CRAN Package Check Results for Package aspect

Last updated on 2022-04-27 11:53:49 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0-5 3.45 38.36 41.81 OK
r-devel-linux-x86_64-debian-gcc 1.0-5 2.74 28.86 31.60 OK
r-devel-linux-x86_64-fedora-clang 1.0-5 48.96 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0-5 45.91 ERROR
r-devel-windows-x86_64 1.0-5 13.00 51.00 64.00 OK
r-patched-linux-x86_64 1.0-5 3.45 36.79 40.24 OK
r-release-linux-x86_64 1.0-5 2.77 36.66 39.43 OK
r-release-macos-arm64 1.0-5 15.00 OK
r-release-macos-x86_64 1.0-5 27.00 OK
r-release-windows-x86_64 1.0-5 16.00 54.00 70.00 OK
r-oldrel-macos-arm64 1.0-5 22.00 OK
r-oldrel-macos-x86_64 1.0-5 29.00 OK
r-oldrel-windows-ix86+x86_64 1.0-5 6.00 43.00 49.00 OK

Check Details

Version: 1.0-5
Check: examples
Result: ERROR
    Running examples in ‘aspect-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: corAspect
    > ### Title: Scaling by Maximizing Correlational Aspects
    > ### Aliases: corAspect print.aspect summary.aspect
    > ### Keywords: models
    >
    > ### ** Examples
    >
    >
    > ## maximizes the first eigenvalue
    > data(galo)
    > res.eig1 <- corAspect(galo[,1:4], aspect = "aspectEigen")
    > res.eig1
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectEigen")
    
    Value target function: 2.157
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.225 -0.153 0.263
    IQ -0.225 1.000 0.784 -0.359
    advice -0.153 0.784 1.000 -0.381
    SES 0.263 -0.359 -0.381 1.000
    
    > summary(res.eig1)
    
    Correlation matrix of the scaled data:
     gender IQ advice SES
    gender 1.0000000 -0.2250424 -0.1530434 0.2625045
    IQ -0.2250424 1.0000000 0.7838497 -0.3591809
    advice -0.1530434 0.7838497 1.0000000 -0.3809925
    SES 0.2625045 -0.3591809 -0.3809925 1.0000000
    
    
    Eigenvalues of the correlation matrix:
    [1] 2.1566364 0.9495205 0.6824798 0.2113632
    
    Category scores:
    gender:
     score
    F -1.0156259
    M 0.9846145
    
    IQ:
     score
    1 -1.4165321
    2 -1.1543604
    3 -1.2562031
    4 -0.8641975
    5 -0.4258116
    6 0.4066503
    7 1.3069583
    8 2.2268649
    9 2.6321133
    
    advice:
     score
    Agr 0.6933106
    Ext -1.0187239
    Gen 0.4392874
    Grls 0.2082299
    Man -0.7348860
    None -1.0858279
    Uni 2.0881269
    
    SES:
     score
    LoWC -1.1292420
    MidWC -0.8802974
    Prof -1.9149716
    Shop 0.7380903
    Skil 0.5207727
    Unsk 2.5039191
    
    >
    > ## maximizes the first 2 eigenvalues
    > res.eig2 <- corAspect(galo[,1:4], aspect = "aspectEigen", p = 2)
    > res.eig2
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectEigen", p = 2)
    
    Value target function: 3.266
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.218 -0.127 0.455
    IQ -0.218 1.000 0.795 -0.104
    advice -0.127 0.795 1.000 -0.028
    SES 0.455 -0.104 -0.028 1.000
    
    >
    > ## maximizes the absolute value of cubic correlations
    > res.abs3 <- corAspect(galo[,1:4], aspect = "aspectAbs", pow = 3)
    > res.abs3
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectAbs", pow = 3)
    
    Value target function: 2.63
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.218 -0.136 0.245
    IQ -0.218 1.000 0.795 -0.357
    advice -0.136 0.795 1.000 -0.378
    SES 0.245 -0.357 -0.378 1.000
    
    >
    > ## maximizes the sum of squared correlations
    > res.cor2 <- corAspect(galo[,1:4], aspect = "aspectSum", pow = 2)
    > res.cor2
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectSum", pow = 2)
    
    Value target function: 6.078
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.222 -0.145 0.317
    IQ -0.222 1.000 0.791 -0.344
    advice -0.145 0.791 1.000 -0.352
    SES 0.317 -0.344 -0.352 1.000
    
    >
    > ## maximizes the determinant
    > res.det <- corAspect(galo[,1:4], aspect = "aspectDeterminant")
    > res.det
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectDeterminant")
    
    Value target function: 1.304
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.218 -0.130 0.450
    IQ -0.218 1.000 0.796 -0.217
    advice -0.130 0.796 1.000 -0.170
    SES 0.450 -0.217 -0.170 1.000
    
    >
    > ## maximizes SMC, IQ as target variable
    > res.smc <- corAspect(galo[,1:4], aspect = "aspectSMC", targvar = 2)
    > res.smc
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectSMC", targvar = 2)
    
    Value target function: 0.649
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.218 -0.126 0.323
    IQ -0.218 1.000 0.795 -0.284
    advice -0.126 0.795 1.000 -0.253
    SES 0.323 -0.284 -0.253 1.000
    
    >
    > ## maximizes the sum of SMC
    > res.sumsmc <- corAspect(galo[,1:4], aspect = "aspectSumSMC")
    > res.sumsmc
    
    Call:
    corAspect(data = galo[, 1:4], aspect = "aspectSumSMC")
    
    Value target function: 1.736
    
    Correlation matrix of the transformed data:
     gender IQ advice SES
    gender 1.000 -0.219 -0.126 0.460
    IQ -0.219 1.000 0.795 -0.146
    advice -0.126 0.795 1.000 -0.078
    SES 0.460 -0.146 -0.078 1.000
    
    >
    > ## some user-defined non-sense aspect
    > ## first list element corresponds to function value, second to first derivative
    > myAspect <- function(r, a = 1, b = 1) list(a*b*r, matrix(a*b, nrow = nrow(r), ncol = ncol(r)))
    > res.my <- corAspect(galo[,1:4], aspect = myAspect, a = 2, b = 4)
    Error in ((f - fold) < eps) || (itel == itmax) :
     'length = 16' in coercion to 'logical(1)'
    Calls: corAspect
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc