Last updated on 2022-05-02 08:51:56 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 0.1 | 2.76 | 33.75 | 36.51 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 0.1 | 2.04 | 25.34 | 27.38 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 0.1 | 42.97 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 0.1 | 41.69 | ERROR | |||
r-devel-windows-x86_64 | 0.1 | 17.00 | 54.00 | 71.00 | ERROR | |
r-patched-linux-x86_64 | 0.1 | 1.58 | 37.07 | 38.65 | NOTE | |
r-release-linux-x86_64 | 0.1 | NOTE | ||||
r-release-macos-arm64 | 0.1 | 25.00 | NOTE | |||
r-release-macos-x86_64 | 0.1 | 27.00 | NOTE | |||
r-release-windows-x86_64 | 0.1 | 5.00 | 53.00 | 58.00 | NOTE | |
r-oldrel-macos-arm64 | 0.1 | 24.00 | NOTE | |||
r-oldrel-macos-x86_64 | 0.1 | 29.00 | NOTE | |||
r-oldrel-windows-ix86+x86_64 | 0.1 | 4.00 | 35.00 | 39.00 | NOTE |
Version: 0.1
Check: R code for possible problems
Result: NOTE
call_localoptim: no visible global function definition for 'optim'
call_localoptim: no visible global function definition for 'nlminb'
call_localoptim: no visible global function definition for
'txtProgressBar'
call_localoptim: no visible global function definition for
'setTxtProgressBar'
call_localoptim : <anonymous>: no visible global function definition
for 'optim'
call_localoptim : <anonymous>: no visible global function definition
for 'nlminb'
multiStartoptim: no visible global function definition for 'median'
Undefined global functions or variables:
median nlminb optim setTxtProgressBar txtProgressBar
Consider adding
importFrom("stats", "median", "nlminb", "optim")
importFrom("utils", "setTxtProgressBar", "txtProgressBar")
to your NAMESPACE file.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64
Version: 0.1
Check: examples
Result: ERROR
Running examples in 'mcGlobaloptim-Ex.R' failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: multiStartoptim
> ### Title: Multistart global optimization using Monte Carlo and Quasi Monte
> ### Carlo simulation.
> ### Aliases: multiStartoptim
>
> ### ** Examples
>
> ### Example from optim :
> # "wild" function, global minimum at about -15.81515
> fw <- function (x)
+ {
+ 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
+ }
> plot(fw, -50, 50, n = 1000, main = "optim() minimising 'wild function'")
> (minfw <- multiStartoptim(objectivefn = fw, lower = -40,
+ upper = 40, method = "nlminb", nbtrials = 500,
+ typerunif = "sobol", verb = TRUE))
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
$res
$res$par
[1] -15.81515
$res$objective
[1] 67.46773
$res$convergence
[1] 0
$res$iterations
[1] 5
$res$evaluations
function gradient
9 8
$res$message
[1] "both X-convergence and relative convergence (5)"
$iteration_no
[1] 1 2 3 7 8 15 73 131 466
$startingparams_sequence
[1] 29.4074334 9.4074334 -30.5925666 -0.5925666 -5.5925666 -15.5925666
[7] -17.4675666 -15.2800666 -14.8113166
$foundparams_sequence
[1] 28.303752 10.609181 -29.597542 -1.190591 -4.532845 -16.117845 -15.967215
[8] -15.661611 -15.815151
$objective_val_sequence
[1] 84.04052 81.84853 76.56611 76.39410 69.31956 67.52682 67.48679 67.47030
[9] 67.46773
> points(minfw$res$par, minfw$res$objective, pch = 8, lwd = 2, col = "red", cex = 2)
>
> ### Calibrating the Nelson-Siegel-Svensson model (from Gilli, Schumann (2010)) :
> # Nelson - Siegel - Svensson model
> NSS2 <- function(betaV, mats)
+ {
+ gam1 <- mats / betaV [5]
+ gam2 <- mats / betaV [6]
+ aux1 <- 1 - exp (- gam1)
+ aux2 <- 1 - exp (- gam2)
+ betaV[1] + betaV[2] * (aux1 / gam1) +
+ betaV[3] * (aux1 / gam1 + aux1 - 1) +
+ betaV[4] * (aux2 / gam2 + aux2 - 1)
+ }
>
> betaTRUE <- c(5, -2 ,5, -5 ,1 ,3)
> mats <- c(1 ,3 ,6 ,9 ,12 ,15 ,18 ,21 ,24 ,30 ,36 ,48 ,60 ,72 ,84 ,
+ 96,108 ,120)/ 12
> yM <- NSS2 (betaTRUE, mats)
> dataList <- list ( yM = yM, mats = mats, model = NSS2)
> plot (mats, yM, xlab = " maturities in years ", ylab =" yields in pct. ")
>
> # define objective function
> OF <- function (betaV, dataList) {
+ mats <- dataList$mats
+ yM <- dataList$yM
+ model <- dataList$model
+ y <- model(betaV, mats)
+ aux <- y - yM
+ crossprod(aux)
+ }
>
> settings <- list (min = c( 0, -15, -30, -30 ,0 ,3),
+ max = c (15, 30, 30, 30 ,3 ,6), d = 6)
> NSStest <- multiStartoptim(objectivefn = OF, data = dataList,
+ lower = settings$min,
+ upper = settings$max,
+ method = "nlminb",
+ nbtrials = 50, typerunif = "torus")
Error in nbpar != length(upper) || lower > upper :
'length = 6' in coercion to 'logical(1)'
Calls: multiStartoptim
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc
Version: 0.1
Check: examples
Result: ERROR
Running examples in ‘mcGlobaloptim-Ex.R’ failed
The error most likely occurred in:
> ### Name: multiStartoptim
> ### Title: Multistart global optimization using Monte Carlo and Quasi Monte
> ### Carlo simulation.
