CRAN Package Check Results for Package momr

Last updated on 2023-09-26 14:05:02 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1 5.34 39.26 44.60 ERROR
r-devel-linux-x86_64-debian-gcc 1.1 3.48 30.18 33.66 ERROR
r-devel-linux-x86_64-fedora-clang 1.1 57.99 ERROR
r-devel-linux-x86_64-fedora-gcc 1.1 56.32 ERROR
r-devel-windows-x86_64 1.1 5.00 56.00 61.00 ERROR
r-patched-linux-x86_64 1.1 5.60 40.80 46.40 OK
r-release-linux-x86_64 1.1 3.13 40.26 43.39 OK
r-release-macos-arm64 1.1 23.00 NOTE
r-release-macos-x86_64 1.1 32.00 NOTE
r-release-windows-x86_64 1.1 7.00 63.00 70.00 NOTE
r-oldrel-macos-arm64 1.1 22.00 NOTE
r-oldrel-macos-x86_64 1.1 39.00 NOTE
r-oldrel-windows-x86_64 1.1 6.00 58.00 64.00 NOTE

Check Details

Version: 1.1
Check: examples
Result: ERROR
    Running examples in ‘momr-Ex.R’ failed
    The error most likely occurred in:
    
    > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
    > ### Name: momr-package
    > ### Title: Mining Metaomics Data In R
    > ### Aliases: momr-package momr
    > ### Keywords: package shotgun metagenomics MGS MetaGenomicSpecies data
    > ### mining biomarker selection metagenomics
    >
    > ### ** Examples
    >
    >
    > # load the package
    > library(momr)
    >
    > #' all the data in the package
    > # data(package="momr")
    >
    > #' load the raw and frequency test dataset
    > data("hs_3.3_metahit_sample_dat_raw")
    > data("hs_3.3_metahit_sample_dat_freq")
    >
    >
    > #' NORMALIZATION
    > #' This should be performed with the whole dataset (complete catalogue).
    > #' But here is an exemple with the subset of the data for illustration purposes
    > data(hs_3.3_metahit_genesize)
    > norm.data <- normFreqRPKM(dat=hs_3.3_metahit_sample_dat_raw, cat=hs_3.3_metahit_genesize)
    [1] "The dataset is a matrix"
    >
    >
    > #' CLUSTERING OF SAMPLES
    > hc.data <- hierClust(data=hs_3.3_metahit_sample_dat_freq[,1:5], side="col")
    The "ward" method has been renamed to "ward.D"; note new "ward.D2"
    > clust.order <- hc.data$mat.hclust$order
    > #' order samples followin the hierarchical clustering
    > ordered.samples <- colnames(hs_3.3_metahit_sample_dat_freq[,1:5])[clust.order]
    > #' how close are the two first samples (spearman, rho)
    > hc.data$mat.rho[ordered.samples[1], ordered.samples[2]]
    [1] 0.1038056
    > # select the samples closely related together
    > close.samples <- filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, filt = 0.5)
    Warning in filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, :
     There are less than 5 samples. Setting size to the number of rows
    Warning in filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, :
     There are no related samples above the threshold 0.5
    >
    > #' CLUSTER GENES ON THE MGS CATALOG
    > #' load the curated mgs data for the hs_3.3_metahit catalog
    > data("mgs_hs_3.3_metahit_sup500")
    >
    > #' project a list of genes onto the mgs
    > genebag <- rownames(hs_3.3_metahit_sample_dat_freq)
    > mgs <- projectOntoMGS(genebag=genebag, list.mgs=mgs_hs_3.3_metahit_sup500)
    >
    > #' extract the profile of a list of genes from the whole dataset
    > mgs.dat <- extractProfiles(mgs, hs_3.3_metahit_sample_dat_freq, silent=FALSE)
    [1] "Multiple profile extraction"
    >
    > #' plot the barcodes
    > par(mfrow=c(5,1), mar=c(1,0,0,0))
    > for(i in 1:5){
    + plotBarcode(mgs.dat[[i]])
    + }
    >
    > #' compute the filtered vectors
    > mgs.mean.vect <- computeFilteredVectors(profile=mgs.dat, type="mean")
    >
    >
    > #' TEST RELATIONS
    > #' for the first 1000 genes
    > res.test <- testRelations(data=hs_3.3_metahit_sample_dat_freq[1:500,],
