CRAN Package Check Results for Package medflex

Last updated on 2023-04-13 06:56:44 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.6-7 9.20 109.05 118.25 ERROR
r-devel-linux-x86_64-debian-gcc 0.6-7 8.83 84.47 93.30 ERROR
r-devel-linux-x86_64-fedora-clang 0.6-7 149.87 ERROR
r-devel-linux-x86_64-fedora-gcc 0.6-7 158.94 ERROR
r-devel-macos-arm64 0.6-7 57.00 ERROR
r-devel-macos-x86_64 0.6-7 102.00 ERROR
r-devel-windows-x86_64 0.6-7 15.00 161.00 176.00 ERROR
r-patched-linux-x86_64 0.6-7 16.00 105.21 121.21 ERROR
r-release-linux-x86_64 0.6-7 10.25 101.64 111.89 ERROR
r-release-macos-arm64 0.6-7 50.00 OK
r-release-macos-x86_64 0.6-7 81.00 OK
r-release-windows-x86_64 0.6-7 14.00 155.00 169.00 ERROR
r-oldrel-macos-arm64 0.6-7 72.00 OK
r-oldrel-macos-x86_64 0.6-7 112.00 OK
r-oldrel-windows-ix86+x86_64 0.6-7 24.00 141.00 165.00 ERROR

Check Details

Version: 0.6-7
Check: S3 generic/method consistency
Result: WARN
    residualPlots:
     function(model, ...)
    residualPlots.expData:
     function(object, ...)
    
    residualPlots:
     function(model, ...)
    residualPlots.neModel:
     function(object, ...)
    
    residualPlot:
     function(model, ...)
    residualPlot.neModel:
     function(object, ...)
    
    residualPlot:
     function(model, ...)
    residualPlot.expData:
     function(object, ...)
    See section ‘Generic functions and methods’ in the ‘Writing R
    Extensions’ manual.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-macos-arm64, r-devel-macos-x86_64, r-devel-windows-x86_64, r-patched-linux-x86_64