> ### Aliases: multiStartoptim
>
> ### ** Examples
>
> ### Example from optim :
> # "wild" function, global minimum at about -15.81515
> fw <- function (x)
+ {
+ 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
+ }
> plot(fw, -50, 50, n = 1000, main = "optim() minimising 'wild function'")
> (minfw <- multiStartoptim(objectivefn = fw, lower = -40,
+ upper = 40, method = "nlminb", nbtrials = 500,
+ typerunif = "sobol", verb = TRUE))
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
$res
$res$par
[1] -15.81515
$res$objective
[1] 67.46773
$res$convergence
[1] 0
$res$iterations
[1] 5
$res$evaluations
function gradient
9 8
$res$message
[1] "both X-convergence and relative convergence (5)"
$iteration_no
[1] 1 2 3 7 8 15 73 131 466
$startingparams_sequence
[1] 29.4074334 9.4074334 -30.5925666 -0.5925666 -5.5925666 -15.5925666
[7] -17.4675666 -15.2800666 -14.8113166
$foundparams_sequence
[1] 28.303752 10.609181 -29.597542 -1.190591 -4.532845 -16.117845 -15.967215
[8] -15.661611 -15.815151
$objective_val_sequence
[1] 84.04052 81.84853 76.56611 76.39410 69.31956 67.52682 67.48679 67.47030
[9] 67.46773
> points(minfw$res$par, minfw$res$objective, pch = 8, lwd = 2, col = "red", cex = 2)
>
> ### Calibrating the Nelson-Siegel-Svensson model (from Gilli, Schumann (2010)) :
> # Nelson - Siegel - Svensson model
> NSS2 <- function(betaV, mats)
+ {
+ gam1 <- mats / betaV [5]
+ gam2 <- mats / betaV [6]
+ aux1 <- 1 - exp (- gam1)
+ aux2 <- 1 - exp (- gam2)
+ betaV[1] + betaV[2] * (aux1 / gam1) +
+ betaV[3] * (aux1 / gam1 + aux1 - 1) +
+ betaV[4] * (aux2 / gam2 + aux2 - 1)
+ }
>
> betaTRUE <- c(5, -2 ,5, -5 ,1 ,3)
> mats <- c(1 ,3 ,6 ,9 ,12 ,15 ,18 ,21 ,24 ,30 ,36 ,48 ,60 ,72 ,84 ,
+ 96,108 ,120)/ 12
> yM <- NSS2 (betaTRUE, mats)
> dataList <- list ( yM = yM, mats = mats, model = NSS2)
> plot (mats, yM, xlab = " maturities in years ", ylab =" yields in pct. ")
>
> # define objective function
> OF <- function (betaV, dataList) {
+ mats <- dataList$mats
+ yM <- dataList$yM
+ model <- dataList$model
+ y <- model(betaV, mats)
+ aux <- y - yM
+ crossprod(aux)
+ }
>
> settings <- list (min = c( 0, -15, -30, -30 ,0 ,3),
+ max = c (15, 30, 30, 30 ,3 ,6), d = 6)
> NSStest <- multiStartoptim(objectivefn = OF, data = dataList,
+ lower = settings$min,
+ upper = settings$max,
+ method = "nlminb",
+ nbtrials = 50, typerunif = "torus")
Error in nbpar != length(upper) || lower > upper :
'length = 6' in coercion to 'logical(1)'
Calls: multiStartoptim
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64