Last updated on 2021-05-27 12:54:17 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.4 | 10.93 | 33.39 | 44.32 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 1.4 | 10.22 | 25.49 | 35.71 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.4 | 67.41 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 1.4 | 59.53 | ERROR | |||
r-devel-windows-x86_64 | 1.4 | 22.00 | 50.00 | 72.00 | OK | |
r-devel-windows-x86_64-gcc10-UCRT | 1.4 | OK | ||||
r-patched-linux-x86_64 | 1.4 | 11.87 | 33.98 | 45.85 | OK | |
r-patched-solaris-x86 | 1.4 | 92.50 | OK | |||
r-release-linux-x86_64 | 1.4 | 11.73 | 34.11 | 45.84 | OK | |
r-release-windows-ix86+x86_64 | 1.4 | 32.00 | 49.00 | 81.00 | OK | |
r-oldrel-macos-x86_64 | 1.4 | OK | ||||
r-oldrel-windows-ix86+x86_64 | 1.4 | 28.00 | 48.00 | 76.00 | OK |
Version: 1.4
Check: examples
Result: ERROR
Running examples in 'mBvs-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: mvnBvs
> ### Title: The function to perform variable selection for multivariate
> ### normal responses
> ### Aliases: mvnBvs
> ### Keywords: multivariate Bayesian variable selection multivariate
> ### continuous data
>
> ### ** Examples
>
>
> # loading a data set
> data(simData_cont)
> Y <- simData_cont$Y
> data <- simData_cont$X
> form1 <- as.formula( ~ cov.1+cov.2)
> form2 <- as.formula( ~ 1)
> lin.pred <- list(form1, form2)
>
> p <- dim(data)[2]
> p_adj <- 0
> q <- dim(Y)[2]
>
> #####################
> ## Hyperparameters ##
>
> ## Common hyperparameters
> ##
> eta = 0.1
> v = rep(10, q)
> omega = rep(log(0.5/(1-0.5)), p-p_adj)
> common.beta0 <- c(rep(0, q), 10^6)
>
> ## Unstructured model
> ##
> rho0 <- q + 4
> Psi0 <- diag(3, q)
> US.Sigma <- c(rho0, Psi0)
>
> ## Factor-analytic model
> ##
> FA.lam <- c(rep(0, q), 10^6)
> FA.sigSq <- c(2, 1)
>
> ##
> hyperParams <- list(eta=eta, v=v, omega=omega, beta0=common.beta0,
+ US=list(US.Sigma=US.Sigma),
+ FA=list(lambda=FA.lam, sigmaSq=FA.sigSq))
>
> ###################
> ## MCMC SETTINGS ##
>
> ## Setting for the overall run
> ##
> numReps <- 50
> thin <- 1
> burninPerc <- 0.5
>
> ## Tuning parameters for specific updates
> ##
> ## - those common to all models
> mhProp_beta_var <- matrix(0.5, p+p_adj, q)
> ##
> ## - those specific to the unstructured model
> mhrho_prop <- 1000
> mhPsi_prop <- diag(1, q)
> ##
> ## - those specific to the factor-analytic model
> mhProp_lambda_var <- 0.5
>
> ##
> mcmc.US <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
+ tuning=list(mhProp_beta_var=mhProp_beta_var,
+ mhrho_prop=mhrho_prop, mhPsi_prop=mhPsi_prop))
>
> ##
> mcmc.FA <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
+ tuning=list(mhProp_beta_var=mhProp_beta_var,
+ mhProp_lambda_var=mhProp_lambda_var))
>
> #####################
> ## Starting Values ##
>
> ## - those common to all models
> beta0 <- rep(0, q)
> B <- matrix(sample(x=c(0.3, 0), size=q, replace = TRUE), p+p_adj, q)
> gamma <- B
> gamma[gamma != 0] <- 1
> ##
> ## - those specific to the unstructured model
> Sigma <- diag(1, q)
> ##
> ## - those specific to the factor-analytic model
> lambda <- rep(0.5, q)
> sigmaSq <- 1
>
> ####################################
> ## Fitting the unstructured model ##
> ####################################
>
> startValues <- vector("list", 2)
>
> startValues[[1]] <- as.vector(c(beta0, B, gamma, Sigma))
>
> beta0 <- rep(0.2, q)
> Sigma <- diag(0.5, q)
>
> startValues[[2]] <- as.vector(c(beta0, B, gamma, Sigma))
