CRAN Package Check Results for Package tidyseurat

Last updated on 2020-10-30 08:49:17 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.11 28.77 252.23 281.00 WARN
r-devel-linux-x86_64-debian-gcc 0.1.11 19.62 189.42 209.04 OK
r-devel-linux-x86_64-fedora-clang 0.1.11 341.62 WARN
r-devel-linux-x86_64-fedora-gcc 0.1.11 374.76 OK
r-patched-solaris-x86 0.1.11 374.80 WARN
r-release-linux-x86_64 0.1.11 24.35 235.29 259.64 OK
r-release-macos-x86_64 0.1.8 WARN
r-oldrel-macos-x86_64 0.1.11 ERROR

Additional issues

ATLAS

Check Details

Version: 0.1.11
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: 'dittoSeq'
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.11
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building 'introduction.Rmd' using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:dplyr':
    
     bind_cols, bind_rows, count
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    13:24:22 UMAP embedding parameters a = 0.9922 b = 1.112
    13:24:22 Read 80 rows and found 15 numeric columns
    13:24:22 Using Annoy for neighbor search, n_neighbors = 30
    13:24:22 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    13:24:22 Writing NN index file to temp file /tmp/RtmpzSsl2t/file28ac2ba8f311
    13:24:22 Searching Annoy index using 1 thread, search_k = 3000
    13:24:22 Annoy recall = 100%
    13:24:23 Commencing smooth kNN distance calibration using 1 thread
    13:24:23 Initializing from normalized Laplacian + noise
    13:24:23 Commencing optimization for 500 epochs, with 2040 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    13:24:24 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building 'introduction.Rmd'
    
    SUMMARY: processing the following file failed:
     'introduction.Rmd'
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.11
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     'SingleCellSignalR', 'dittoSeq'
Flavors: r-devel-linux-x86_64-fedora-clang, r-patched-solaris-x86, r-oldrel-macos-x86_64

Version: 0.1.11
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:dplyr':
    
     bind_cols, bind_rows, count
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    For a more efficient implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the limma package
    --------------------------------------------
    install.packages('BiocManager')
    BiocManager::install('limma')
    --------------------------------------------
    After installation of limma, Seurat will automatically use the more
    efficient implementation (no further action necessary).
    This message will be shown once per session
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    14:03:38 UMAP embedding parameters a = 0.9922 b = 1.112
    14:03:38 Read 80 rows and found 15 numeric columns
    14:03:38 Using Annoy for neighbor search, n_neighbors = 30
    14:03:38 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    14:03:38 Writing NN index file to temp file /tmp/RtmpbPEzuN/working_dir/Rtmpdh0Ne2/file1710856e7e229f
    14:03:38 Searching Annoy index using 1 thread, search_k = 3000
    14:03:39 Annoy recall = 100%
    14:03:39 Commencing smooth kNN distance calibration using 1 thread
    14:03:41 Initializing from normalized Laplacian + noise
    14:03:41 Commencing optimization for 500 epochs, with 2040 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    14:03:42 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.1.11
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
     ...
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:dplyr':
    
     bind_cols, bind_rows, count
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    For a more efficient implementation of the Wilcoxon Rank Sum Test,
    (default method for FindMarkers) please install the limma package
    --------------------------------------------
    install.packages('BiocManager')
    BiocManager::install('limma')
    --------------------------------------------
    After installation of limma, Seurat will automatically use the more
    efficient implementation (no further action necessary).
    This message will be shown once per session
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    09:18:40 UMAP embedding parameters a = 0.9922 b = 1.112
    09:18:40 Read 80 rows and found 15 numeric columns
    09:18:40 Using Annoy for neighbor search, n_neighbors = 30
    09:18:40 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    09:18:40 Writing NN index file to temp file /tmp/Rtmp5Da41x/working_dir/RtmpkRaijW/file6049731346f7
    09:18:40 Searching Annoy index using 1 thread, search_k = 3000
    09:18:40 Annoy recall = 100%
    09:18:41 Commencing smooth kNN distance calibration using 1 thread
    09:18:41 Initializing from normalized Laplacian + noise
    09:18:42 Commencing optimization for 500 epochs, with 2040 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    09:18:42 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-patched-solaris-x86

