CRAN Package Check Results for Package Zelig

Last updated on 2022-03-18 06:49:01 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 5.1.7 52.14 503.07 555.21 ERROR
r-devel-linux-x86_64-debian-gcc 5.1.7 42.40 367.38 409.78 ERROR
r-devel-linux-x86_64-fedora-clang 5.1.7 678.47 ERROR
r-devel-linux-x86_64-fedora-gcc 5.1.7 768.98 ERROR
r-devel-windows-x86_64-new-UL 5.1.7 151.00 801.00 952.00 ERROR
r-devel-windows-x86_64-new-TK 5.1.7 ERROR
r-patched-linux-x86_64 5.1.7 51.01 463.53 514.54 OK
r-release-linux-x86_64 5.1.7 45.05 469.39 514.44 OK
r-release-macos-arm64 5.1.7 OK
r-release-macos-x86_64 5.1.7 OK
r-release-windows-ix86+x86_64 5.1.7 90.00 545.00 635.00 OK
r-oldrel-macos-x86_64 5.1.7 OK
r-oldrel-windows-ix86+x86_64 5.1.7 95.00 559.00 654.00 OK

Check Details

Version: 5.1.7
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: 'optmatch'
Flavor: r-devel-linux-x86_64-debian-clang

Version: 5.1.7
Check: examples
Result: ERROR
    Running examples in 'Zelig-Ex.R' failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: Zelig-mlogit-bayes-class
    > ### Title: Bayesian Multinomial Logistic Regression
    > ### Aliases: Zelig-mlogit-bayes-class zmlogitbayes
    >
    > ### ** Examples
    >
    > data(mexico)
    > z.out <- zelig(vote88 ~ pristr + othcok + othsocok,model = "mlogit.bayes",
    + data = mexico,verbose = FALSE)
    Calculating MLEs and large sample var-cov matrix.
    This may take a moment...
    Inverting Hessian to get large sample var-cov matrix.
    Calculating MLEs and large sample var-cov matrix.
    This may take a moment...
    Inverting Hessian to get large sample var-cov matrix.
    Error in if (mcmc.method == "RWM") { : the condition has length > 1
    Calls: zelig ... do.grouped_df -> eval_tidy -> eval -> eval -> <Anonymous>
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 5.1.7
Check: tests
Result: ERROR
     Running 'testthat.R' [210s/235s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     == Skipped tests ===============================================================
     * On CRAN (17)
    
     == Failed tests ================================================================
     -- Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome --
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     x
     1. +-... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. +-Zelig::zelig_qi_to_df(.)
     3. | \-Zelig::is_zelig(obj)
     4. +-Zelig::sim(.)
     5. | \-Zelig::is_zelig(obj)
     6. +-Zelig::setx(.)
     7. | \-Zelig::is_zelig(obj, fail = FALSE)
     8. +-Zelig::zelig(...)
     9. | \-z5$zelig(formula = formula, data = data, ..., by = by)
     10. | \-Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. | \-.self$data %>% group_by_(.self$by) %>% ...
     12. +-dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. +-dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. | \-rlang::eval_tidy(args[[j]], mask)
     15. \-base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. \-base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. \-MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 5.1.7
Check: tests
Result: ERROR
     Running ‘testthat.R’ [155s/239s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     ══ Skipped tests ═══════════════════════════════════════════════════════════════
     • On CRAN (17)
    
     ══ Failed tests ════════════════════════════════════════════════════════════════
     ── Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome ──
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     ▆
     1. ├─... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. ├─Zelig::zelig_qi_to_df(.)
     3. │ └─Zelig::is_zelig(obj)
     4. ├─Zelig::sim(.)
     5. │ └─Zelig::is_zelig(obj)
     6. ├─Zelig::setx(.)
     7. │ └─Zelig::is_zelig(obj, fail = FALSE)
     8. ├─Zelig::zelig(...)
     9. │ └─z5$zelig(formula = formula, data = data, ..., by = by)
     10. │ └─Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. │ └─.self$data %>% group_by_(.self$by) %>% ...
     12. ├─dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. ├─dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. │ └─rlang::eval_tidy(args[[j]], mask)
     15. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. └─MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc

Version: 5.1.7
Check: examples
Result: ERROR
    Running examples in ‘Zelig-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: Zelig-mlogit-bayes-class
    > ### Title: Bayesian Multinomial Logistic Regression
    > ### Aliases: Zelig-mlogit-bayes-class zmlogitbayes
    >
    > ### ** Examples
    >
    > data(mexico)
    > z.out <- zelig(vote88 ~ pristr + othcok + othsocok,model = "mlogit.bayes",
    + data = mexico,verbose = FALSE)
    Calculating MLEs and large sample var-cov matrix.
    This may take a moment...
    Inverting Hessian to get large sample var-cov matrix.
    Calculating MLEs and large sample var-cov matrix.
    This may take a moment...
    Inverting Hessian to get large sample var-cov matrix.
    Error in if (mcmc.method == "RWM") { : the condition has length > 1
    Calls: zelig ... do.grouped_df -> eval_tidy -> eval -> eval -> <Anonymous>
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64-new-UL, r-devel-windows-x86_64-new-TK

Version: 5.1.7
Check: tests
Result: ERROR
     Running ‘testthat.R’ [4m/10m]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     ══ Skipped tests ═══════════════════════════════════════════════════════════════
     • On CRAN (17)
    
     ══ Failed tests ════════════════════════════════════════════════════════════════
     ── Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome ──
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     ▆
     1. ├─... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. ├─Zelig::zelig_qi_to_df(.)
     3. │ └─Zelig::is_zelig(obj)
     4. ├─Zelig::sim(.)
     5. │ └─Zelig::is_zelig(obj)
     6. ├─Zelig::setx(.)
     7. │ └─Zelig::is_zelig(obj, fail = FALSE)
     8. ├─Zelig::zelig(...)
     9. │ └─z5$zelig(formula = formula, data = data, ..., by = by)
     10. │ └─Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. │ └─.self$data %>% group_by_(.self$by) %>% ...
     12. ├─dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. ├─dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. │ └─rlang::eval_tidy(args[[j]], mask)
     15. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. └─MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang

Version: 5.1.7
Check: tests
Result: ERROR
     Running ‘testthat.R’ [333s/467s]
    Running the tests in ‘tests/testthat.R’ failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     ══ Skipped tests ═══════════════════════════════════════════════════════════════
     • On CRAN (17)
    
     ══ Failed tests ════════════════════════════════════════════════════════════════
     ── Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome ──
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     ▆
     1. ├─... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. ├─Zelig::zelig_qi_to_df(.)
     3. │ └─Zelig::is_zelig(obj)
     4. ├─Zelig::sim(.)
     5. │ └─Zelig::is_zelig(obj)
     6. ├─Zelig::setx(.)
     7. │ └─Zelig::is_zelig(obj, fail = FALSE)
     8. ├─Zelig::zelig(...)
     9. │ └─z5$zelig(formula = formula, data = data, ..., by = by)
     10. │ └─Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. │ └─.self$data %>% group_by_(.self$by) %>% ...
     12. ├─dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. ├─dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. │ └─rlang::eval_tidy(args[[j]], mask)
     15. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. └─MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 5.1.7
Check: tests
Result: ERROR
     Running 'testthat.R' [220s]
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     ══ Skipped tests ═══════════════════════════════════════════════════════════════
     • On CRAN (17)
    
     ══ Failed tests ════════════════════════════════════════════════════════════════
     ── Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome ──
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     ▆
     1. ├─... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. ├─Zelig::zelig_qi_to_df(.)
     3. │ └─Zelig::is_zelig(obj)
     4. ├─Zelig::sim(.)
     5. │ └─Zelig::is_zelig(obj)
     6. ├─Zelig::setx(.)
     7. │ └─Zelig::is_zelig(obj, fail = FALSE)
     8. ├─Zelig::zelig(...)
     9. │ └─z5$zelig(formula = formula, data = data, ..., by = by)
     10. │ └─Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. │ └─.self$data %>% group_by_(.self$by) %>% ...
     12. ├─dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. ├─dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. │ └─rlang::eval_tidy(args[[j]], mask)
     15. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. └─MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-windows-x86_64-new-UL

Version: 5.1.7
Check: tests
Result: ERROR
     Running 'testthat.R'
    Running the tests in 'tests/testthat.R' failed.
    Complete output:
     > library(AER)
     Loading required package: car
     Loading required package: carData
     Loading required package: lmtest
     Loading required package: zoo
    
     Attaching package: 'zoo'
    
