Last updated on 2021-04-06 06:52:08 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1.4 | 2.85 | 38.23 | 41.08 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.1.4 | 2.49 | 30.00 | 32.49 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.1.4 | 56.92 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.1.4 | 45.21 | ERROR | |||
r-devel-windows-ix86+x86_64 | 0.1.4 | 6.00 | 41.00 | 47.00 | ERROR | |
r-devel-windows-x86_64-gcc10-UCRT | 0.1.4 | ERROR | ||||
r-patched-linux-x86_64 | 0.1.4 | 3.05 | 36.48 | 39.53 | ERROR | |
r-patched-solaris-x86 | 0.1.4 | 73.00 | ERROR | |||
r-release-linux-x86_64 | 0.1.4 | 3.06 | 37.34 | 40.40 | ERROR | |
r-release-macos-x86_64 | 0.1.4 | NOTE | ||||
r-release-windows-ix86+x86_64 | 0.1.4 | 6.00 | 56.00 | 62.00 | ERROR | |
r-oldrel-macos-x86_64 | 0.1.4 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 0.1.4 | 5.00 | 41.00 | 46.00 | ERROR |
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in 'mlquantify-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: PACC
> ### Title: Probabilistic Adjusted Classify and Count
> ### Aliases: PACC
>
> ### ** Examples
>
> library(randomForest)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
> library(caret)
Loading required package: lattice
Loading required package: ggplot2
Attaching package: 'ggplot2'
The following object is masked from 'package:randomForest':
margin
> cv <- createFolds(aeAegypti$class, 3)
> tr <- aeAegypti[cv$Fold1,]
> validation <- aeAegypti[cv$Fold2,]
> ts <- aeAegypti[cv$Fold3,]
>
> # -- Getting a sample from ts with 80 positive and 20 negative instances --
> ts_sample <- rbind(ts[sample(which(ts$class==1),80),],
+ ts[sample(which(ts$class==2),20),])
> scorer <- randomForest(class~., data=tr, ntree=500)
> scores <- cbind(predict(scorer, validation, type = c("prob")), validation$class)
> TprFpr <- getTPRandFPRbyThreshold(scores)
> test.scores <- predict(scorer, ts_sample, type = c("prob"))[,1]
>
> # -- PACC requires calibrated scores. Be aware of doing this before using PACC --
> # -- You can make it using calibrate function from the CORElearn package --
> if(requireNamespace("CORElearn")){
+ cal_tr <- CORElearn::calibrate(as.factor(scores[,3]), scores[,1], class1=1,
+ method="isoReg",assumeProbabilities=TRUE)
+ test.scores <- CORElearn::applyCalibration(test.scores, cal_tr)
+ }
Loading required namespace: CORElearn
> PACC(test = test.scores, TprFpr = TprFpr)
Error in if (result < 0) result <- 0 :
missing value where TRUE/FALSE needed
Calls: PACC -> PCC
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 0.1.4
Check: dependencies in R code
Result: NOTE
Namespaces in Imports field not imported from:
‘caret’ ‘randomForest’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64-gcc10-UCRT, r-patched-solaris-x86, r-release-macos-x86_64, r-oldrel-macos-x86_64
Version: 0.1.4
Check: examples
Result: ERROR
Running examples in ‘mlquantify-Ex.R’ failed
The error most likely occurred in:
> ### Name: PACC
> ### Title: Probabilistic Adjusted Classify and Count
> ### Aliases: PACC
>
> ### ** Examples
>
> library(randomForest)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
> library(caret)
Loading required package: lattice
Loading required package: ggplot2
Attaching package: ‘ggplot2’
The following object is masked from ‘package:randomForest’:
margin
> cv <- createFolds(aeAegypti$class, 3)
> tr <- aeAegypti[cv$Fold1,]
> validation <- aeAegypti[cv$Fold2,]
> ts <- aeAegypti[cv$Fold3,]
>
> # -- Getting a sample from ts with 80 positive and 20 negative instances --
> ts_sample <- rbind(ts[sample(which(ts$class==1),80),],
+ ts[sample(which(ts$class==2),20),])
> scorer <- randomForest(class~., data=tr, ntree=500)
> scores <- cbind(predict(scorer, validation, type = c("prob")), validation$class)
> TprFpr <- getTPRandFPRbyThreshold(scores)
> test.scores <- predict(scorer, ts_sample, type = c("prob"))[,1]
>
> # -- PACC requires calibrated scores. Be aware of doing this before using PACC --
> # -- You can make it using calibrate function from the CORElearn package --
> if(requireNamespace("CORElearn")){
+ cal_tr <- CORElearn::calibrate(as.factor(scores[,3]), scores[,1], class1=1,
+ method="isoReg",assumeProbabilities=TRUE)
+ test.scores <- CORElearn::applyCalibration(test.scores, cal_tr)
+ }
Loading required namespace: CORElearn
> PACC(test = test.scores, TprFpr = TprFpr)
Error in if (result < 0) result <- 0 :
missing value where TRUE/FALSE needed
Calls: PACC -> PCC
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-devel-windows-x86_64-gcc10-UCRT, r-patched-solaris-x86, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64