Version: 0.6-7
Check: examples
Result: ERROR
    Running examples in ‘medflex-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: neModel-methods
    > ### Title: Methods for natural effect models
    > ### Aliases: neModel-methods coef.neModel confint.neModelBoot
    > ### confint.neModel residualPlot.neModel residualPlots.neModel
    > ### summary.neModel vcov.neModel weights.neModel
    >
    > ### ** Examples
    >
    > data(UPBdata)
    >
    > weightData <- neWeight(negaff ~ att + educ + gender + age,
    + data = UPBdata)
    > neMod <- neModel(UPB ~ att0 * att1 + educ + gender + age,
    + family = binomial, expData = weightData, se = "robust")
    >
    > ## extract coefficients
    > coef(neMod)
    (Intercept) att0 att1 educM educH genderM
    -0.52588124 0.29321882 0.17465629 0.19695736 0.39686487 0.33060892
     age att0:att1
    -0.01271054 0.07992366
    >
    > ## extract variance-covariance matrix
    > vcov(neMod)
     (Intercept) att0 att1 educM
    (Intercept) 0.5107962853 1.205653e-04 -9.948131e-04 -0.2101703627
    att0 0.0001205653 1.435228e-02 -1.692869e-03 0.0025776663
    att1 -0.0009948131 -1.692869e-03 2.330610e-03 -0.0011022216
    educM -0.2101703627 2.577666e-03 -1.102222e-03 0.2464137181
    educH -0.2205850857 4.160948e-04 -4.276913e-05 0.2199680869
    genderM -0.0070029315 -9.131544e-04 1.718328e-03 0.0098809216
    age -0.0068365860 -4.340308e-05 2.303236e-05 -0.0003318528
    att0:att1 -0.0005167246 -9.600201e-04 1.466216e-04 -0.0028458192
     educH genderM age att0:att1
    (Intercept) -2.205851e-01 -0.0070029315 -6.836586e-03 -5.167246e-04
    att0 4.160948e-04 -0.0009131544 -4.340308e-05 -9.600201e-04
    att1 -4.276913e-05 0.0017183281 2.303236e-05 1.466216e-04
    educM 2.199681e-01 0.0098809216 -3.318528e-04 -2.845819e-03
    educH 2.530135e-01 0.0093081833 -7.717637e-05 -1.974714e-03
    genderM 9.308183e-03 0.0580447377 -6.034870e-04 -3.374912e-04
    age -7.717637e-05 -0.0006034870 1.701166e-04 3.548442e-05
    att0:att1 -1.974714e-03 -0.0003374912 3.548442e-05 1.848475e-03
    >
    > ## extract regression weights
    > w <- weights(neMod)
    > head(w)
     1 2 3 4 5 6
    0.4119360 0.6517524 0.7949334 0.9259571 1.0826446 1.3394706
    >
    > ## obtain bootstrap confidence intervals
    > confint(neMod)
     95% LCL 95% UCL
    (Intercept) -1.926667764 0.87490529
    att0 0.058413178 0.52802447
    att1 0.080036305 0.26927628
    educM -0.775970263 1.16988497
    educH -0.589005688 1.38273544
    genderM -0.141594926 0.80281276
    age -0.038274099 0.01285303
    att0:att1 -0.004342831 0.16419014
    > confint(neMod, parm = c("att0"))
     95% LCL 95% UCL
    att0 0.05841318 0.5280245
    > confint(neMod, type = "perc", level = 0.90)
     90% LCL 90% UCL
    (Intercept) -1.701458349 0.649695875
    att0 0.096163714 0.490273934
    att1 0.095248696 0.254063891
    educM -0.619549241 1.013463952
    educH -0.430503783 1.224233532
    genderM -0.065677041 0.726894875
    age -0.034164154 0.008743082
    att0:att1 0.009204991 0.150642321
    >
    > ## summary table
    > summary(neMod)
    Natural effect model
    with robust standard errors based on the sandwich estimator
    ---
    Exposure: att
    Mediator(s): negaff
    ---
    Parameter estimates:
     Estimate Std. Error z value Pr(>|z|)
    (Intercept) -0.52588 0.71470 -0.736 0.461848
    att0 0.29322 0.11980 2.448 0.014383 *
    att1 0.17466 0.04828 3.618 0.000297 ***
    educM 0.19696 0.49640 0.397 0.691536
    educH 0.39686 0.50300 0.789 0.430119
    genderM 0.33061 0.24092 1.372 0.169986
    age -0.01271 0.01304 -0.975 0.329799
    att0:att1 0.07992 0.04299 1.859 0.063034 .
    ---
    Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    >
    > ## residual plots
    > library(car)
    Loading required package: carData
    > residualPlots(neMod)
    Warning in eval(family$initialize) :
     non-integer #successes in a binomial glm!
    Error in eval(extras, data, env) : object 'object' not found
    Calls: residualPlots ... <Anonymous> -> model.frame.default -> eval -> eval -> weights
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-patched-linux-x86_64