Version: 0.1.8
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     'SingleCellSignalR', 'dittoSeq'
Flavor: r-release-macos-x86_64

Version: 0.1.8
Check: re-building of vignette outputs
Result: WARN
    Error(s) in re-building vignettes:
    --- re-building ‘introduction.Rmd’ using knitr
    
    Attaching package: 'dplyr'
    
    The following objects are masked from 'package:stats':
    
     filter, lag
    
    The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
    
    Attaching package: 'magrittr'
    
    The following object is masked from 'package:purrr':
    
     set_names
    
    The following object is masked from 'package:tidyr':
    
     extract
    
    
    Attaching package: 'tidyseurat'
    
    The following object is masked from 'package:Seurat':
    
     pbmc_small
    
    The following object is masked from 'package:ggplot2':
    
     ggplot
    
    The following object is masked from 'package:magrittr':
    
     extract
    
    The following objects are masked from 'package:tidyr':
    
     as_tibble, extract, nest, pivot_longer, separate, unite, unnest
    
    The following objects are masked from 'package:dplyr':
    
     arrange, as_tibble, bind_cols, bind_rows, count, distinct, filter,
     full_join, group_by, inner_join, left_join, mutate, pull, rename,
     right_join, rowwise, sample_frac, sample_n, select, slice,
     summarise
    
    The following object is masked from 'package:stats':
    
     filter
    
    `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
    tidyseurat says: A data frame is returned for independent data analysis.
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in sqrt(1/i) : NaNs produced
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in theta.ml(y = y, mu = fit$fitted) : iteration limit reached
    Warning in irlba(A = t(x = object), nv = npcs, ...) :
     You're computing too large a percentage of total singular values, use a standard svd instead.
    tidyseurat says: A data frame is returned for independent data analysis.
    Calculating cluster 0
    Calculating cluster 1
    Calculating cluster 2
    Calculating cluster 3
    Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
    To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
    This message will be shown once per session
    07:10:52 UMAP embedding parameters a = 0.9922 b = 1.112
    07:10:52 Read 80 rows and found 15 numeric columns
    07:10:52 Using Annoy for neighbor search, n_neighbors = 30
    07:10:52 Building Annoy index with metric = cosine, n_trees = 50
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    07:10:52 Writing NN index file to temp file /Volumes/Temp/tmp/Rtmp2PYENS/filec4e13fa7acec
    07:10:52 Searching Annoy index using 1 thread, search_k = 3000
    07:10:52 Annoy recall = 100%
    07:10:52 Commencing smooth kNN distance calibration using 1 thread
    07:10:53 Initializing from normalized Laplacian + noise
    07:10:53 Commencing optimization for 500 epochs, with 2058 positive edges
    0% 10 20 30 40 50 60 70 80 90 100%
    [----|----|----|----|----|----|----|----|----|----|
    **************************************************|
    07:10:53 Optimization finished
    tidyseurat says: A data frame is returned for independent data analysis.
    tidyseurat says: A data frame is returned for independent data analysis.
    Quitting from lines 307-320 (./../man/fragments/intro.Rmd)
    Quitting from lines 50-51 (./../man/fragments/intro.Rmd)
    Error: processing vignette 'introduction.Rmd' failed with diagnostics:
    Insufficient values in manual scale. 11 needed but only 4 provided.
    --- failed re-building ‘introduction.Rmd’
    
    SUMMARY: processing the following file failed:
     ‘introduction.Rmd’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-release-macos-x86_64

Version: 0.1.11
Check: whether package can be installed
Result: ERROR
    Installation failed.
Flavor: r-oldrel-macos-x86_64