    + trait=c(rep(1,150),rep(2,142)),type="wilcoxon")
    Error in wilcox.test.formula(data[i, restrict] ~ trait[restrict], paired = paired) :
     cannot use 'paired' in formula method
    Calls: testRelations -> wilcox.test -> wilcox.test.formula
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.1
Check: installed package size
Result: NOTE
     installed size is 7.4Mb
     sub-directories of 1Mb or more:
     data 2.1Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-windows-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 1.1
Check: examples
Result: ERROR
    Running examples in ‘momr-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: momr-package
    > ### Title: Mining Metaomics Data In R
    > ### Aliases: momr-package momr
    > ### Keywords: package shotgun metagenomics MGS MetaGenomicSpecies data
    > ### mining biomarker selection metagenomics
    >
    > ### ** Examples
    >
    >
    > # load the package
    > library(momr)
    >
    > #' all the data in the package
    > # data(package="momr")
    >
    > #' load the raw and frequency test dataset
    > data("hs_3.3_metahit_sample_dat_raw")
    > data("hs_3.3_metahit_sample_dat_freq")
    >
    >
    > #' NORMALIZATION
    > #' This should be performed with the whole dataset (complete catalogue).
    > #' But here is an exemple with the subset of the data for illustration purposes
    > data(hs_3.3_metahit_genesize)
    > norm.data <- normFreqRPKM(dat=hs_3.3_metahit_sample_dat_raw, cat=hs_3.3_metahit_genesize)
    [1] "The dataset is a matrix"
    >
    >
    > #' CLUSTERING OF SAMPLES
    > hc.data <- hierClust(data=hs_3.3_metahit_sample_dat_freq[,1:5], side="col")
    The "ward" method has been renamed to "ward.D"; note new "ward.D2"
    > clust.order <- hc.data$mat.hclust$order
    > #' order samples followin the hierarchical clustering
    > ordered.samples <- colnames(hs_3.3_metahit_sample_dat_freq[,1:5])[clust.order]
    > #' how close are the two first samples (spearman, rho)
    > hc.data$mat.rho[ordered.samples[1], ordered.samples[2]]
    [1] 0.1038056
    > # select the samples closely related together
    > close.samples <- filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, filt = 0.5)
    Warning in filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, :
     There are less than 5 samples. Setting size to the number of rows
    Warning in filt.hierClust(hc.data$mat.rho, hclust.method = "ward", plot = TRUE, :
     There are no related samples above the threshold 0.5
    >
    > #' CLUSTER GENES ON THE MGS CATALOG
    > #' load the curated mgs data for the hs_3.3_metahit catalog
    > data("mgs_hs_3.3_metahit_sup500")
    >
    > #' project a list of genes onto the mgs
    > genebag <- rownames(hs_3.3_metahit_sample_dat_freq)
    > mgs <- projectOntoMGS(genebag=genebag, list.mgs=mgs_hs_3.3_metahit_sup500)
    >
    > #' extract the profile of a list of genes from the whole dataset
    > mgs.dat <- extractProfiles(mgs, hs_3.3_metahit_sample_dat_freq, silent=FALSE)
    [1] "Multiple profile extraction"
    >
    > #' plot the barcodes
    > par(mfrow=c(5,1), mar=c(1,0,0,0))
    > for(i in 1:5){
    + plotBarcode(mgs.dat[[i]])
    + }
    >
    > #' compute the filtered vectors
    > mgs.mean.vect <- computeFilteredVectors(profile=mgs.dat, type="mean")
    >
    >
    > #' TEST RELATIONS
    > #' for the first 1000 genes
    > res.test <- testRelations(data=hs_3.3_metahit_sample_dat_freq[1:500,],
    + trait=c(rep(1,150),rep(2,142)),type="wilcoxon")
    Error in wilcox.test.formula(data[i, restrict] ~ trait[restrict], paired = paired) :
     cannot use 'paired' in formula method
    Calls: testRelations -> wilcox.test -> wilcox.test.formula
    Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64