Last updated on 2023-01-30 07:55:12 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 2.0.3 | 3.87 | 66.98 | 70.85 | ERROR | |
r-devel-linux-x86_64-debian-gcc | 2.0.3 | 3.82 | 51.51 | 55.33 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 2.0.3 | 90.56 | ERROR | |||
r-devel-linux-x86_64-fedora-gcc | 2.0.3 | 88.06 | ERROR | |||
r-devel-windows-x86_64 | 2.0.3 | 59.00 | 127.00 | 186.00 | ERROR | |
r-patched-linux-x86_64 | 2.0.3 | 5.86 | 62.36 | 68.22 | ERROR | |
r-release-linux-x86_64 | 2.0.3 | 4.62 | 63.35 | 67.97 | ERROR | |
r-release-macos-arm64 | 2.0.3 | 35.00 | NOTE | |||
r-release-macos-x86_64 | 2.0.3 | 49.00 | NOTE | |||
r-release-windows-x86_64 | 2.0.3 | 67.00 | 145.00 | 212.00 | ERROR | |
r-oldrel-macos-arm64 | 2.0.3 | 43.00 | NOTE | |||
r-oldrel-macos-x86_64 | 2.0.3 | 62.00 | NOTE | |||
r-oldrel-windows-ix86+x86_64 | 2.0.3 | 9.00 | 107.00 | 116.00 | ERROR |
Version: 2.0.3
Check: examples
Result: ERROR
Running examples in ‘mistat-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: LATHYPPISTON
> ### Title: Latin Hypercube Design for the Piston Simulator
> ### Aliases: LATHYPPISTON
> ### Keywords: datasets
>
> ### ** Examples
>
> data(LATHYPPISTON)
>
> library(DiceEval)
Loading required package: DiceKriging
>
> Dice <- km(design=LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"],
+ response=LATHYPPISTON[,"seconds"])
optimisation start
------------------
* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~1
* covariance model :
- type : matern5_2
- nugget : NO
- parameters lower bounds : 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10
- parameters upper bounds : 60 0.03 0.016 8000 4e-04 12 40
- best initial criterion value(s) : -3.903179
N = 7, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 3.9032 |proj g|= 0.1313
At iterate 1 f = 3.2243 |proj g|= 0.13323
At iterate 2 f = 2.9684 |proj g|= 0.13187
At iterate 3 f = 2.4614 |proj g|= 0.11463
At iterate 4 f = 2.328 |proj g|= 0.14017
At iterate 5 f = 2.2582 |proj g|= 0.1355
At iterate 6 f = 2.2508 |proj g|= 0.13208
At iterate 7 f = 2.2501 |proj g|= 0.1329
At iterate 8 f = 2.2478 |proj g|= 0.1335
At iterate 9 f = 2.2375 |proj g|= 0.13508
At iterate 10 f = 2.2363 |proj g|= 0.13445
At iterate 11 f = 2.2359 |proj g|= 0.13374
At iterate 12 f = 2.2358 |proj g|= 0.1338
At iterate 13 f = 2.235 |proj g|= 0.13421
At iterate 14 f = 2.2333 |proj g|= 0.13463
At iterate 15 f = 2.2286 |proj g|= 0.13509
At iterate 16 f = 2.2171 |proj g|= 0.13507
At iterate 17 f = 2.1884 |proj g|= 0.13321
At iterate 18 f = 2.1217 |proj g|= 0.12645
At iterate 19 f = 1.9776 |proj g|= 0.11007
At iterate 20 f = 1.8805 |proj g|= 0.10738
At iterate 21 f = 1.7552 |proj g|= 0.10184
At iterate 22 f = 1.7501 |proj g|= 0.099237
At iterate 23 f = 1.7492 |proj g|= 0.10005
At iterate 24 f = 1.7492 |proj g|= 0.1
At iterate 25 f = 1.7492 |proj g|= 0.09999
At iterate 26 f = 1.7492 |proj g|= 0.099975
At iterate 27 f = 1.7492 |proj g|= 0.099935
At iterate 28 f = 1.7492 |proj g|= 0.099878
At iterate 29 f = 1.7491 |proj g|= 0.099776
At iterate 30 f = 1.7489 |proj g|= 0.099607
At iterate 31 f = 1.7485 |proj g|= 0.099305
At iterate 32 f = 1.7474 |proj g|= 0.098743
At iterate 33 f = 1.7444 |proj g|= 0.097642
At iterate 34 f = 1.7362 |proj g|= 0.095377
At iterate 35 f = 1.7138 |proj g|= 0.090587
At iterate 36 f = 1.6535 |proj g|= 0.08072
At iterate 37 f = 1.4949 |proj g|= 0.06292
At iterate 38 f = 1.1119 |proj g|= 0.039191
At iterate 39 f = 0.54208 |proj g|= 0.021228
At iterate 40 f = 0.30933 |proj g|= 0.012522
At iterate 41 f = 0.30681 |proj g|= 0.012472
At iterate 42 f = 0.30541 |proj g|= 0.012399
At iterate 43 f = 0.30541 |proj g|= 0.012395
At iterate 44 f = 0.30541 |proj g|= 0.0057407
iterations 44
function evaluations 52
segments explored during Cauchy searches 48
BFGS updates skipped 0
active bounds at final generalized Cauchy point 4
norm of the final projected gradient 0.00574067
final function value 0.305409
F = 0.305409
final value 0.305409
converged
>
> library(DiceView)
Attaching package: ‘DiceView’
The following object is masked from ‘package:DiceKriging’:
branin
>
> sectionview(Dice,
+ center=colMeans(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]),
+ conf_lev=c(0.5, 0.9, 0.95),