Version: 0.6-7
Check: examples
Result: ERROR
    Running examples in ‘medflex-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: neModel-methods
    > ### Title: Methods for natural effect models
    > ### Aliases: neModel-methods coef.neModel confint.neModelBoot
    > ### confint.neModel residualPlot.neModel residualPlots.neModel
    > ### summary.neModel vcov.neModel weights.neModel
    >
    > ### ** Examples
    >
    > data(UPBdata)
    >
    > weightData <- neWeight(negaff ~ att + educ + gender + age,
    + data = UPBdata)
    > neMod <- neModel(UPB ~ att0 * att1 + educ + gender + age,
    + family = binomial, expData = weightData, se = "robust")
    >
    > ## extract coefficients
    > coef(neMod)
    (Intercept) att0 att1 educM educH genderM
    -0.52588124 0.29321882 0.17465629 0.19695736 0.39686487 0.33060892
     age att0:att1
    -0.01271054 0.07992366
    >
    > ## extract variance-covariance matrix
    > vcov(neMod)
     (Intercept) att0 att1 educM
    (Intercept) 0.5107962853 1.205653e-04 -9.948131e-04 -0.2101703627
    att0 0.0001205653 1.435228e-02 -1.692869e-03 0.0025776663
    att1 -0.0009948131 -1.692869e-03 2.330610e-03 -0.0011022216
    educM -0.2101703627 2.577666e-03 -1.102222e-03 0.2464137181
    educH -0.2205850857 4.160948e-04 -4.276913e-05 0.2199680869
    genderM -0.0070029315 -9.131544e-04 1.718328e-03 0.0098809216
    age -0.0068365860 -4.340308e-05 2.303236e-05 -0.0003318528
    att0:att1 -0.0005167246 -9.600201e-04 1.466216e-04 -0.0028458192
     educH genderM age att0:att1
    (Intercept) -2.205851e-01 -0.0070029315 -6.836586e-03 -5.167246e-04
    att0 4.160948e-04 -0.0009131544 -4.340308e-05 -9.600201e-04
    att1 -4.276913e-05 0.0017183281 2.303236e-05 1.466216e-04
    educM 2.199681e-01 0.0098809216 -3.318528e-04 -2.845819e-03
    educH 2.530135e-01 0.0093081833 -7.717637e-05 -1.974714e-03
    genderM 9.308183e-03 0.0580447377 -6.034870e-04 -3.374912e-04
    age -7.717637e-05 -0.0006034870 1.701166e-04 3.548442e-05
    att0:att1 -1.974714e-03 -0.0003374912 3.548442e-05 1.848475e-03
    >
    > ## extract regression weights
    > w <- weights(neMod)
    > head(w)
     1 2 3 4 5 6
    0.4119360 0.6517524 0.7949334 0.9259571 1.0826446 1.3394706
    >
    > ## obtain bootstrap confidence intervals
    > confint(neMod)
     95% LCL 95% UCL
    (Intercept) -1.926667764 0.87490529
    att0 0.058413178 0.52802447
    att1 0.080036305 0.26927628
    educM -0.775970263 1.16988497
    educH -0.589005688 1.38273544
    genderM -0.141594926 0.80281276
    age -0.038274099 0.01285303
    att0:att1 -0.004342831 0.16419014
    > confint(neMod, parm = c("att0"))
     95% LCL 95% UCL
    att0 0.05841318 0.5280245
    > confint(neMod, type = "perc", level = 0.90)
     90% LCL 90% UCL
    (Intercept) -1.701458349 0.649695875
    att0 0.096163714 0.490273934
    att1 0.095248696 0.254063891
    educM -0.619549241 1.013463952
    educH -0.430503783 1.224233532
    genderM -0.065677041 0.726894875
    age -0.034164154 0.008743082
    att0:att1 0.009204991 0.150642321
    >
    > ## summary table
    > summary(neMod)
    Natural effect model
    with robust standard errors based on the sandwich estimator
    ---
    Exposure: att
    Mediator(s): negaff
    ---
    Parameter estimates:
     Estimate Std. Error z value Pr(>|z|)
    (Intercept) -0.52588 0.71470 -0.736 0.461848
    att0 0.29322 0.11980 2.448 0.014383 *
    att1 0.17466 0.04828 3.618 0.000297 ***
    educM 0.19696 0.49640 0.397 0.691536
    educH 0.39686 0.50300 0.789 0.430119
    genderM 0.33061 0.24092 1.372 0.169986
    age -0.01271 0.01304 -0.975 0.329799
    att0:att1 0.07992 0.04299 1.859 0.063034 .
    ---
    Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    >
    > ## residual plots
    > library(car)
    Loading required package: carData
    > residualPlots(neMod)
    Warning in eval(family$initialize) :
     non-integer #successes in a binomial glm!
    Error in eval(extras, data, env) : object 'object' not found
    Calls: residualPlots ... <Anonymous> -> model.frame.default -> eval -> eval -> weights
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-macos-arm64, r-devel-macos-x86_64, r-devel-windows-x86_64