     The following objects are masked from 'package:base':
    
     as.Date, as.Date.numeric
    
     Loading required package: sandwich
     Loading required package: survival
     > library(dplyr)
    
     Attaching package: 'dplyr'
    
     The following object is masked from 'package:car':
    
     recode
    
     The following objects are masked from 'package:stats':
    
     filter, lag
    
     The following objects are masked from 'package:base':
    
     intersect, setdiff, setequal, union
    
     > library(geepack)
     > library(survey)
     Loading required package: grid
     Loading required package: Matrix
    
     Attaching package: 'survey'
    
     The following object is masked from 'package:graphics':
    
     dotchart
    
     > library(testthat)
    
     Attaching package: 'testthat'
    
     The following object is masked from 'package:dplyr':
    
     matches
    
     >
     > set.seed(123)
     > test_check("Zelig")
     Loading required package: Zelig
     -- Imputation 1 --
    
     1 2 3
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2 3
    
     -- Imputation 3 --
    
     1 2
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Ben Goodrich, and Ying Lu. 2013.
     normal-bayes: Bayesian Normal Linear Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2013.
     factor-bayes: Bayesian Factor Analysis
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Terry M. Therneau, and Thomas Lumley. 2011.
     exp: Exponential Regression for Duration Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     gamma: Gamma Regression for Continuous, Positive Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     Calculating MLEs and large sample var-cov matrix.
     This may take a moment...
     Inverting Hessian to get large sample var-cov matrix.
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christian Kleiber and Achim Zeileis. 2008.
     ivreg: Instrumental-Variable Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     stats::glm(formula = vote ~ age + race, family = binomial("logit"),
     data = as.data.frame(.))
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.9268 -1.2962 0.7072 0.7766 1.0723
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 1.039111 0.183840 0.217 0.828325
     age 1.011327 0.003088 3.689 0.000225 ***
     racewhite 1.907038 0.256462 4.800 1.58e-06 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 2266.7 on 1999 degrees of freedom
     Residual deviance: 2228.8 on 1997 degrees of freedom
     AIC: 2234.8
    
     Number of Fisher Scoring iterations: 4
    
    
    
     MCMClogit iteration 1 of 11000
     beta =
     0.00210
     0.98533
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMClogit iteration 1101 of 11000
     beta =
     -0.01824
     0.93814
     Metropolis acceptance rate for beta = 0.52952
    
    
    
     MCMClogit iteration 2201 of 11000
     beta =
     0.00475
     0.95312
     Metropolis acceptance rate for beta = 0.52158
    
    
    
     MCMClogit iteration 3301 of 11000
     beta =
     -0.01742
     0.98950
     Metropolis acceptance rate for beta = 0.52802
    
    
    
     MCMClogit iteration 4401 of 11000
     beta =
     -0.03785
     0.98980
     Metropolis acceptance rate for beta = 0.52602
    
    
    
     MCMClogit iteration 5501 of 11000
     beta =
     -0.04772
     0.92064
     Metropolis acceptance rate for beta = 0.52209
    
    
    
     MCMClogit iteration 6601 of 11000
     beta =
     0.08646
     1.00539
     Metropolis acceptance rate for beta = 0.52174
    
    
    
     MCMClogit iteration 7701 of 11000
     beta =
     0.07100
     1.01120
     Metropolis acceptance rate for beta = 0.52578
    
    
    
     MCMClogit iteration 8801 of 11000
     beta =
     -0.00420
     0.88082
     Metropolis acceptance rate for beta = 0.52460
    
    
    
     MCMClogit iteration 9901 of 11000
     beta =
     -0.01473
     0.87193
     Metropolis acceptance rate for beta = 0.52227
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.52218
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Patrick Lam. 2011.
     normal-gee: General Estimating Equation for Normal Regression
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) 34.66099 2.83523 12.23 <2e-16
     cyl -1.58728 0.49875 -3.18 0.0015
     disp -0.02058 0.00696 -2.96 0.0031
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
    
    
     MCMCregress iteration 1 of 11000
     beta =
     0.01119
     1.03455
     sigma2 = 1.00941
    
    
     MCMCregress iteration 1101 of 11000
     beta =
     -0.02594
     1.06744
     sigma2 = 1.03889
    
    
     MCMCregress iteration 2201 of 11000
     beta =
     -0.05222
     0.97402
     sigma2 = 1.01563
    
