CRAN Package Check Results for Package sensR

Last updated on 2022-02-06 07:51:41 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.5-2 ERROR
r-devel-linux-x86_64-debian-gcc 1.5-2 11.33 110.52 121.85 ERROR
r-devel-linux-x86_64-fedora-clang 1.5-2 198.35 ERROR
r-devel-linux-x86_64-fedora-gcc 1.5-2 191.95 ERROR
r-devel-windows-x86_64-new-UL 1.5-2 86.00 203.00 289.00 ERROR
r-devel-windows-x86_64-new-TK 1.5-2 ERROR
r-patched-linux-x86_64 1.5-2 14.41 156.23 170.64 OK
r-release-linux-x86_64 1.5-2 15.66 152.43 168.09 OK
r-release-macos-arm64 1.5-2 OK
r-release-macos-x86_64 1.5-2 OK
r-release-windows-ix86+x86_64 1.5-2 28.00 196.00 224.00 OK
r-oldrel-macos-x86_64 1.5-2 OK
r-oldrel-windows-ix86+x86_64 1.5-2 28.00 191.00 219.00 OK

Check Details

Version: 1.5-2
Check: examples
Result: ERROR
    Running examples in 'sensR-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: clm2twoAC
    > ### Title: Extract 2-AC coefficient table from a cumulative link model
    > ### Aliases: clm2twoAC
    > ### Keywords: models
    >
    > ### ** Examples
    >
    >
    > ## Example of a simple 2-AC model. First the conventional way:
    > twoAC(c(2, 2, 6))
    Results for the 2-AC protocol with data c(2, 2, 6):
     Estimate Std. Error
    tau 0.4160 0.2674
    d.prime 0.7743 0.5417
    
    Two-sided 95% confidence interval for d-prime based on the
    likelihood root statistic:
     Lower Upper
    d.prime -0.271 1.859
    
    Significance test:
     Likelihood root statistic = 1.446718 p-value = 0.14798
     Alternative hypothesis: d-prime is different from 0
    > ## Don't show:
    > ## Testing stability of twoAC function:
    > fm1 <- twoAC(c(2, 2, 6))
    > ## str(fm1)
    > nm <- c("coefficients", "stat.value", "p.value", "confint", "vcov", "logLik")
    > b <- as.vector(unlist(fm1[nm]))
    > ## b2 := dput(b)
    > b2 <- c(0.415972626828703, 0.774259536071287, 0.26743108470048, 0.541673720311043,
    + 1.44671786297779, 0.147975959384948, -0.27098319957656, 1.85925113345333,
    + 0.0715193850640751, 0.0216722514182911, 0.0216722514182911, 0.293410419275606,
    + -9.50270539233235)
    > stopifnot(isTRUE(all.equal(b, b2)))
    > ## End(Don't show)
    > ## The using a cumulative link model (clm from package ordinal):
    > if(require(ordinal)) {
    + response <- gl(3,1)
    + fit.clm <- clm(response ~ 1, weights = c(2, 2, 6), link = "probit")
    + clm2twoAC(fit.clm)
    + ## Alternatively we could get estimates and standard errors "by hand":
    + tab <- coef(summary(fit.clm))
    + theta <- tab[,1]
    + (tau <- (theta[2] - theta[1])/sqrt(2))
    + (d.prime <- (-theta[2] - theta[1])/sqrt(2))
    + VCOV <- vcov(fit.clm)
    + (se.tau <- sqrt((VCOV[1,1] + VCOV[2,2] - 2*VCOV[2,1])/2))
    + (se.d.prime <- sqrt((VCOV[1,1] + VCOV[2,2] + 2*VCOV[2,1])/2))
    +
    + ## Extended example with a regression model for d.prime
    + ## (see the referenced paper for details):
    + n.women <- c(2, 2, 6)*10
    + n.men <- c(1, 2, 7)*10
    + wt <- c(n.women, n.men)
    + response <- gl(3,1, length = 6)
    + gender <- gl(2, 3, labels = c("women", "men"))
    + fm2 <- clm(response ~ gender, weights = wt, link = "probit")
    + clm2twoAC(fm2)
    + }
    Loading required package: ordinal
     Estimate Std. Error z value Pr(>|z|)
    tau 0.4670001 0.06700014 6.970135 3.1664e-12
    d-prime 0.7898785 0.17021271 4.640538 3.4750e-06
    gendermen 0.4533125 0.24627746 1.840658 0.065672
    > ## Don't show:
    > ## Test equality of hand calculations, twoAC and clm2twoAC:
    > if(require(ordinal)){
    + b <- clm2twoAC(fit.clm)
    + b2 <- c(tau, d.prime, se.tau, se.d.prime)
    + stopifnot(
    + isTRUE(all.equal(unlist(b[, 1:2]), b2, c(coef(fm1)), check.attributes=FALSE))
    + )
    + ## Test stability of clm2twoAC results:
    + tab <- unlist(clm2twoAC(fm2)[, 1:3])
    + ## tab2 := dput(tab)
    + tab2 <- c(0.467000059796145, 0.78987850607203, 0.453312459391865,
    + 0.0670001441456634, 0.170212706442409, 0.246277460374108, 6.9701351504685,
    + 4.64053784574117, 1.84065751978788)
    + stopifnot(
    + isTRUE(all.equal(tab, tab2, check.attributes=FALSE))
    + )
    + }
    Error in all.equal.numeric(unlist(b[, 1:2]), b2, c(coef(fm1)), check.attributes = FALSE) :
     length(tolerance) == 1L is not TRUE
    Calls: stopifnot ... isTRUE -> all.equal -> all.equal.numeric -> stopifnot
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.5-2
Check: examples
Result: ERROR
    Running examples in ‘sensR-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: clm2twoAC
    > ### Title: Extract 2-AC coefficient table from a cumulative link model
    > ### Aliases: clm2twoAC
    > ### Keywords: models
    >
    > ### ** Examples
    >
    >
    > ## Example of a simple 2-AC model. First the conventional way:
    > twoAC(c(2, 2, 6))
    Results for the 2-AC protocol with data c(2, 2, 6):
     Estimate Std. Error
    tau 0.4160 0.2674
    d.prime 0.7743 0.5417
    
    Two-sided 95% confidence interval for d-prime based on the
    likelihood root statistic:
     Lower Upper
    d.prime -0.271 1.859
    
    Significance test:
     Likelihood root statistic = 1.446718 p-value = 0.14798
     Alternative hypothesis: d-prime is different from 0
    > ## Don't show:
    > ## Testing stability of twoAC function:
    > fm1 <- twoAC(c(2, 2, 6))
    > ## str(fm1)
    > nm <- c("coefficients", "stat.value", "p.value", "confint", "vcov", "logLik")
    > b <- as.vector(unlist(fm1[nm]))
    > ## b2 := dput(b)
    > b2 <- c(0.415972626828703, 0.774259536071287, 0.26743108470048, 0.541673720311043,
    + 1.44671786297779, 0.147975959384948, -0.27098319957656, 1.85925113345333,
    + 0.0715193850640751, 0.0216722514182911, 0.0216722514182911, 0.293410419275606,
    + -9.50270539233235)
    > stopifnot(isTRUE(all.equal(b, b2)))
    > ## End(Don't show)
    > ## The using a cumulative link model (clm from package ordinal):
    > if(require(ordinal)) {
    + response <- gl(3,1)
    + fit.clm <- clm(response ~ 1, weights = c(2, 2, 6), link = "probit")
    + clm2twoAC(fit.clm)
    + ## Alternatively we could get estimates and standard errors "by hand":
    + tab <- coef(summary(fit.clm))
    + theta <- tab[,1]
    + (tau <- (theta[2] - theta[1])/sqrt(2))
    + (d.prime <- (-theta[2] - theta[1])/sqrt(2))
    + VCOV <- vcov(fit.clm)
    + (se.tau <- sqrt((VCOV[1,1] + VCOV[2,2] - 2*VCOV[2,1])/2))
    + (se.d.prime <- sqrt((VCOV[1,1] + VCOV[2,2] + 2*VCOV[2,1])/2))
    +
    + ## Extended example with a regression model for d.prime
    + ## (see the referenced paper for details):
    + n.women <- c(2, 2, 6)*10
    + n.men <- c(1, 2, 7)*10
    + wt <- c(n.women, n.men)
    + response <- gl(3,1, length = 6)
    + gender <- gl(2, 3, labels = c("women", "men"))
    + fm2 <- clm(response ~ gender, weights = wt, link = "probit")
    + clm2twoAC(fm2)
    + }
    Loading required package: ordinal
     Estimate Std. Error z value Pr(>|z|)
    tau 0.4670001 0.06700014 6.970135 3.1664e-12
    d-prime 0.7898785 0.17021271 4.640538 3.4750e-06
    gendermen 0.4533125 0.24627746 1.840658 0.065672
    > ## Don't show:
    > ## Test equality of hand calculations, twoAC and clm2twoAC:
    > if(require(ordinal)){
    + b <- clm2twoAC(fit.clm)
    + b2 <- c(tau, d.prime, se.tau, se.d.prime)
    + stopifnot(
    + isTRUE(all.equal(unlist(b[, 1:2]), b2, c(coef(fm1)), check.attributes=FALSE))
    + )
    + ## Test stability of clm2twoAC results:
    + tab <- unlist(clm2twoAC(fm2)[, 1:3])
    + ## tab2 := dput(tab)
    + tab2 <- c(0.467000059796145, 0.78987850607203, 0.453312459391865,
    + 0.0670001441456634, 0.170212706442409, 0.246277460374108, 6.9701351504685,
    + 4.64053784574117, 1.84065751978788)
    + stopifnot(
    + isTRUE(all.equal(tab, tab2, check.attributes=FALSE))
    + )
    + }
    Error in all.equal.numeric(unlist(b[, 1:2]), b2, c(coef(fm1)), check.attributes = FALSE) :
     length(tolerance) == 1L is not TRUE
    Calls: stopifnot ... isTRUE -> all.equal -> all.equal.numeric -> stopifnot
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64-new-UL, r-devel-windows-x86_64-new-TK