Last updated on 2022-04-24 14:50:16 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1 | 3.42 | 35.73 | 39.15 | NOTE | |
r-devel-linux-x86_64-debian-gcc | 1.1 | 2.43 | 27.88 | 30.31 | NOTE | |
r-devel-linux-x86_64-fedora-clang | 1.1 | 47.87 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.1 | 39.74 | NOTE | |||
r-devel-windows-x86_64 | 1.1 | 15.00 | 52.00 | 67.00 | NOTE | |
r-patched-linux-x86_64 | 1.1 | 3.96 | 35.52 | 39.48 | NOTE | |
r-release-linux-x86_64 | 1.1 | 2.35 | 34.24 | 36.59 | NOTE | |
r-release-macos-arm64 | 1.1 | 17.00 | NOTE | |||
r-release-macos-x86_64 | 1.1 | 28.00 | NOTE | |||
r-release-windows-x86_64 | 1.1 | 17.00 | 54.00 | 71.00 | NOTE | |
r-oldrel-macos-arm64 | 1.1 | 24.00 | NOTE | |||
r-oldrel-macos-x86_64 | 1.1 | 28.00 | NOTE | |||
r-oldrel-windows-ix86+x86_64 | 1.1 | 6.00 | 45.00 | 51.00 | NOTE |
Version: 1.1
Check: DESCRIPTION meta-information
Result: NOTE
Package listed in more than one of Depends, Imports, Suggests, Enhances:
'RODBC'
A package should be listed in only one of these fields.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64
Version: 1.1
Check: dependencies in R code
Result: NOTE
'library' or 'require' call to 'RODBC' which was already attached by Depends.
Please remove these calls from your code.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64
Version: 1.1
Check: Rd line widths
Result: NOTE
Rd file 'RODM_apply_model.Rd':
\examples lines wider than 100 characters:
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
print(svm2$model.apply.results[1:10,]) # Print example of prediction results
points(x=svm2$model.apply.results[, "X1"], svm2$model.apply.results[, "PREDICTION"], pch=20, col="red")
rnorm(100, mean = 4, sd = 1), rnorm(100, mean = 10, sd = 1)) # Create and merge 5 Gaussian distributions
Y1 <- c(rnorm(100, mean = 1, sd = 2), rnorm(100, mean = 4, sd = 1.5), rnorm(100, mean = 6, sd = 0.5),
legend(5, -0.5, legend=c("Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4", "Cluster 5"), pch = rep(20, 5),
Rd file 'RODM_create_assoc_model.Rd':
\examples lines wider than 100 characters:
ards <- satfruit[,c("WH", "BA", "NAR", "COR", "SF", "VI", "PS", "ES", "AF", "CO", "AR", "AL", "OL")] # Select subset of attributes
Rd file 'RODM_create_dt_model.Rd':
\examples lines wider than 100 characters:
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
print(dt2$model.apply.results[1:10,]) # Print example of prediction results
Rd file 'RODM_create_glm_model.Rd':
\examples lines wider than 100 characters:
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
train.rows <- length(titanic_train[,1]) # Number of rows
row.id <- matrix(seq(1, train.rows), nrow=train.rows, ncol=1, dimnames= list(NULL, c("ROW_ID"))) # Row id
titanic_train <- cbind(row.id, titanic_train) # Add row id to dataset
print(glm2$model.apply.results[1:10,]) # Print example of prediction results
Rd file 'RODM_create_kmeans_model.Rd':
\examples lines wider than 100 characters:
rnorm(100, mean = 4, sd = 1), rnorm(100, mean = 10, sd = 1)) # Create and merge 5 Gaussian distributions
Y1 <- c(rnorm(100, mean = 1, sd = 2), rnorm(100, mean = 4, sd = 1.5), rnorm(100, mean = 6, sd = 0.5),
legend(5, -0.5, legend=c("Cluster 1", "Cluster 2", "Cluster 3", "Cluster 4", "Cluster 5"), pch = rep(20, 5),
Rd file 'RODM_create_nb_model.Rd':
\examples lines wider than 100 characters:
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset
print(nb2$model.apply.results[1:10,]) # Print example of prediction results
Rd file 'RODM_create_oc_model.Rd':
\examples lines wider than 100 characters:
rnorm(100, mean = 4, sd = 1), rnorm(100, mean = 10, sd = 1)) # Create and merge 5 Gaussian distributions
Y1 <- c(rnorm(100, mean = 1, sd = 2), rnorm(100, mean = 4, sd = 1.5), rnorm(100, mean = 6, sd = 0.5),
Rd file 'RODM_create_svm_model.Rd':
\examples lines wider than 100 characters:
Y1 <- c(rnorm(200, mean = 1, sd = 2), rnorm(300, mean = 4, sd = 1.5), rnorm(300, mean = 6, sd = 0.5))
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
print(svm2$model.apply.results[1:10,]) # Print example of prediction results
Rd file 'RODM_list_dbms_models.Rd':
\examples lines wider than 100 characters:
data(titanic3, package="PASWR") # Load survival data from Titanic
ds <- titanic3[,c("pclass", "survived", "sex", "age", "fare", "embarked")] # Select subset of attributes
random_sample <- sample(1:n.rows, ceiling(n.rows/2)) # Split dataset randomly in train/test subsets
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset
data_table_name = "titanic_train", # (in quotes) Data frame or database table containing the input dataset
These lines will be truncated in the PDF manual.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-release-linux-x86_64