    
     MCMCregress iteration 3301 of 11000
     beta =
     -0.05933
     0.97920
     sigma2 = 1.00108
    
    
     MCMCregress iteration 4401 of 11000
     beta =
     -0.01337
     1.01322
     sigma2 = 0.95198
    
    
     MCMCregress iteration 5501 of 11000
     beta =
     -0.02224
     1.04994
     sigma2 = 0.99842
    
    
     MCMCregress iteration 6601 of 11000
     beta =
     -0.02043
     1.00096
     sigma2 = 0.93645
    
    
     MCMCregress iteration 7701 of 11000
     beta =
     0.01190
     1.06590
     sigma2 = 1.01251
    
    
     MCMCregress iteration 8801 of 11000
     beta =
     -0.01996
     1.01412
     sigma2 = 0.95430
    
    
     MCMCregress iteration 9901 of 11000
     beta =
     -0.03583
     0.97622
     sigma2 = 0.99748
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCpoisson iteration 1 of 11000
     beta =
     -0.01862
     1.02535
     Metropolis acceptance rate for beta = 1.00000
    
    
    
     MCMCpoisson iteration 1101 of 11000
     beta =
     -0.00207
     1.01122
     Metropolis acceptance rate for beta = 0.53224
    
    
    
     MCMCpoisson iteration 2201 of 11000
     beta =
     -0.02369
     1.02072
     Metropolis acceptance rate for beta = 0.51613
    
    
    
     MCMCpoisson iteration 3301 of 11000
     beta =
     -0.01912
     1.02585
     Metropolis acceptance rate for beta = 0.51712
    
    
    
     MCMCpoisson iteration 4401 of 11000
     beta =
     -0.05394
     1.03940
     Metropolis acceptance rate for beta = 0.51602
    
    
    
     MCMCpoisson iteration 5501 of 11000
     beta =
     -0.04054
     1.02780
     Metropolis acceptance rate for beta = 0.51736
    
    
    
     MCMCpoisson iteration 6601 of 11000
     beta =
     0.08526
     0.96386
     Metropolis acceptance rate for beta = 0.51750
    
    
    
     MCMCpoisson iteration 7701 of 11000
     beta =
     0.03033
     0.99266
     Metropolis acceptance rate for beta = 0.52305
    
    
    
     MCMCpoisson iteration 8801 of 11000
     beta =
     -0.00782
     1.01038
     Metropolis acceptance rate for beta = 0.52324
    
    
    
     MCMCpoisson iteration 9901 of 11000
     beta =
     -0.00920
     1.01052
     Metropolis acceptance rate for beta = 0.52096
    
    
    
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     The Metropolis acceptance rate for beta was 0.51927
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
     How to cite this model in Zelig:
     R Core Team. 2007.
     probit: Probit Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCprobit iteration 1 of 11000
     beta =
     -0.01062
     0.93045
    
    
     MCMCprobit iteration 1101 of 11000
     beta =
     0.00854
     0.98889
    
    
     MCMCprobit iteration 2201 of 11000
     beta =
     -0.05915
     1.05668
    
    
     MCMCprobit iteration 3301 of 11000
     beta =
     -0.01819
     0.86660
    
    
     MCMCprobit iteration 4401 of 11000
     beta =
     -0.01958
     0.95408
    
    
     MCMCprobit iteration 5501 of 11000
     beta =
     -0.04281
     0.93104
    
    
     MCMCprobit iteration 6601 of 11000
     beta =
     -0.04593
     0.95252
    
    
     MCMCprobit iteration 7701 of 11000
     beta =
     0.01012
     1.01175
    
    
     MCMCprobit iteration 8801 of 11000
     beta =
     0.01985
     1.03090
    
    
     MCMCprobit iteration 9901 of 11000
     beta =
     -0.02902
     0.99117
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     -- Imputation 1 --
    
     1 2
    
     -- Imputation 2 --
    
     1 2
    
     -- Imputation 3 --
    
     1 2 3
    
     -- Imputation 4 --
    
     1 2 3
    
     -- Imputation 5 --
    
     1 2 3
    
     How to cite this model in Zelig:
     Alexander D'Amour. 2008.
     quantile: Quantile Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate Std. Error (robust) z value Pr(>|z|)
     (Intercept) -6.61889 0.31748 -20.848 < 2e-16 ***
     major 1.67218 0.27842 6.006 1.9e-09 ***
     contig 4.01640 0.22954 17.498 < 2e-16 ***
     power 0.28836 0.41574 0.694 0.487925
     maxdem 0.06629 0.01925 3.444 0.000573 ***
     mindem -0.08143 0.02996 -2.718 0.006572 **
     years -0.11707 0.01336 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     relogit(formula = cbind(conflict, 1 - conflict) ~ major + contig +
     power + maxdem + mindem + years, data = as.data.frame(.),
     tau = 0.00343020423212146, bias.correct = TRUE, case.control = "weighting")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -0.94933 -0.04958 -0.02173 0.19019 0.48253
    
     Coefficients:
     Estimate (OR) Std. Error (OR, robust) z value Pr(>|z|)
     (Intercept) 0.001335 0.001521 -20.848 < 2e-16 ***
     major 5.323748 4.119262 6.006 1.9e-09 ***
     contig 55.501077 41.045844 17.498 < 2e-16 ***
     power 1.334239 1.410153 0.694 0.487925
     maxdem 1.068533 0.054366 3.444 0.000573 ***
     mindem 0.921799 0.067683 -2.718 0.006572 **
     years 0.889520 0.041892 -8.764 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 143.116 on 3125 degrees of freedom
     Residual deviance: 91.178 on 3119 degrees of freedom
     AIC: 27.041
    
     Number of Fisher Scoring iterations: 10
    
     Model:
    
     Call:
     z5$zelig(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -7.525688 0.179685 -41.883 < 2e-16
     major 2.433432 0.157561 15.444 < 2e-16
     contig 4.112491 0.157650 26.086 < 2e-16
     power 1.053747 0.217243 4.851 1.23e-06
     maxdem 0.048431 0.010065 4.812 1.50e-06
     mindem -0.065249 0.012802 -5.097 3.45e-07
     years -0.063359 0.005705 -11.106 < 2e-16
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     Next step: Use 'setx' method
     Model:
    
     Call:
     `z5$zelig`(formula = conflict ~ major + contig + power + maxdem +
     mindem + years, tau = 1042/303772, case.control = "prior",
     data = mid)
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -1.0596 -0.0376 -0.0231 2.1085 4.4649
    
     Coefficients:
     Estimate (OR) Std. Error (OR) z value Pr(>|z|)
     (Intercept) 5.391e-04 9.686e-05 -41.883 < 2e-16 ***
     major 1.140e+01 1.796e+00 15.444 < 2e-16 ***
     contig 6.110e+01 9.632e+00 26.086 < 2e-16 ***
     power 2.868e+00 6.231e-01 4.851 1.23e-06 ***
     maxdem 1.050e+00 1.056e-02 4.812 1.50e-06 ***
     mindem 9.368e-01 1.199e-02 -5.097 3.45e-07 ***
     years 9.386e-01 5.355e-03 -11.106 < 2e-16 ***
     ---
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 3979.5 on 3125 degrees of freedom
     Residual deviance: 1868.5 on 3119 degrees of freedom
     AIC: 1882.5
    
     Number of Fisher Scoring iterations: 6
    
     How to cite this model in Zelig:
     Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau. 2022.
     relogit: Rare Events Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
    
    
     MCMCtobit iteration 1 of 11000
     beta =
     0.09918
     0.93061
     sigma2 = 0.70553
    
    
     MCMCtobit iteration 1101 of 11000
     beta =
     0.07445
     0.91668
     sigma2 = 0.99194
    
    
     MCMCtobit iteration 2201 of 11000
     beta =
     0.00068
     0.99780
     sigma2 = 0.99760
    
    
     MCMCtobit iteration 3301 of 11000
     beta =
     0.04504
     0.95894
     sigma2 = 0.95844
    
    
     MCMCtobit iteration 4401 of 11000
     beta =
     -0.03116
     1.00165
     sigma2 = 0.97216
    
    
     MCMCtobit iteration 5501 of 11000
     beta =
     -0.01771
     0.98161
     sigma2 = 0.94482
    
    
     MCMCtobit iteration 6601 of 11000
     beta =
     -0.00829
     0.96500
     sigma2 = 0.90195
    
    
     MCMCtobit iteration 7701 of 11000
     beta =
     0.09984
     0.93619
     sigma2 = 1.03124
    
    
     MCMCtobit iteration 8801 of 11000
     beta =
     0.03092
     0.99268
     sigma2 = 0.95955
    
    
     MCMCtobit iteration 9901 of 11000
     beta =
     0.04477
     0.93956
     sigma2 = 1.01930
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Noninteger weights were set, but the model in Zelig is only able to use integer valued weights.
     A bootstrapped version of the dataset was constructed using the weights as sample probabilities.
    