+ title="", col_sur="darkgrey", lwd=2,
+ Xname=colnames(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]))
Error: cannot allocate vector of size 372529.0 Gb
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64, r-release-linux-x86_64
Version: 2.0.3
Check: dependencies in R code
Result: NOTE
Namespace in Imports field not imported from: ‘grDevices’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-release-macos-arm64, r-release-macos-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64
Version: 2.0.3
Check: examples
Result: ERROR
Running examples in ‘mistat-Ex.R’ failed
The error most likely occurred in:
> ### Name: LATHYPPISTON
> ### Title: Latin Hypercube Design for the Piston Simulator
> ### Aliases: LATHYPPISTON
> ### Keywords: datasets
>
> ### ** Examples
>
> data(LATHYPPISTON)
>
> library(DiceEval)
Loading required package: DiceKriging
>
> Dice <- km(design=LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"],
+ response=LATHYPPISTON[,"seconds"])
optimisation start
------------------
* estimation method : MLE
* optimisation method : BFGS
* analytical gradient : used
* trend model : ~1
* covariance model :
- type : matern5_2
- nugget : NO
- parameters lower bounds : 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10 1e-10
- parameters upper bounds : 60 0.03 0.016 8000 4e-04 12 40
- best initial criterion value(s) : -3.903179
N = 7, M = 5 machine precision = 2.22045e-16
At X0, 0 variables are exactly at the bounds
At iterate 0 f= 3.9032 |proj g|= 0.1313
At iterate 1 f = 3.2243 |proj g|= 0.13323
At iterate 2 f = 2.9684 |proj g|= 0.13187
At iterate 3 f = 2.4614 |proj g|= 0.11463
At iterate 4 f = 2.328 |proj g|= 0.14017
At iterate 5 f = 2.2582 |proj g|= 0.1355
At iterate 6 f = 2.2508 |proj g|= 0.13208
At iterate 7 f = 2.2501 |proj g|= 0.1329
At iterate 8 f = 2.2478 |proj g|= 0.1335
At iterate 9 f = 2.2375 |proj g|= 0.13508
At iterate 10 f = 2.2363 |proj g|= 0.13445
At iterate 11 f = 2.2359 |proj g|= 0.13374
At iterate 12 f = 2.2358 |proj g|= 0.1338
At iterate 13 f = 2.235 |proj g|= 0.13421
At iterate 14 f = 2.2333 |proj g|= 0.13463
At iterate 15 f = 2.2286 |proj g|= 0.13509
At iterate 16 f = 2.2171 |proj g|= 0.13507
At iterate 17 f = 2.1884 |proj g|= 0.13321
At iterate 18 f = 2.1217 |proj g|= 0.12645
At iterate 19 f = 1.9776 |proj g|= 0.11007
At iterate 20 f = 1.8805 |proj g|= 0.10738
At iterate 21 f = 1.7552 |proj g|= 0.10184
At iterate 22 f = 1.7501 |proj g|= 0.099237
At iterate 23 f = 1.7492 |proj g|= 0.10005
At iterate 24 f = 1.7492 |proj g|= 0.1
At iterate 25 f = 1.7492 |proj g|= 0.09999
At iterate 26 f = 1.7492 |proj g|= 0.099975
At iterate 27 f = 1.7492 |proj g|= 0.099935
At iterate 28 f = 1.7492 |proj g|= 0.099878
At iterate 29 f = 1.7491 |proj g|= 0.099776
At iterate 30 f = 1.7489 |proj g|= 0.099607
At iterate 31 f = 1.7485 |proj g|= 0.099305
At iterate 32 f = 1.7474 |proj g|= 0.098743
At iterate 33 f = 1.7444 |proj g|= 0.097642
At iterate 34 f = 1.7362 |proj g|= 0.095377
At iterate 35 f = 1.7138 |proj g|= 0.090587
At iterate 36 f = 1.6535 |proj g|= 0.08072
At iterate 37 f = 1.4949 |proj g|= 0.06292
At iterate 38 f = 1.1119 |proj g|= 0.039191
At iterate 39 f = 0.54208 |proj g|= 0.021228
At iterate 40 f = 0.30933 |proj g|= 0.012522
At iterate 41 f = 0.30681 |proj g|= 0.012472
At iterate 42 f = 0.30541 |proj g|= 0.012399
At iterate 43 f = 0.30541 |proj g|= 0.012395
At iterate 44 f = 0.30541 |proj g|= 0.0057407
iterations 44
function evaluations 52
segments explored during Cauchy searches 48
BFGS updates skipped 0
active bounds at final generalized Cauchy point 4
norm of the final projected gradient 0.00574067
final function value 0.305409
F = 0.305409
final value 0.305409
converged
>
> library(DiceView)
Attaching package: ‘DiceView’
The following object is masked from ‘package:DiceKriging’:
branin
>
> sectionview(Dice,
+ center=colMeans(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]),
+ conf_lev=c(0.5, 0.9, 0.95),
+ title="", col_sur="darkgrey", lwd=2,
+ Xname=colnames(LATHYPPISTON[, !names(LATHYPPISTON) %in% "seconds"]))
Error: cannot allocate vector of size 372529.0 Gb
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-release-windows-x86_64, r-oldrel-windows-ix86+x86_64