Version: 0.6-7
Check: re-building of vignette outputs
Result: NOTE
    Error(s) in re-building vignettes:
    --- re-building ‘medflex.Rnw’ using Sweave
    Loading required package: multcomp
    Loading required package: mvtnorm
    Loading required package: survival
    Loading required package: TH.data
    Loading required package: MASS
    
    Attaching package: 'TH.data'
    
    The following object is masked from 'package:MASS':
    
     geyser
    
    medflex 0.6-7: Flexible Mediation Analysis Using Natural Effect Models
    Please report bugs here: github.com/jmpsteen/medflex/issues
    attbin01
     0.3959
    attbin11
     0.352
    Loading required package: carData
    att0
    1.34
    att0 + att0:att1
     1.44
    att1
    1.20
    att1 + att0:att1
     1.29
    att0 + att1 + att0:att1
     1.73
    Effect decomposition on the scale of the linear predictor
    conditional on: gender, educ, age
    with x* = 0, x = 1
    
    Effect decomposition on exp(scale of the linear predictor)
    conditional on: gender, educ, age
    with x* = 0, x = 1
    
    Effect decomposition on the scale of the linear predictor
    conditional on: gender, educ, age
    with x* = 0, x = 1
    
    Effect decomposition on exp(scale of the linear predictor)
    conditional on: gender, educ, age
    with x* = 0, x = 1
    
    Error: processing vignette 'medflex.Rnw' failed with diagnostics:
    Running 'texi2dvi' on 'medflex.tex' failed.
    LaTeX errors:
    ! LaTeX Error: File `nccmath.sty' not found.
    
    Type X to quit or <RETURN> to proceed,
    or enter new name. (Default extension: sty)
    
    ! Emergency stop.
    <read *>
    
    l.12 ^^M
    
    ! ==> Fatal error occurred, no output PDF file produced!
    --- failed re-building 'medflex.Rnw'
    
    --- re-building ‘sandwich.Rnw’ using Sweave
    --- finished re-building ‘sandwich.Rnw’
    
    SUMMARY: processing the following file failed:
     ‘medflex.Rnw’
    
    Error: Vignette re-building failed.
    Execution halted
Flavor: r-devel-macos-x86_64