>
> fit.us <- mvnBvs(Y, lin.pred, data, model="unstructured", hyperParams,
+ startValues, mcmcParams=mcmc.US)
chain: 1
chain: 2
>
> fit.us
Error in matrix(x$chain1$B.p[, , 1], 1, q) :
data length differs from size of matrix: [20 != 1 x 10]
Calls: <Anonymous> ... print.mvnBvs -> colnames -> is.data.frame -> matrix
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc
Version: 1.4
Check: examples
Result: ERROR
Running examples in ‘mBvs-Ex.R’ failed
The error most likely occurred in:
> ### Name: mvnBvs
> ### Title: The function to perform variable selection for multivariate
> ### normal responses
> ### Aliases: mvnBvs
> ### Keywords: multivariate Bayesian variable selection multivariate
> ### continuous data
>
> ### ** Examples
>
>
> # loading a data set
> data(simData_cont)
> Y <- simData_cont$Y
> data <- simData_cont$X
> form1 <- as.formula( ~ cov.1+cov.2)
> form2 <- as.formula( ~ 1)
> lin.pred <- list(form1, form2)
>
> p <- dim(data)[2]
> p_adj <- 0
> q <- dim(Y)[2]
>
> #####################
> ## Hyperparameters ##
>
> ## Common hyperparameters
> ##
> eta = 0.1
> v = rep(10, q)
> omega = rep(log(0.5/(1-0.5)), p-p_adj)
> common.beta0 <- c(rep(0, q), 10^6)
>
> ## Unstructured model
> ##
> rho0 <- q + 4
> Psi0 <- diag(3, q)
> US.Sigma <- c(rho0, Psi0)
>
> ## Factor-analytic model
> ##
> FA.lam <- c(rep(0, q), 10^6)
> FA.sigSq <- c(2, 1)
>
> ##
> hyperParams <- list(eta=eta, v=v, omega=omega, beta0=common.beta0,
+ US=list(US.Sigma=US.Sigma),
+ FA=list(lambda=FA.lam, sigmaSq=FA.sigSq))
>
> ###################
> ## MCMC SETTINGS ##
>
> ## Setting for the overall run
> ##
> numReps <- 50
> thin <- 1
> burninPerc <- 0.5
>
> ## Tuning parameters for specific updates
> ##
> ## - those common to all models
> mhProp_beta_var <- matrix(0.5, p+p_adj, q)
> ##
> ## - those specific to the unstructured model
> mhrho_prop <- 1000
> mhPsi_prop <- diag(1, q)
> ##
> ## - those specific to the factor-analytic model
> mhProp_lambda_var <- 0.5
>
> ##
> mcmc.US <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
+ tuning=list(mhProp_beta_var=mhProp_beta_var,
+ mhrho_prop=mhrho_prop, mhPsi_prop=mhPsi_prop))
>
> ##
> mcmc.FA <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),
+ tuning=list(mhProp_beta_var=mhProp_beta_var,
+ mhProp_lambda_var=mhProp_lambda_var))
>
> #####################
> ## Starting Values ##
>
> ## - those common to all models
> beta0 <- rep(0, q)
> B <- matrix(sample(x=c(0.3, 0), size=q, replace = TRUE), p+p_adj, q)
> gamma <- B
> gamma[gamma != 0] <- 1
> ##
> ## - those specific to the unstructured model
> Sigma <- diag(1, q)
> ##
> ## - those specific to the factor-analytic model
> lambda <- rep(0.5, q)
> sigmaSq <- 1
>
> ####################################
> ## Fitting the unstructured model ##
> ####################################
>
> startValues <- vector("list", 2)
>
> startValues[[1]] <- as.vector(c(beta0, B, gamma, Sigma))
>
> beta0 <- rep(0.2, q)
> Sigma <- diag(0.5, q)
>
> startValues[[2]] <- as.vector(c(beta0, B, gamma, Sigma))
>
> fit.us <- mvnBvs(Y, lin.pred, data, model="unstructured", hyperParams,
+ startValues, mcmcParams=mcmc.US)
chain: 1
chain: 2
>
> fit.us
Error in matrix(x$chain1$B.p[, , 1], 1, q) :
data length differs from size of matrix: [20 != 1 x 10]
Calls: <Anonymous> ... print.mvnBvs -> colnames -> is.data.frame -> matrix
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc