/file2ef0a77a3c9e5d
    16:20:12 Searching Annoy index using 1 thread, search_k = 3000
    16:20:12 Annoy recall = 100%
    16:20:12 Commencing smooth kNN distance calibration using 1 thread
    16:20:13 Initializing from normalized Laplacian + noise
    16:20:13 Commencing optimization for 500 epochs, with 2040 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    16:20:14 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in vst(umi = new("dgCMatrix", i = c(1L, 5L, 8L, 11L, 22L, 30L, 33L, :
     The 'show_progress' argument is deprecated as of v0.3. Use 'verbosity' instead.
    Calculating cell attributes from input UMI matrix: log_umi
    Variance stabilizing transformation of count matrix of size 220 by 80
    Model formula is y ~ log_umi
    Get Negative Binomial regression parameters per gene
    Using 220 genes, 80 cells
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Second step: Get residuals using fitted parameters for 220 genes
    Computing corrected count matrix for 220 genes
    Calculating gene attributes
    Wall clock passed: Time difference of 3.546262 secs
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    For a more efficient implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the limma package
    --------------------------------------------
    install.packages('BiocManager')
    BiocManager::install('limma')
    --------------------------------------------
    After installation of limma, Seurat will automatically use the more
    efficient implementation (no further action necessary).
    This message will be shown once per session
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    00:51:16 UMAP embedding parameters a = 0.9922 b = 1.112
    00:51:16 Read 80 rows and found 15 numeric columns
    00:51:16 Using Annoy for neighbor search, n_neighbors = 30
    00:51:16 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    00:51:16 Writing NN index file to temp file /tmp/Rtmpa2aq5Y/working_dir/RtmpAEa4OX/file6347674e5467
    00:51:16 Searching Annoy index using 1 thread, search_k = 3000
    00:51:16 Annoy recall = 100%
    00:51:17 Commencing smooth kNN distance calibration using 1 thread
    00:51:18 Initializing from normalized Laplacian + noise
    00:51:19 Commencing optimization for 500 epochs, with 2040 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    00:51:20 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-patched-solaris-x86

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    07:10:52 UMAP embedding parameters a = 0.9922 b = 1.112
    07:10:52 Read 80 rows and found 15 numeric columns
    07:10:52 Using Annoy for neighbor search, n_neighbors = 30
    07:10:52 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    07:10:52 Writing NN index file to temp file /Volumes/Temp/tmp/Rtmp2PYENS/filec4e13fa7acec
    07:10:52 Searching Annoy index using 1 thread, search_k = 3000
    07:10:52 Annoy recall = 100%
    07:10:52 Commencing smooth kNN distance calibration using 1 thread
    07:10:53 Initializing from normalized Laplacian + noise
    07:10:53 Commencing optimization for 500 epochs, with 2058 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    07:10:53 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-release-macos-x86_64

Version: 0.1.8
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     'BiocStyle', 'SingleCellSignalR', 'dittoSeq'
Flavor: r-oldrel-macos-x86_64

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    11:51:51 UMAP embedding parameters a = 0.9922 b = 1.112
    11:51:51 Read 80 rows and found 15 numeric columns
    11:51:51 Using Annoy for neighbor search, n_neighbors = 30
    11:51:51 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    11:51:51 Writing NN index file to temp file /tmp/RtmpGekY7q/file17bea31c05baa
    11:51:51 Searching Annoy index using 1 thread, search_k = 3000
    11:51:51 Annoy recall = 100%
    11:51:51 Commencing smooth kNN distance calibration using 1 thread
    11:51:52 Initializing from normalized Laplacian + noise
    11:51:52 Commencing optimization for 500 epochs, with 2058 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    11:51:53 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-oldrel-macos-x86_64

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building 'introduction.Rmd' using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in vst(umi = new("dgCMatrix", i = c(1L, 5L, 8L, 11L, 22L, 30L, 33L, :
     The 'show_progress' argument is deprecated as of v0.3. Use 'verbosity' instead.
    Calculating cell attributes from input UMI matrix: log_umi
    Variance stabilizing transformation of count matrix of size 220 by 80
    Model formula is y ~ log_umi
    Get Negative Binomial regression parameters per gene
    Using 220 genes, 80 cells
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Second step: Get residuals using fitted parameters for 220 genes
    Computing corrected count matrix for 220 genes
    Calculating gene attributes
    Wall clock passed: Time difference of 1.598 secs
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    For a more efficient implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the limma package
    --------------------------------------------
    install.packages('BiocManager')
    BiocManager::install('limma')
    --------------------------------------------
    After installation of limma, Seurat will automatically use the more
    efficient implementation (no further action necessary).
    This message will be shown once per session
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    10:26:03 UMAP embedding parameters a = 0.9922 b = 1.112
    10:26:03 Read 80 rows and found 15 numeric columns
    10:26:03 Using Annoy for neighbor search, n_neighbors = 30
    10:26:03 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    10:26:03 Writing NN index file to temp file D:\temp\RtmpQBGfoq\file2782c1860cba
    10:26:03 Searching Annoy index using 1 thread, search_k = 3000
    10:26:03 Annoy recall = 100%
    10:26:03 Commencing smooth kNN distance calibration using 1 thread
    10:26:04 Initializing from normalized Laplacian + noise
    10:26:04 Commencing optimization for 500 epochs, with 2256 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    10:26:05 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building 'introduction.Rmd'
    
    SUMMARY: processing the following file failed:
     'introduction.Rmd'
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-oldrel-windows-ix86+x86_64