Version: 0.6-7
Check: examples
Result: ERROR
    Running examples in ‘medflex-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: neModel-methods
    > ### Title: Methods for natural effect models
    > ### Aliases: neModel-methods coef.neModel confint.neModelBoot
    > ### confint.neModel residualPlot.neModel residualPlots.neModel
    > ### summary.neModel vcov.neModel weights.neModel
    >
    > ### ** Examples
    >
    > data(UPBdata)
    >
    > weightData <- neWeight(negaff ~ att + educ + gender + age,
    + data = UPBdata)
    > neMod <- neModel(UPB ~ att0 * att1 + educ + gender + age,
    + family = binomial, expData = weightData, se = "robust")
    >
    > ## extract coefficients
    > coef(neMod)
    (Intercept) att0 att1 educM educH genderM
    -0.52588124 0.29321882 0.17465629 0.19695736 0.39686487 0.33060892
     age att0:att1
    -0.01271054 0.07992366
    >
    > ## extract variance-covariance matrix
    > vcov(neMod)
     (Intercept) att0 att1 educM
    (Intercept) 0.5107962853 1.205653e-04 -9.948131e-04 -0.2101703627
    att0 0.0001205653 1.435228e-02 -1.692869e-03 0.0025776663
    att1 -0.0009948131 -1.692869e-03 2.330610e-03 -0.0011022216
    educM -0.2101703627 2.577666e-03 -1.102222e-03 0.2464137181
    educH -0.2205850857 4.160948e-04 -4.276913e-05 0.2199680869
    genderM -0.0070029315 -9.131544e-04 1.718328e-03 0.0098809216
    age -0.0068365860 -4.340308e-05 2.303236e-05 -0.0003318528
    att0:att1 -0.0005167246 -9.600201e-04 1.466216e-04 -0.0028458192
     educH genderM age att0:att1
    (Intercept) -2.205851e-01 -0.0070029315 -6.836586e-03 -5.167246e-04
    att0 4.160948e-04 -0.0009131544 -4.340308e-05 -9.600201e-04
    att1 -4.276913e-05 0.0017183281 2.303236e-05 1.466216e-04
    educM 2.199681e-01 0.0098809216 -3.318528e-04 -2.845819e-03
    educH 2.530135e-01 0.0093081833 -7.717637e-05 -1.974714e-03
    genderM 9.308183e-03 0.0580447377 -6.034870e-04 -3.374912e-04
    age -7.717637e-05 -0.0006034870 1.701166e-04 3.548442e-05
    att0:att1 -1.974714e-03 -0.0003374912 3.548442e-05 1.848475e-03
    >
    > ## extract regression weights
    > w <- weights(neMod)
    > head(w)
     1 2 3 4 5 6
    0.4119360 0.6517524 0.7949334 0.9259571 1.0826446 1.3394706
    >
    > ## obtain bootstrap confidence intervals
    > confint(neMod)
     95% LCL 95% UCL
    (Intercept) -1.926667764 0.87490529
    att0 0.058413178 0.52802447
    att1 0.080036305 0.26927628
    educM -0.775970263 1.16988497
    educH -0.589005688 1.38273544
    genderM -0.141594926 0.80281276
    age -0.038274099 0.01285303
    att0:att1 -0.004342831 0.16419014
    > confint(neMod, parm = c("att0"))
     95% LCL 95% UCL
    att0 0.05841318 0.5280245
    > confint(neMod, type = "perc", level = 0.90)
     90% LCL 90% UCL
    (Intercept) -1.701458349 0.649695875
    att0 0.096163714 0.490273934
    att1 0.095248696 0.254063891
    educM -0.619549241 1.013463952
    educH -0.430503783 1.224233532
    genderM -0.065677041 0.726894875
    age -0.034164154 0.008743082
    att0:att1 0.009204991 0.150642321
    >
    > ## summary table
    > summary(neMod)
    Natural effect model
    with robust standard errors based on the sandwich estimator
    ---
    Exposure: att
    Mediator(s): negaff
    ---
    Parameter estimates:
     Estimate Std. Error z value Pr(>|z|)
    (Intercept) -0.52588 0.71470 -0.736 0.461848
    att0 0.29322 0.11980 2.448 0.014383 *
    att1 0.17466 0.04828 3.618 0.000297 ***
    educM 0.19696 0.49640 0.397 0.691536
    educH 0.39686 0.50300 0.789 0.430119
    genderM 0.33061 0.24092 1.372 0.169986
    age -0.01271 0.01304 -0.975 0.329799
    att0:att1 0.07992 0.04299 1.859 0.063034 .
    ---
    Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    >
    > ## residual plots
    > library(car)
    Loading required package: carData
    > residualPlots(neMod)
    Warning in eval(family$initialize) :
     non-integer #successes in a binomial glm!
    Error in weights(object$neModelFit, type = "prior") :
     object 'object' not found
    Calls: residualPlots ... <Anonymous> -> model.frame.default -> eval -> eval -> weights
    Execution halted
Flavor: r-release-linux-x86_64