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     logit: Logistic Regression for Dichotomous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     poisson: Poisson Regression for Event Count Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     setx:
     (Intercept) x
     1 1 0
     setx1:
     (Intercept) x
     1 1 1
    
     Next step: Use 'sim' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 -0.000499563 0.006496101 -0.0005420348 -0.01340449 0.01259395
     pv
     mean sd 50% 2.5% 97.5%
     [1,] -0.002512827 0.09819415 -0.003183565 -0.2043797 0.1944359
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     1 1.00022 0.006045548 1.000062 0.9887536 1.01215
     pv
     mean sd 50% 2.5% 97.5%
     [1,] 0.9993027 0.09953018 0.9999023 0.8025547 1.197061
     fd
     mean sd 50% 2.5% 97.5%
     1 1.000719 0.01076163 1.000655 0.9799646 1.022849
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Bootstraps
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -0.0003 0.0060 -0.05 0.96
     x 1.0006 0.0115 86.67 <2e-16
    
     For results from individual bootstrapped datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Bootstrapped Dataset 2
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.09973 -0.09750 -0.09523 0.10254 0.10486
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.004872 0.006185 -0.788 0.431
     x 1.004608 0.010780 93.194 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.8969, Adjusted R-squared: 0.8968
     F-statistic: 8685 on 1 and 998 DF, p-value: < 2.2e-16
    
     Bootstrapped Dataset 3
     Call:
     z5$zelig(formula = formula, data = data, by = by, bootstrap = 20)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.10360 -0.09514 -0.08812 0.10411 0.11242
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) 0.003619 0.006352 0.57 0.569
     x 0.983959 0.010756 91.48 <2e-16
    
     Residual standard error: 0.09988 on 998 degrees of freedom
     Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
     F-statistic: 8368 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     How to cite this model in Zelig:
     R Core Team. 2007.
     ls: Least Squares Regression for Continuous Dependent Variables
     in Christine Choirat, Christopher Gandrud, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
     "Zelig: Everyone's Statistical Software," https://zeligproject.org/
     Model: Combined Imputations
    
     Estimate Std.Error z value Pr(>|z|)
     (Intercept) -1.001 1.733 -0.58 0.56
     x 1.001 0.011 91.25 <2e-16
    
     For results from individual imputed datasets, use summary(x, subset = i:j)
     Next step: Use 'setx' method
     Imputed Dataset 1
     Call:
     z5$zelig(formula = formula, data = data, by = by)
    
     Residuals:
     Min 1Q Median 3Q Max
     -0.1003 -0.1000 0.0000 0.1000 0.1003
    
     Coefficients:
     Estimate Std. Error t value Pr(>|t|)
     (Intercept) -0.0003003 0.0063356 -0.047 0.962
     x 1.0006000 0.0109654 91.251 <2e-16
    
     Residual standard error: 0.1001 on 998 degrees of freedom
     Multiple R-squared: 0.893, Adjusted R-squared: 0.8929
     F-statistic: 8327 on 1 and 998 DF, p-value: < 2.2e-16
    
     Next step: Use 'setx' method
     Model:
     $rr
     [1] 0
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6031 0.2531 0.3125 0.3947 0.6564
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) 1.274 1.045 1.219 0.223
     xx 1.088 1.195 0.910 0.363
     zz 1.975 2.152 0.918 0.359
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 28.820 on 55 degrees of freedom
     Residual deviance: 26.896 on 53 degrees of freedom
     AIC: 32.896
    
     Number of Fisher Scoring iterations: 6
    
     Model:
     $rr
     [1] 1
    
    
     Call:
     zb.out$zelig(formula = yb ~ xx + zz, data = data, by = "rr")
    
     Deviance Residuals:
     Min 1Q Median 3Q Max
     -2.6982 0.2266 0.3859 0.7298 1.0780
    