Version: 0.6-7
Check: examples
Result: ERROR
    Running examples in 'medflex-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: neModel-methods
    > ### Title: Methods for natural effect models
    > ### Aliases: neModel-methods coef.neModel confint.neModelBoot
    > ### confint.neModel residualPlot.neModel residualPlots.neModel
    > ### summary.neModel vcov.neModel weights.neModel
    >
    > ### ** Examples
    >
    > data(UPBdata)
    >
    > weightData <- neWeight(negaff ~ att + educ + gender + age,
    + data = UPBdata)
    > neMod <- neModel(UPB ~ att0 * att1 + educ + gender + age,
    + family = binomial, expData = weightData, se = "robust")
    >
    > ## extract coefficients
    > coef(neMod)
    (Intercept) att0 att1 educM educH genderM
    -0.52588124 0.29321882 0.17465629 0.19695736 0.39686487 0.33060892
     age att0:att1
    -0.01271054 0.07992366
    >
    > ## extract variance-covariance matrix
    > vcov(neMod)
     (Intercept) att0 att1 educM
    (Intercept) 0.5107962853 1.205653e-04 -9.948131e-04 -0.2101703627
    att0 0.0001205653 1.435228e-02 -1.692869e-03 0.0025776663
    att1 -0.0009948131 -1.692869e-03 2.330610e-03 -0.0011022216
    educM -0.2101703627 2.577666e-03 -1.102222e-03 0.2464137181
    educH -0.2205850857 4.160948e-04 -4.276913e-05 0.2199680869
    genderM -0.0070029315 -9.131544e-04 1.718328e-03 0.0098809216
    age -0.0068365860 -4.340308e-05 2.303236e-05 -0.0003318528
    att0:att1 -0.0005167246 -9.600201e-04 1.466216e-04 -0.0028458192
     educH genderM age att0:att1
    (Intercept) -2.205851e-01 -0.0070029315 -6.836586e-03 -5.167246e-04
    att0 4.160948e-04 -0.0009131544 -4.340308e-05 -9.600201e-04
    att1 -4.276913e-05 0.0017183281 2.303236e-05 1.466216e-04
    educM 2.199681e-01 0.0098809216 -3.318528e-04 -2.845819e-03
    educH 2.530135e-01 0.0093081833 -7.717637e-05 -1.974714e-03
    genderM 9.308183e-03 0.0580447377 -6.034870e-04 -3.374912e-04
    age -7.717637e-05 -0.0006034870 1.701166e-04 3.548442e-05
    att0:att1 -1.974714e-03 -0.0003374912 3.548442e-05 1.848475e-03
    >
    > ## extract regression weights
    > w <- weights(neMod)
    > head(w)
     1 2 3 4 5 6
    0.4119360 0.6517524 0.7949334 0.9259571 1.0826446 1.3394706
    >
    > ## obtain bootstrap confidence intervals
    > confint(neMod)
     95% LCL 95% UCL
    (Intercept) -1.926667764 0.87490529
    att0 0.058413178 0.52802447
    att1 0.080036305 0.26927628
    educM -0.775970263 1.16988497
    educH -0.589005688 1.38273544
    genderM -0.141594926 0.80281276
    age -0.038274099 0.01285303
    att0:att1 -0.004342831 0.16419014
    > confint(neMod, parm = c("att0"))
     95% LCL 95% UCL
    att0 0.05841318 0.5280245
    > confint(neMod, type = "perc", level = 0.90)
     90% LCL 90% UCL
    (Intercept) -1.701458349 0.649695875
    att0 0.096163714 0.490273934
    att1 0.095248696 0.254063891
    educM -0.619549241 1.013463952
    educH -0.430503783 1.224233532
    genderM -0.065677041 0.726894875
    age -0.034164154 0.008743082
    att0:att1 0.009204991 0.150642321
    >
    > ## summary table
    > summary(neMod)
    Natural effect model
    with robust standard errors based on the sandwich estimator
    ---
    Exposure: att
    Mediator(s): negaff
    ---
    Parameter estimates:
     Estimate Std. Error z value Pr(>|z|)
    (Intercept) -0.52588 0.71470 -0.736 0.461848
    att0 0.29322 0.11980 2.448 0.014383 *
    att1 0.17466 0.04828 3.618 0.000297 ***
    educM 0.19696 0.49640 0.397 0.691536
    educH 0.39686 0.50300 0.789 0.430119
    genderM 0.33061 0.24092 1.372 0.169986
    age -0.01271 0.01304 -0.975 0.329799
    att0:att1 0.07992 0.04299 1.859 0.063034 .
    ---
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    >
    > ## residual plots
    > library(car)
    Loading required package: carData
    > residualPlots(neMod)
    Warning in eval(family$initialize) :
     non-integer #successes in a binomial glm!
    Error in weights(object$neModelFit, type = "prior") :
     object 'object' not found
    Calls: residualPlots ... <Anonymous> -> model.frame.default -> eval -> eval -> weights
    Execution halted
Flavors: r-release-windows-x86_64, r-oldrel-windows-ix86+x86_64