     Coefficients:
     Estimate Std. Error z value Pr(>|z|)
     (Intercept) -0.2255 1.0561 -0.214 0.831
     xx 2.2702 1.1632 1.952 0.051
     zz 2.1285 1.8878 1.128 0.260
    
     (Dispersion parameter for binomial family taken to be 1)
    
     Null deviance: 41.724 on 43 degrees of freedom
     Residual deviance: 35.553 on 41 degrees of freedom
     AIC: 41.553
    
     Number of Fisher Scoring iterations: 5
    
     Next step: Use 'setx' method
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9476733 0.05386777 0.9665833 0.8009766 0.9955033
     pv
     0 1
     [1,] 0.058 0.942
    
     sim x :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.9367684 0.07021485 0.9611249 0.7428204 0.9949634
     pv
     0 1
     [1,] 0.061 0.939
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.8918403 0.06422275 0.9049403 0.7298034 0.9740786
     pv
     0 1
     [1,] 0.101 0.899
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.05583303 0.07977401 -0.05088306 -0.2221262 0.1014462
    
     sim x1 :
     -----
     ev
     mean sd 50% 2.5% 97.5%
     [1,] 0.6990619 0.09467077 0.7081549 0.5028567 0.8603348
     pv
     0 1
     [1,] 0.31 0.69
     fd
     mean sd 50% 2.5% 97.5%
     [1,] -0.2377065 0.1148547 -0.2380952 -0.466211 -0.01659926
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
    
     ══ Skipped tests ═══════════════════════════════════════════════════════════════
     • On CRAN (17)
    
     ══ Failed tests ════════════════════════════════════════════════════════════════
     ── Error (test-interface.R:74:5): REQUIRE TEST zelig_qi_to_df multinomial outcome ──
     Error in `if (mcmc.method == "RWM") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(1), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "IndMH") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlMH",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), tune = tune,
     lecuyer = as.integer(lecuyer), seedarray = as.integer(seed.array),
     lecuyerstream = as.integer(lecuyer.stream), verbose = as.integer(verbose),
     betastart = beta.start, betamode = beta.mode, b0 = b0,
     B0 = B0, V = V, RW = as.integer(0), tdf = as.double(tdf))
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else if (mcmc.method == "slice") {
     auto.Scythe.call(output.object = "posterior", cc.fun.name = "MCMCmnlslice",
     sample.nonconst = sample, Y = Y, X = X, burnin = as.integer(burnin),
     mcmc = as.integer(mcmc), thin = as.integer(thin), lecuyer = as.integer(lecuyer),
     seedarray = as.integer(seed.array), lecuyerstream = as.integer(lecuyer.stream),
     verbose = as.integer(verbose), betastart = beta.start,
     b0 = b0, B0 = B0, V = V)
     output <- form.mcmc.object(posterior, names = xnames, title = "MCMCmnl Posterior Sample")
     } else {
     cat("\n\nmcmc.method not equal to one of 'RWM', 'IndMH', or 'slice'.\n")
     stop("Please respecifify and call MCMCmnl() again.\n")
     }`: the condition has length > 1
     Backtrace:
     ▆
     1. ├─... %>% zelig_qi_to_df() at test-interface.R:74:4
     2. ├─Zelig::zelig_qi_to_df(.)
     3. │ └─Zelig::is_zelig(obj)
     4. ├─Zelig::sim(.)
     5. │ └─Zelig::is_zelig(obj)
     6. ├─Zelig::setx(.)
     7. │ └─Zelig::is_zelig(obj, fail = FALSE)
     8. ├─Zelig::zelig(...)
     9. │ └─z5$zelig(formula = formula, data = data, ..., by = by)
     10. │ └─Zelig callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
     11. │ └─.self$data %>% group_by_(.self$by) %>% ...
     12. ├─dplyr::do(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     13. ├─dplyr:::do.grouped_df(., z.out = eval(fn2(.self$model.call, quote(as.data.frame(.)))))
     14. │ └─rlang::eval_tidy(args[[j]], mask)
     15. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     16. └─base::eval(fn2(.self$model.call, quote(as.data.frame(.))))
     17. └─MCMCpack::MCMCmnl(...)
    
     [ FAIL 1 | WARN 13 | SKIP 17 | PASS 212 ]
     Error: Test failures
     Execution halted
Flavor: r-devel-windows-x86_64-new-TK